1
|
Hao G, Zhou L, Liu H, Kachroo P, Hunt AG. Revisiting CPSF30-mediated alternative polyadenylation in Arabidopsis thaliana. PLoS One 2025; 20:e0319180. [PMID: 39992955 PMCID: PMC11849871 DOI: 10.1371/journal.pone.0319180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Alternative polyadenylation (APA) is an important contributor to the regulation of gene expression in plants. One subunit of the complex that cleaves and polyadenylates mRNAs in the nucleus, CPSF30 (for the 30 kD subunit of the mammalian Cleavage and Polyadenylation Specificity Factor), has been implicated in a wide-ranging network of regulatory events. CPSF30 plays roles in root development, flowering time, and response to biotic and abiotic stresses. CPSF30 also is a conduit that links cellular signaling and RNA modification with alternative RNA processing events and transcriptional dynamics. While much is known about CPSF30 and its roles in plants, questions remain regarding the connections between CPSF30-mediated APA and the downstream events that lead to specific phenotypic outcomes. To address these, we conducted a detailed analysis of poly(A) site usage in the CPSF30 mutant. Our results corroborate earlier reports that link CPSF30 with a distinctive cis element (AAUAAA) that is present 10-30 nts upstream of some, but not all, plant pre-mRNAs. Interestingly, our results reveal a distinctive shift in poly(A) site in mutants deficient in CPSF30, resulting in cleavage and polyadenylation at the location of motifs similar to AAUAAA. Importantly, CPSF30-associated APA had at best a small impact on mRNA functionality. These results necessitate the formulation of new hypotheses for mechanisms by which CPSF30-mediated APA influences physiological processes.
Collapse
Affiliation(s)
- Guijie Hao
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Lichun Zhou
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Huazhen Liu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
2
|
Zhou L, Li K, Hunt AG. Natural variation in the plant polyadenylation complex. FRONTIERS IN PLANT SCIENCE 2024; 14:1303398. [PMID: 38317838 PMCID: PMC10839035 DOI: 10.3389/fpls.2023.1303398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Messenger RNA polyadenylation, the process wherein the primary RNA polymerase II transcript is cleaved and a poly(A) tract added, is a key step in the expression of genes in plants. Moreover, it is a point at which gene expression may be regulated by determining the functionality of the mature mRNA. Polyadenylation is mediated by a complex (the polyadenylation complex, or PAC) that consists of between 15 and 20 subunits. While the general functioning of these subunits may be inferred by extending paradigms established in well-developed eukaryotic models, much remains to be learned about the roles of individual subunits in the regulation of polyadenylation in plants. To gain further insight into this, we conducted a survey of variability in the plant PAC. For this, we drew upon a database of naturally-occurring variation in numerous geographic isolates of Arabidopsis thaliana. For a subset of genes encoding PAC subunits, the patterns of variability included the occurrence of premature stop codons in some Arabidopsis accessions. These and other observations lead us to conclude that some genes purported to encode PAC subunits in Arabidopsis are actually pseudogenes, and that others may encode proteins with dispensable functions in the plant. Many subunits of the PAC showed patterns of variability that were consistent with their roles as essential proteins in the cell. Several other PAC subunits exhibit patterns of variability consistent with selection for new or altered function. We propose that these latter subunits participate in regulatory interactions important for differential usage of poly(A) sites.
