1
|
Ivanesthi IR, Latifah E, Liu SY, Tseng YK, Pan HC, Wang CC. Dual-mode recognition of tRNA Pro isoacceptors by Toxoplasma gondii Prolyl-tRNA synthetase. EMBO Rep 2025:10.1038/s44319-025-00457-x. [PMID: 40295724 DOI: 10.1038/s44319-025-00457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Prolyl-tRNA synthetases (ProRSs) exhibit diverse domain architectures and motifs, evolving into prokaryotic (P-type) and eukaryotic/archaeal (E-type) variants. Both types exhibit high specificity for the recognition and aminoacylation of their cognate tRNAs. Interestingly, the parasitic eukaryote Toxoplasma gondii encodes a single E-type ProRS (TgProRS) but utilizes two distinct tRNAPro isoacceptors: a cytosolic E-type (with C72/C73) and an apicoplast P-type (with G72/A73). Our study demonstrates that TgProRS, despite being classified as an E-type enzyme, efficiently charges both tRNAPro isoacceptors and functionally compensates for yeast cytoplasmic and mitochondrial ProRS activities. Notably, while C72/C73 are dispensable for cytosolic tRNAPro charging, G72/A73 are crucial for apicoplast tRNAPro aminoacylation. Furthermore, Mutations in the motif 2 loop selectively affect E- or P-type tRNAPro recognition. While TgProRS exhibits similar susceptibility to azetidine (a proline mimic) when charging both tRNAPro types, cytosolic tRNAPro charging is five times more sensitive to inhibition by halofuginone (a Pro-A76 mimic) compared to apicoplast tRNAPro charging. These findings underscore TgProRS's dual functionality, showcasing its remarkable evolutionary adaptability and providing valuable insights for developing more selective therapeutic agents.
Collapse
Affiliation(s)
- Indira Rizqita Ivanesthi
- Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan
| | - Emi Latifah
- Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan
| | - Shih-Yang Liu
- Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan
| | - Yi-Kuan Tseng
- Graduate Institute of Statistics, National Central University, Jungli District, Taoyuan, 32001, Taiwan
| | - Hung-Chuan Pan
- Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, 407219, Taiwan
| | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Jungli District, Taoyuan, 32001, Taiwan.
| |
Collapse
|
2
|
Rodgers KJ, Kabalan J, Phillips CR. A comprehensive review of the proline mimic azetidine-2-carboxylic acid (A2C). Toxicology 2025; 510:153999. [PMID: 39549916 DOI: 10.1016/j.tox.2024.153999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
The imino acid azetidine-2-carboxylic acid (A2C), a proline homologue, was first identified in liliaceous plants in 1955. Its ability to exchange for proline in protein synthesis is responsible for its teratogenic effects and has made it a very useful tool for generating non-native proteins to study proteotoxic stress and ER stress. The tRNA synthetases from some A2C-producing plants can discriminate between proline and A2C, but for most plants and for mammalian cells, A2C is mistakenly used in protein synthesis in place of proline and can avoid cell proof-reading mechanisms. Human exposure to A2C would be very limited had it not been for the development of sugar beets as an alternative source of dietary sucrose to sugar cane, and the widespread use of the plentiful byproducts as livestock fodder. Fodder beets, a very high yielding forage crop, are also used as livestock fodder particularly for lactating cows. It is therefore possible for A2C to enter the human food chain and impact human health. It was hypothesised that its ability to replace proline in protein synthesis generates immunogenic neo-epitopes in myelin basic protein and could therefore be a causative factor for multiple sclerosis. In this review we discuss the distribution of A2C in nature, what is known about its toxicity, and the impact of the proline to A2C exchange on protein structure and function and in particular the proteins collagen and myelin basic protein. We summarise analytical approaches that can be used to quantify A2C in complex biological samples and the adaptations made by some organisms to avoid its toxic effects. We summarise the evidence for human exposure to A2C and the geographical and temporal links to higher incidences of MS. Finally, we highlight gaps in our knowledge that require addressing before we can determine if this non-protein amino acid is a threat to human health.