Collapse
Affiliation(s)
| | | | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
3
|
Ramming A, Kappel C, Kanaoka MM, Higashiyama T, Lenhard M. Poly(A) polymerase 1 contributes to competence acquisition of pollen tubes growing through the style in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:651-667. [PMID: 36811355 DOI: 10.1111/tpj.16162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/16/2023] [Indexed: 05/10/2023]
Abstract
Polyadenylation of mRNAs is critical for their export from the nucleus, stability, and efficient translation. The Arabidopsis thaliana genome encodes three isoforms of canonical nuclear poly(A) polymerase (PAPS) that redundantly polyadenylate the bulk of pre-mRNAs. However, previous studies have indicated that subsets of pre-mRNAs are preferentially polyadenylated by either PAPS1 or the other two isoforms. Such functional specialization raises the possibility of an additional level of gene-expression control in plants. Here we test this notion by studying the function of PAPS1 in pollen-tube growth and guidance. Pollen tubes growing through female tissue acquire the competence to find ovules efficiently and upregulate PAPS1 expression at the transcriptional, but not detectably at the protein level compared with in vitro grown pollen tubes. Using the temperature-sensitive paps1-1 allele we show that PAPS1 activity during pollen-tube growth is required for full acquisition of competence, resulting in inefficient fertilization by paps1-1 mutant pollen tubes. While these mutant pollen tubes grow almost at the wild-type rate, they are compromised in locating the micropyles of ovules. Previously identified competence-associated genes are less expressed in paps1-1 mutant than in wild-type pollen tubes. Estimating the poly(A) tail lengths of transcripts suggests that polyadenylation by PAPS1 is associated with reduced transcript abundance. Our results therefore suggest that PAPS1 plays a key role in the acquisition of competence and underline the importance of functional specialization between PAPS isoforms throughout different developmental stages.
Collapse
Affiliation(s)
- Anna Ramming
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Christian Kappel
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Masahiro M Kanaoka
- Prefectural University of Hiroshima, Faculty of Life and Environmental Sciences, Faculty of Bioresource Sciences, Shobara, Hiroshima, Japan
| | - Tetsuya Higashiyama
- The University of Tokyo Graduate School of Science, Faculty of Science, Bunkyo-ku, Tokyo, Japan
| | - Michael Lenhard
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
4
|
Hunt AG. Review: Mechanisms underlying alternative polyadenylation in plants - looking in the right places. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111430. [PMID: 36007628 DOI: 10.1016/j.plantsci.2022.111430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/01/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Recent years have seen an explosion of interest in the subject of alternative polyadenylation in plants. Connections between the polyadenylation complex and numerous developmental and stress responses are well-established. However, those that link stimuli with the functioning of the polyadenylation complex are less well understood. To this end, it is imperative to clearly delineate the roles of the polyadenylation complex in both plant growth AND alternative polyadenylation. It is also necessary to understand the ways by which other molecular processes may contribute to alternative polyadenylation. This review discusses these issues, with a focus on instances that reveal mechanisms by which mRNA polyadenylation may be regulated. Insights from from characterizations of mutants affected in the polyadenylation complex are discussed, as are the limitations of such characterizations when it comes to teasing out cause and effect. These limitations encourage explorations to other processes that are beyond the core polyadenylation complex. Two such processes that sculpt the plant transcriptome - transcription termination and the epigenetic control of transposon activity - also contribute to regulated poly(A) site choice. These subjects define "the right places" - molecular mechanisms that contribute to the wide-ranging control of gene expression via mRNA polyadenylation.
Collapse
Affiliation(s)
- Arthur G Hunt
- Department of Plant and Soil Sciences, University of Kentucky, 301A Plant Science Building, 1405 Veterans Road, Lexington, KY 40546-0312, USA.
| |
Collapse
|
5
|
Chen X, Guo HY, Zhang QY, Wang L, Guo R, Zhan YX, Lv P, Xu YP, Guo MB, Zhang Y, Zhang K, Liu YH, Yang M. Whole-genome resequencing of wild and cultivated cannabis reveals the genetic structure and adaptive selection of important traits. BMC PLANT BIOLOGY 2022; 22:371. [PMID: 35883045 PMCID: PMC9327241 DOI: 10.1186/s12870-022-03744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cannabis is an important industrial crop species whose fibre, seeds, flowers and leaves are widely used by humans. The study of cannabinoids extracted from plants has been popular research topic in recent years. China is one of the origins of cannabis and one of the few countries with wild cannabis plants. However, the genetic structure of Chinese cannabis and the degree of adaptive selection remain unclear. RESULTS The main morphological characteristics of wild cannabis in China were assessed. Based on whole-genome resequencing SNPs, Chinese cannabis could be divided into five groups in terms of geographical source and ecotype: wild accessions growing in the northwestern region; wild accessions growing in the northeastern region; cultivated accessions grown for fibre in the northeastern region; cultivated accessions grown for seed in northwestern region, and cultivated accessions in southwestern region. We further identified genes related to flowering time, seed germination, seed size, embryogenesis, growth, and stress responses selected during the process of cannabis domestication. The expression of flowering-related genes under long-day (LD) and short-day (SD) conditions showed that Chinese cultivated cannabis is adapted to different photoperiods through the regulation of Flowering locus T-like (FT-like) expression. CONCLUSION This study clarifies the genetic structure of Chinese cannabis and offers valuable genomic resources for cannabis breeding.
Collapse
Affiliation(s)
- Xuan Chen
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Hong-Yan Guo
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Qing-Ying Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Lu Wang
- State Key Laboratory for Conservation, School of Life Sciences, Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500 China
| | - Rong Guo
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yi-Xun Zhan
- State Key Laboratory for Conservation, School of Life Sciences, Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650500 China
| | - Pin Lv
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yan-Ping Xu
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Meng-Bi Guo
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yuan Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Kun Zhang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 China
| | - Ming Yang
- Industrial Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
| |
Collapse
|
6
|
Jia Y, Chen C, Gong F, Jin W, Zhang H, Qu S, Ma N, Jiang Y, Gao J, Sun X. An Aux/IAA Family Member, RhIAA14, Involved in Ethylene-Inhibited Petal Expansion in Rose ( Rosa hybrida). Genes (Basel) 2022; 13:1041. [PMID: 35741802 PMCID: PMC9222917 DOI: 10.3390/genes13061041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Flower size, a primary agronomic trait in breeding of ornamental plants, is largely determined by petal expansion. Generally, ethylene acts as an inhibitor of petal expansion, but its effect is restricted by unknown developmental cues. In this study, we found that the critical node of ethylene-inhibited petal expansion is between stages 1 and 2 of rose flower opening. To uncover the underlying regulatory mechanism, we carried out a comparative RNA-seq analysis. Differentially expressed genes (DEGs) involved in auxin-signaling pathways were enriched. Therefore, we identified an auxin/indole-3-acetic acid (Aux/IAA) family gene, RhIAA14, whose expression was development-specifically repressed by ethylene. The silencing of RhIAA14 reduced cell expansion, resulting in diminished petal expansion and flower size. In addition, the expressions of cell-expansion-related genes, including RhXTH6, RhCesA2, RhPIP2;1, and RhEXPA8, were significantly downregulated following RhIAA14 silencing. Our results reveal an Aux/IAA that serves as a key player in orchestrating petal expansion and ultimately contributes to flower size, which provides new insights into ethylene-modulated flower opening and the function of the Aux/IAA transcription regulator.
Collapse
Affiliation(s)
- Yangchao Jia
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.J.); (C.C.); (F.G.); (W.J.); (N.M.); (Y.J.); (J.G.)
| | - Changxi Chen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.J.); (C.C.); (F.G.); (W.J.); (N.M.); (Y.J.); (J.G.)
| | - Feifei Gong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.J.); (C.C.); (F.G.); (W.J.); (N.M.); (Y.J.); (J.G.)
| | - Weichan Jin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.J.); (C.C.); (F.G.); (W.J.); (N.M.); (Y.J.); (J.G.)
| | - Hao Zhang
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (H.Z.); (S.Q.)
| | - Suping Qu
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (H.Z.); (S.Q.)
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.J.); (C.C.); (F.G.); (W.J.); (N.M.); (Y.J.); (J.G.)
| | - Yunhe Jiang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.J.); (C.C.); (F.G.); (W.J.); (N.M.); (Y.J.); (J.G.)