Collapse
Affiliation(s)
- Kenneth J Rodgers
- The Neurotoxin Research Group, The University of Technology Sydney, Australia.
| | - James Kabalan
- The Neurotoxin Research Group, The University of Technology Sydney, Australia
| | - Connor R Phillips
- The Neurotoxin Research Group, The University of Technology Sydney, Australia
| |
Collapse
|
3
|
Wang X, Wang H, Zhang Y, Li Y, Jia Q, Wang Z, Sun J. Allelopathic effects on vegetative propagation, physiological-biochemical characteristic of Alternanthera philoxeroides (Mart.) Griseb from Cinnamomum camphora (L.) Presl. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117403. [PMID: 39657378 DOI: 10.1016/j.ecoenv.2024.117403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 11/06/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Alternanthera philoxeroides (Mart.) Griseb is a well-known invasive plant species worldwide. Cinnamomum camphora (L.) Presl. is a plant species that is rich in allelopathic substances which can impede the growth of many other plants. In this study, the allelopathic effects of C. camphora on the growth and development, and physiological-biochemical characteristics of A. philoxeroides were investigated. The findings revealed that the leaves of C. camphora exhibited the capability to suppress the asexual reproduction of A. philoxeroides. The addition of C. camphora leaves resulted in inhibition of the fresh weight, stem length, and stem node number of A. philoxeroides new stems, with the strength of inhibition increasing in proportion to the quantity of C. camphora leaves added. Furthermore, the inhibitory effect of C. camphora leaves on A. philoxeroides was significantly amplified under high temperatures (≥ 30°C). Two allelochemicals had strong inhibitory effects on the vegetative reproduction of A. philoxeroides. The inhibition intensities were all up to 100 % on stem vegetative propagation, were 90.40 % and 100 % on root vegetative propagation from camphor and linalool, respectively. Physiological-biochemical analyses of roots indicated that the two allelochemicals promoted the accumulation of hydrogen peroxide and MDA, disrupting the balance of antioxidant enzyme systems. The two allelochemicals had a strong inhibitory effect on CAT activity and a strong promoting effect on POD activity. The effect on SOD activity was greatly affected by the type and concentration of allelochemicals. Moreover, the two allelochemicals significantly inhibited the accumulation of osmotic regulating substance. The contents of soluble sugar, soluble protein, and proline were significantly down-regulated. In summary, the allelochemicals from C. camphora induced damage to biological membranes, disrupting antioxidant enzyme systems and inhibiting osmoregulation. This resulted in the retardation of growth, development, and potential mortality of A. philoxeroides. These findings would contribute to the knowledge base for A. philoxeroides prevention and control, and enrich the understanding of C. camphora allelopathic substances.
Collapse
Affiliation(s)
- Xiaxia Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Shandong Key Laboratory for Germplasm Innovation of Saline-alkaline Tolerant Grasses and Trees, Qingdao, Shandong 266109, China
| | - Haixia Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Shandong Key Laboratory for Germplasm Innovation of Saline-alkaline Tolerant Grasses and Trees, Qingdao, Shandong 266109, China
| | - Yanlei Zhang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences/Guizhou Provincial Engineering Research Center for Natural Drugs, Guiyang, Guizhou 550014, China
| | - Qi Jia
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Ziyi Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Juan Sun
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China; Shandong Key Laboratory for Germplasm Innovation of Saline-alkaline Tolerant Grasses and Trees, Qingdao, Shandong 266109, China.
| |
Collapse
|
4
|
Thives Santos W, Dwivedi V, Ngoc Duong H, Miederhoff M, Vanden Hoek K, Angelovici R, Schenck CA. Mechanism of action of the toxic proline mimic azetidine 2-carboxylic acid in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2904-2918. [PMID: 39625042 DOI: 10.1111/tpj.17154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/21/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Plants have an amazing capacity to outcompete neighboring organisms for space and resources. Toxic metabolites are major players in these interactions, which can have a broad range of effectiveness by targeting conserved molecular mechanisms, such as protein biosynthesis. However, lack of knowledge about defensive metabolite pathways, their mechanisms of action, and resistance mechanisms limits our ability to manipulate these pathways for enhanced crop resilience. Nonproteogenic amino acids (NPAAs) are a structurally diverse class of metabolites with a variety of functions but are typically not incorporated during protein biosynthesis. Here, we investigate the mechanism of action of the NPAA azetidine-2-carboxylic acid (Aze), an analog of the amino acid proline (Pro). Using a combination of plate-based assays, metabolite feeding, metabolomics, and proteomics, we show that Aze inhibits the root growth of Arabidopsis and other plants. Aze-induced growth reduction was restored by supplementing L-, but not D-Pro, and nontargeted proteomics confirm that Aze is misincorporated for Pro during protein biosynthesis, specifically on cytosolically translated proteins. Gene expression analysis, free amino acid profiling, and proteomics show that the unfolded protein response is upregulated during Aze treatment implicating that Aze misincorporation results in accumulation of misfolded proteins triggering a global stress response. This study demonstrates the mechanism of action of Aze in plants and provides a foundation for understanding the biological functions of proteotoxic metabolites.