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.J.); (C.C.); (F.G.); (W.J.); (N.M.); (Y.J.); (J.G.)
| | - Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing 100193, China; (Y.J.); (C.C.); (F.G.); (W.J.); (N.M.); (Y.J.); (J.G.)
| |
Collapse
|
7
|
Wang Q, Zhuang J, Ni S, Luo H, Zheng K, Li X, Lan C, Zhao D, Bai Y, Jia B, Hu Z. Overexpressing CrePAPS Polyadenylate Activity Enhances Protein Translation and Accumulation in Chlamydomonas reinhardtii. Mar Drugs 2022; 20:276. [PMID: 35621927 PMCID: PMC9147819 DOI: 10.3390/md20050276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
The alga Chlamydomonas reinhardtii is a potential platform for recombinant protein expression in the future due to various advantages. Dozens of C. reinhardtii strains producing genetically engineered recombinant therapeutic protein have been reported. However, owing to extremely low protein expression efficiency, none have been applied for industrial purposes. Improving protein expression efficiency at the molecular level is, therefore, a priority. The 3'-end poly(A) tail of mRNAs is strongly correlated with mRNA transcription and protein translation efficiency. In this study, we identified a canonical C. reinhardtii poly(A) polymerase (CrePAPS), verified its polyadenylate activity, generated a series of overexpressing transformants, and performed proteomic analysis. Proteomic results demonstrated that overexpressing CrePAPS promoted ribosomal assembly and enhanced protein accumulation. The accelerated translation was further verified by increased crude and dissolved protein content detected by Kjeldahl and bicinchoninic acid (BCA) assay approaches. The findings provide a novel direction in which to exploit photosynthetic green algae as a recombinant protein expression platform.
Collapse
Affiliation(s)
- Quan Wang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Q.W.); (J.Z.); (S.N.); (H.L.); (K.Z.); (X.L.); (C.L.); (D.Z.); (Y.B.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jieyi Zhuang
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Q.W.); (J.Z.); (S.N.); (H.L.); (K.Z.); (X.L.); (C.L.); (D.Z.); (Y.B.)
| | - Shuai Ni
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Q.W.); (J.Z.); (S.N.); (H.L.); (K.Z.); (X.L.); (C.L.); (D.Z.); (Y.B.)
| | - Haolin Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Q.W.); (J.Z.); (S.N.); (H.L.); (K.Z.); (X.L.); (C.L.); (D.Z.); (Y.B.)
| | - Kaijie Zheng
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Q.W.); (J.Z.); (S.N.); (H.L.); (K.Z.); (X.L.); (C.L.); (D.Z.); (Y.B.)
| | - Xinyi Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Q.W.); (J.Z.); (S.N.); (H.L.); (K.Z.); (X.L.); (C.L.); (D.Z.); (Y.B.)
| | - Chengxiang Lan
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Q.W.); (J.Z.); (S.N.); (H.L.); (K.Z.); (X.L.); (C.L.); (D.Z.); (Y.B.)
| | - Di Zhao
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Q.W.); (J.Z.); (S.N.); (H.L.); (K.Z.); (X.L.); (C.L.); (D.Z.); (Y.B.)
| | - Yongsheng Bai
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Q.W.); (J.Z.); (S.N.); (H.L.); (K.Z.); (X.L.); (C.L.); (D.Z.); (Y.B.)
| | - Bin Jia
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Q.W.); (J.Z.); (S.N.); (H.L.); (K.Z.); (X.L.); (C.L.); (D.Z.); (Y.B.)
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518055, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China; (Q.W.); (J.Z.); (S.N.); (H.L.); (K.Z.); (X.L.); (C.L.); (D.Z.); (Y.B.)
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
8
|
Zhang M, Lu N, Zhu T, Yang G, Qu G, Shi C, Fei Y, Liu B, Ma W, Wang J. A Bivariate Mapping Model Identifies Major Covariation QTLs for Biomass Allocation Between Leaf and Stem Growth of Catalpa bungei. Front Genet 2021; 12:758209. [PMID: 34868235 PMCID: PMC8637733 DOI: 10.3389/fgene.2021.758209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
Biomass allocation plays a critical role in plant morphological formation and phenotypic plasticity, which greatly impact plant adaptability and competitiveness. While empirical studies on plant biomass allocation have focused on molecular biology and ecology approaches, detailed insight into the genetic basis of biomass allocation between leaf and stem growth is still lacking. Herein, we constructed a bivariate mapping model to identify covariation QTLs governing carbon (C) allocation between the leaves and stem as well as the covariation of traits within and between organs in a full-sib mapping population of C. bungei. A total of 123 covQTLs were detected for 23 trait pairs, including six leaf traits (leaf length, width, area, perimeter, length/width ratio and petiole length) and five stem traits (height, diameter at breast height, wood density, stemwood volume and stemwood biomass). The candidate genes were further identified in tissue-specific gene expression data, which provided insights into the genetic architecture underlying C allocation for traits or organs. The key QTLs related to growth and biomass allocation, which included UVH1, CLPT2, GAD/SPL, COG1 and MTERF4, were characterised and verified via gene function annotation and expression profiling. The integration of a bivariate Quantitative trait locus mapping model and gene expression profiling will enable the elucidation of genetic architecture underlying biomass allocation and covariation growth, in turn providing a theoretical basis for forest molecular marker-assisted breeding with specific C allocation strategies for adaptation to heterogeneous environments.
Collapse
Affiliation(s)
- Miaomiao Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Nan Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Tianqing Zhu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Guijuan Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chaozhong Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yue Fei
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Bingyang Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Wenjun Ma
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Junhui Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
9
|
Sun X, Qin M, Yu Q, Huang Z, Xiao Y, Li Y, Ma N, Gao J. Molecular understanding of postharvest flower opening and senescence. MOLECULAR HORTICULTURE 2021; 1:7. [PMID: 37789453 PMCID: PMC10514961 DOI: 10.1186/s43897-021-00015-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/07/2021] [Indexed: 10/05/2023]
Abstract
Flowers are key organs in many ornamental plants, and various phases of flower development impact their economic value. The final stage of petal development is associated with flower senescence, which is an irreversible process involving programmed cell death, and premature senescence of cut flowers often results in major losses in quality during postharvest handling. Flower opening and senescence are two sequential processes. As flowers open, the stamens are exposed to attract pollinators. Once pollination occurs, flower senescence is initiated. Both the opening and senescence processes are regulated by a range of endogenous phytohormones and environmental factors. Ethylene acts as a central regulator for the ethylene-sensitive flowers. Other phytohormones, including auxin, gibberellin, cytokinin, jasmonic acid and abscisic acid, are also involved in the control of petal expansion and senescence. Water status also directly influences postharvest flower opening, while pollination is a key event in initiating the onset flower senescence. Here, we review the current understanding of flower opening and senescence, and propose future research directions, such as the study of interactions between hormonal and environmental signals, the application of new technology, and interdisciplinary research.
Collapse
Affiliation(s)
- Xiaoming Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, State Key Laboratory of Agrobiotechnology, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Meizhu Qin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, State Key Laboratory of Agrobiotechnology, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Qin Yu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, State Key Laboratory of Agrobiotechnology, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Ziwei Huang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, State Key Laboratory of Agrobiotechnology, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yue Xiao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, State Key Laboratory of Agrobiotechnology, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yang Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, State Key Laboratory of Agrobiotechnology, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, State Key Laboratory of Agrobiotechnology, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, State Key Laboratory of Agrobiotechnology, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
Bernardes WS, Menossi M. Plant 3' Regulatory Regions From mRNA-Encoding Genes and Their Uses to Modulate Expression. FRONTIERS IN PLANT SCIENCE 2020; 11:1252. [PMID: 32922424 PMCID: PMC7457121 DOI: 10.3389/fpls.2020.01252] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/29/2020] [Indexed: 05/08/2023]
Abstract
Molecular biotechnology has made it possible to explore the potential of plants for different purposes. The 3' regulatory regions have a great diversity of cis-regulatory elements directly involved in polyadenylation, stability, transport and mRNA translation, essential to achieve the desired levels of gene expression. A complex interaction between the cleavage and polyadenylation molecular complex and cis-elements determine the polyadenylation site, which may result in the choice of non-canonical sites, resulting in alternative polyadenylation events, involved in the regulation of more than 80% of the genes expressed in plants. In addition, after transcription, a wide array of RNA-binding proteins interacts with cis-acting elements located mainly in the 3' untranslated region, determining the fate of mRNAs in eukaryotic cells. Although a small number of 3' regulatory regions have been identified and validated so far, many studies have shown that plant 3' regulatory regions have a higher potential to regulate gene expression in plants compared to widely used 3' regulatory regions, such as NOS and OCS from Agrobacterium tumefaciens and 35S from cauliflower mosaic virus. In this review, we discuss the role of 3' regulatory regions in gene expression, and the superior potential that plant 3' regulatory regions have compared to NOS, OCS and 35S 3' regulatory regions.