Collapse
Affiliation(s)
- William Thives Santos
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Varun Dwivedi
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Ha Ngoc Duong
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Madison Miederhoff
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Kathryn Vanden Hoek
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Ruthie Angelovici
- Department of Biological Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Craig A Schenck
- Department of Biochemistry, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
5
|
Byun JK, Vu JA, He SL, Jang JC, Musier-Forsyth K. Plant-exclusive domain of trans-editing enzyme ProXp-ala confers dimerization and enhanced tRNA binding. J Biol Chem 2022; 298:102255. [PMID: 35835222 PMCID: PMC9425024 DOI: 10.1016/j.jbc.2022.102255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/26/2022] Open
Abstract
Faithful translation of the genetic code is critical for the viability of all living organisms. The trans-editing enzyme ProXp-ala prevents Pro to Ala mutations during translation by hydrolyzing misacylated Ala-tRNAPro that has been synthesized by prolyl-tRNA synthetase. Plant ProXp-ala sequences contain a conserved C-terminal domain (CTD) that is absent in other organisms; the origin, structure, and function of this extra domain are unknown. To characterize the plant-specific CTD, we performed bioinformatics and computational analyses that provided a model consistent with a conserved α-helical structure. We also expressed and purified wildtype Arabidopsis thaliana (At) ProXp-ala in Escherichia coli, as well as variants lacking the CTD or containing only the CTD. Circular dichroism spectroscopy confirmed a loss of α-helical signal intensity upon CTD truncation. Size-exclusion chromatography with multiangle laser-light scattering revealed that wildtype At ProXp-ala was primarily dimeric and CTD truncation abolished dimerization in vitro. Furthermore, bimolecular fluorescence complementation assays in At protoplasts support a role for the CTD in homodimerization in vivo. The deacylation rate of Ala-tRNAPro by At ProXp-ala was also significantly reduced in the absence of the CTD, and kinetic assays indicated that the reduction in activity is primarily due to a tRNA binding defect. Overall, these results broaden our understanding of eukaryotic translational fidelity in the plant kingdom. Our study reveals that the plant-specific CTD plays a significant role in substrate binding and canonical editing function. Through its ability to facilitate protein-protein interactions, we propose the CTD may also provide expanded functional potential for trans-editing enzymes in plants.
Collapse
Affiliation(s)
- Jun-Kyu Byun
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - John A Vu
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Siou-Luan He
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Department of Horticulture and Crop Science and Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio, USA
| | - Jyan-Chyun Jang
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Department of Horticulture and Crop Science and Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio, USA.
| | - Karin Musier-Forsyth
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA; Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
6
|
Ostersetzer-Biran O, Klipcan L. Aminoacyl-tRNA synthetases and translational quality control in plant mitochondria. Mitochondrion 2020; 54:15-20. [PMID: 32580010 DOI: 10.1016/j.mito.2020.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 11/15/2022]
Abstract
Gene expression involves the transfer of information stored in the DNA to proteins by two sequential key steps: transcription and translation. Aminoacyl-tRNA synthetases (aaRSs), an ancient group of enzymes, are key to these processes as they catalyze the attachment of each of the 20 amino acids to their corresponding tRNA molecules. Yet, in addition to the 20 canonical amino acids, plants also produce numerous non-proteogenic amino acids (NPAAs), some of which are erroneously loaded into tRNAs, translated into non-functional or toxic proteins and may thereby disrupt essential cellular processes. While many studies have been focusing on plant organelle RNA metabolism, mitochondrial translation still lags behind its characterization in bacterial and eukaryotic systems. Notably, plant mitochondrial aaRSs generally have a dual location, residing also within the chloroplasts or cytosol. Currently, little is known about how mitochondrial aaRSs distinguish between amino acids and their closely related NPAAs. The organelle translation machineries in plants seem more susceptible to NPAAs due to protein oxidation by reactive oxygen species (ROS) and high rates of protein turnover. We speculate that plant organellar aaRSs have acquired high-affinities to their cognate amino acid substrates to reduce cytotoxic effects by NPAAs.