Collapse
|
11
|
Hunt AG. mRNA 3′ end formation in plants: Novel connections to growth, development and environmental responses. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1575. [DOI: 10.1002/wrna.1575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Arthur G. Hunt
- Department of Plant and Soil Sciences University of Kentucky Lexington Kentucky
| |
Collapse
|
12
|
Zhang Y, Ramming A, Heinke L, Altschmied L, Slotkin RK, Becker JD, Kappel C, Lenhard M. The poly(A) polymerase PAPS1 interacts with the RNA-directed DNA-methylation pathway in sporophyte and pollen development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:655-672. [PMID: 31009115 DOI: 10.1111/tpj.14348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 03/21/2019] [Accepted: 04/08/2019] [Indexed: 05/28/2023]
Abstract
RNA-based processes play key roles in the regulation of eukaryotic gene expression. This includes both the processing of pre-mRNAs into mature mRNAs ready for translation and RNA-based silencing processes, such as RNA-directed DNA methylation (RdDM). Polyadenylation of pre-mRNAs is one important step in their processing and is carried out by three functionally specialized canonical nuclear poly(A) polymerases in Arabidopsis thaliana. Null mutations in one of these, termed PAPS1, result in a male gametophytic defect. Using a fluorescence-labelling strategy, we have characterized this defect in more detail using RNA and small-RNA sequencing. In addition to global defects in the expression of pollen-differentiation genes, paps1 null-mutant pollen shows a strong overaccumulation of transposable element (TE) transcripts, yet a depletion of 21- and particularly 24-nucleotide-long short interfering RNAs (siRNAs) and microRNAs (miRNAs) targeting the corresponding TEs. Double-mutant analyses support a specific functional interaction between PAPS1 and components of the RdDM pathway, as evident from strong synergistic phenotypes in mutant combinations involving paps1, but not paps2 paps4, mutations. In particular, the double-mutant of paps1 and rna-dependent rna polymerase 6 (rdr6) shows a synergistic developmental phenotype disrupting the formation of the transmitting tract in the female gynoecium. Thus, our findings in A. thaliana uncover a potentially general link between canonical poly(A) polymerases as components of mRNA processing and RdDM, reflecting an analogous interaction in fission yeast.
Collapse
Affiliation(s)
- Yunming Zhang
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Anna Ramming
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Lisa Heinke
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Lothar Altschmied
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse 3, D-06466 Seeland, OT, Gatersleben, Germany
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO, 63132, USA
- Division of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156, Oeiras, Portugal
| | - Christian Kappel
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Michael Lenhard
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
13
|
de Almeida C, Scheer H, Gobert A, Fileccia V, Martinelli F, Zuber H, Gagliardi D. RNA uridylation and decay in plants. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0163. [PMID: 30397100 DOI: 10.1098/rstb.2018.0163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2018] [Indexed: 12/13/2022] Open
Abstract
RNA uridylation consists of the untemplated addition of uridines at the 3' extremity of an RNA molecule. RNA uridylation is catalysed by terminal uridylyltransferases (TUTases), which form a subgroup of the terminal nucleotidyltransferase family, to which poly(A) polymerases also belong. The key role of RNA uridylation is to regulate RNA degradation in a variety of eukaryotes, including fission yeast, plants and animals. In plants, RNA uridylation has been mostly studied in two model species, the green algae Chlamydomonas reinhardtii and the flowering plant Arabidopsis thaliana Plant TUTases target a variety of RNA substrates, differing in size and function. These RNA substrates include microRNAs (miRNAs), small interfering silencing RNAs (siRNAs), ribosomal RNAs (rRNAs), messenger RNAs (mRNAs) and mRNA fragments generated during post-transcriptional gene silencing. Viral RNAs can also get uridylated during plant infection. We describe here the evolutionary history of plant TUTases and we summarize the diverse molecular functions of uridylation during RNA degradation processes in plants. We also outline key points of future research.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Caroline de Almeida