Collapse
Affiliation(s)
- Oren Ostersetzer-Biran
- Dept of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Liron Klipcan
- Gilat Research Center, Agricultural Research Organization, M.P Negev, 85280, Israel.
| |
Collapse
|
7
|
Cell death and mitochondrial dysfunction induced by the dietary non-proteinogenic amino acid L-azetidine-2-carboxylic acid (Aze). Amino Acids 2019; 51:1221-1232. [PMID: 31302779 DOI: 10.1007/s00726-019-02763-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/08/2019] [Indexed: 02/07/2023]
Abstract
In addition to the 20 protein amino acids that are vital to human health, hundreds of naturally occurring amino acids, known as non-proteinogenic amino acids (NPAAs), exist and can enter the human food chain. Some NPAAs are toxic through their ability to mimic protein amino acids and this property is utilised by NPAA-containing plants to inhibit the growth of other plants or kill herbivores. The NPAA L-azetidine-2-carboxylic acid (Aze) enters the food chain through the use of sugar beet (Beta vulgaris) by-products as feed in the livestock industry and may also be found in sugar beet by-product fibre supplements. Aze mimics the protein amino acid L-proline and readily misincorporates into proteins. In light of this, we examined the toxicity of Aze to mammalian cells in vitro. We showed decreased viability in Aze-exposed cells with both apoptotic and necrotic cell death. This was accompanied by alterations in endosomal-lysosomal activity, changes to mitochondrial morphology and a significant decline in mitochondrial function. In summary, the results show that Aze exposure can lead to deleterious effects on human neuron-like cells and highlight the importance of monitoring human Aze consumption via the food chain.
Collapse
|
8
|
Mardani H, Maninang J, Appiah KS, Oikawa Y, Azizi M, Fujii Y. Evaluation of Biological Response of Lettuce ( Lactuca sativa L.) and Weeds to Safranal Allelochemical of Saffron ( Crocus sativus) by Using Static Exposure Method. Molecules 2019; 24:E1788. [PMID: 31072064 PMCID: PMC6539543 DOI: 10.3390/molecules24091788] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/24/2022] Open
Abstract
Safranal, the main volatile chemical of Saffron (Crocus sativus) was studied to estimate its allelopathic effects on the photosynthetic pigment chlorophyll, leaf electrolyte leakage, fresh weight, catalase (CAT), and peroxidase (POX) activity of the test plant Lettuce (Lactuca sativa). In this study, the effective concentration (EC50) of safranal on CAT was estimated to be 6.12 µg/cm3. CAT activity was inhibited in a dose-dependent manner by the increase in the safranal concentration while POX activity was increased. Moreover, Safranal caused significant physiological changes in chlorophyll content, leaf electrolyte leakage, and fresh weight of several weed species with Lolium multiflorum being the most sensitive. Furthermore, 5 µM Safranal showed significant inhibitory activity against dicotyledonous in comparison to the monocotyledons under greenhouse conditions. The inhibition of the CAT by safranal was similar to those of uncompetitive inhibitors, and therefore the decline in carbon fixation by plants might be the mechanism behind the inhibitory activity of safranal.
Collapse
Affiliation(s)
- Hossein Mardani
- Department of International Environmental and Agricultural Sciences Tokyo University of Agriculture and Technology, Fuchu Campus, 2N405, 3-5-8, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - John Maninang
- Center for Global Communication Strategies (CGCS) College of Arts and Sciences,The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Kwame Sarpong Appiah
- Department of International Environmental and Agricultural Sciences Tokyo University of Agriculture and Technology, Fuchu Campus, 2N405, 3-5-8, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - Yosei Oikawa
- Department of International Environmental and Agricultural Sciences Tokyo University of Agriculture and Technology, Fuchu Campus, 2N405, 3-5-8, Saiwai-cho, Fuchu, Tokyo 183-8509, Japan.
| | - Majid Azizi
- Department of Horticulture, Faculty of Agriculture, Ferdowsi University of Mashhad, Iran.
| | - Yoshiharu Fujii
- Center for Global Communication Strategies (CGCS) College of Arts and Sciences,The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
9
|
Sasamoto H, Azumi Y, Shimizu M, Hachinohe YK, Suzuki S. In vitro bioassay of allelopathy of Arabidopsis thaliana by sandwich method and protoplast co-culture method with digital image analysis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2017; 34:199-202. [PMID: 31275028 PMCID: PMC6543691 DOI: 10.5511/plantbiotechnology.17.1204a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/04/2017] [Indexed: 06/09/2023]
Abstract
We examined the allelopathic activities of Arabidopsis thaliana, ecotype Columbia by two in vitro methods. The effect of dried leaves on the growth of recipient lettuce seedlings was examined by the sandwich method. The allelopathic activity on protoplast growth was examined by co-culture with recipient lettuce leaf protoplasts in 50 µl liquid medium using a 96-well culture plate. Non-spherically enlarged or dividing protoplasts of lettuce were counted under an inverted microscope. Inhibition of yellow accumulation during lettuce protoplast growth was quantitated by image analysis of scanned digital images of 96-well culture plates. The results were described as the percentages of control without A. thaliana. The results were compared with those obtained using several plants which had strong allelopathic activities on recipient lettuce using the same methods. The growth of lettuce protoplasts was inhibited at both 4 and 8 days of culture with protoplasts of A. thaliana. The results suggested the usefulness of the protoplast co-culture method for future studies on allelopathy.
Collapse
Affiliation(s)
- Hamako Sasamoto
- Research Institute for Integrated Science, Kanagawa University, Kanagawa 259-1293, Japan
| | - Yoshitaka Azumi
- Research Institute for Integrated Science, Kanagawa University, Kanagawa 259-1293, Japan
- Department of Biological Sciences, Graduate School of Science, Kanagawa University, Kanagawa 259-1293, Japan
| | - Makoto Shimizu
- Department of Biological Sciences, Graduate School of Science, Kanagawa University, Kanagawa 259-1293, Japan
| | - Yu-ki Hachinohe
- Department of Biological Sciences, Graduate School of Science, Kanagawa University, Kanagawa 259-1293, Japan
| | - Suechika Suzuki
- Research Institute for Integrated Science, Kanagawa University, Kanagawa 259-1293, Japan
| |
Collapse
|
10
|
Bacusmo JM, Kuzmishin AB, Cantara WA, Goto Y, Suga H, Musier-Forsyth K. Quality control by trans-editing factor prevents global mistranslation of non-protein amino acid α-aminobutyrate. RNA Biol 2017; 15:576-585. [PMID: 28737471 DOI: 10.1080/15476286.2017.1353846] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Accuracy in protein biosynthesis is maintained through multiple pathways, with a critical checkpoint occurring at the tRNA aminoacylation step catalyzed by aminoacyl-tRNA synthetases (ARSs). In addition to the editing functions inherent to some synthetases, single-domain trans-editing factors, which are structurally homologous to ARS editing domains, have evolved as alternative mechanisms to correct mistakes in aminoacyl-tRNA synthesis. To date, ARS-like trans-editing domains have been shown to act on specific tRNAs that are mischarged with genetically encoded amino acids. However, structurally related non-protein amino acids are ubiquitous in cells and threaten the proteome. Here, we show that a previously uncharacterized homolog of the bacterial prolyl-tRNA synthetase (ProRS) editing domain edits a known ProRS aminoacylation error, Ala-tRNAPro, but displays even more robust editing of tRNAs misaminoacylated with the non-protein amino acid α-aminobutyrate (2-aminobutyrate, Abu) in vitro and in vivo. Our results indicate that editing by trans-editing domains such as ProXp-x studied here may offer advantages to cells, especially under environmental conditions where concentrations of non-protein amino acids may challenge the substrate specificity of ARSs.
Collapse
Affiliation(s)
- Jo Marie Bacusmo
- a Department of Chemistry and Biochemistry , The Ohio State University , Columbus , OH , USA.,b Center for RNA Biology , The Ohio State University , Columbus , OH , USA
| | - Alexandra B Kuzmishin
- a Department of Chemistry and Biochemistry , The Ohio State University , Columbus , OH , USA.,b Center for RNA Biology , The Ohio State University , Columbus , OH , USA
| | - William A Cantara
- a Department of Chemistry and Biochemistry , The Ohio State University , Columbus , OH , USA.,b Center for RNA Biology , The Ohio State University , Columbus , OH , USA
| | - Yuki Goto
- c Department of Chemistry , Graduate School of Science, The University of Tokyo , Bunkyo , Tokyo , Japan
| | - Hiroaki Suga
- c Department of Chemistry , Graduate School of Science, The University of Tokyo , Bunkyo , Tokyo , Japan
| | - Karin Musier-Forsyth
- a Department of Chemistry and Biochemistry , The Ohio State University , Columbus , OH , USA.,b Center for RNA Biology , The Ohio State University , Columbus , OH , USA
| |
Collapse
|