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Hélène Scheer
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Anthony Gobert
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Veronica Fileccia
- Dipartimento di Scienze Agrarie Alimentari Forestali, Università degli Studi di Palermo, viale delle scienze ed. 4, Palermo 90128, Italy
| | - Federico Martinelli
- Dipartimento di Scienze Agrarie Alimentari Forestali, Università degli Studi di Palermo, viale delle scienze ed. 4, Palermo 90128, Italy
| | - Hélène Zuber
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Dominique Gagliardi
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| |
Collapse
|
14
|
Hong L, Ye C, Lin J, Fu H, Wu X, Li QQ. Alternative polyadenylation is involved in auxin-based plant growth and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:246-258. [PMID: 29155478 DOI: 10.1111/tpj.13771] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 05/24/2023]
Abstract
Auxin is widely involved in plant growth and development. However, the molecular mechanism on how auxin carries out this work is unclear. In particular, the effect of auxin on pre-mRNA post-transcriptional regulation is mostly unknown. By using a poly(A) tag (PAT) sequencing approach, mRNA alternative polyadenylation (APA) profiles after auxin treatment were revealed. We showed that hundreds of poly(A) site clusters (PACs) are affected by auxin at the transcriptome level, where auxin reduces PAC distribution in 5'-untranslated region (UTR), but increases in the 3'UTR. APA site usage frequencies of 42 genes were switched by auxin, suggesting that auxin affects the choice of poly(A) sites. Furthermore, poly(A) signal selection was altered after auxin treatment. For example, a mutant of poly(A) signal binding protein CPSF30 showed altered sensitivity to auxin treatment, indicating interactions between auxin and the poly(A) signal recognition machinery. We also found that auxin activity on lateral root development is likely mediated by altered expression of ARF7, ARF19 and IAA14 through poly(A) site switches. Our results shed light on the molecular mechanisms of auxin responses relative to its interactions with mRNA polyadenylation.
Collapse
Affiliation(s)
- Liwei Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Juncheng Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Haihui Fu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiaohui Wu
- Department of Automation, Xiamen University, Xiamen, Fujian, 361005, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766, USA
| |
Collapse
|
15
|
Eom H, Park SJ, Kim MK, Kim H, Kang H, Lee I. TAF15b, involved in the autonomous pathway for flowering, represses transcription of FLOWERING LOCUS C. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:79-91. [PMID: 29086456 DOI: 10.1111/tpj.13758] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/26/2017] [Accepted: 10/25/2017] [Indexed: 05/03/2023]
Abstract
TATA-binding protein-associated factors (TAFs) are general transcription factors within the transcription factor IID (TFIID) complex, which recognizes the core promoter of genes. In addition to their biochemical function, it is known that several TAFs are involved in the regulation of developmental processes. In this study, we found that TAF15b affects flowering time, especially through the autonomous pathway (AP) in Arabidopsis. The mutant taf15b shows late flowering compared with the wild type plant during both long and short days, and vernalization accelerates the flowering time of taf15b. In addition, taf15b shows strong upregulation of FLOWERING LOCUS C (FLC), a flowering repressor in Arabidopsis, and the flc taf15b double mutant completely offsets the late flowering of taf15b, indicating that TAF15b is a typical AP gene. The taf15b mutant also shows increased transcript levels of COOLAIR, an antisense transcript of FLC. Consistently, chromatin immunoprecipitation (ChIP) analyses showed that the TAF15b protein is enriched around both sense and antisense transcription start sites of the FLC locus. In addition, co-immunoprecipitation showed that TAF15b interacts with RNA polymerase II (Pol II), while ChIP showed increased enrichment of the phosphorylated forms, both serine 2 (Ser2) and Ser5, of the C-terminal domain of Pol II at the FLC locus, which is indicative of transcriptional elongation. Finally, taf15b showed higher enrichment of the active histone marker, H3K4me3, on FLC chromatin. Taken together, our results suggest that TAF15b affects flowering time through transcriptional repression of FLC in Arabidopsis.
Collapse
Affiliation(s)
- Hyunjoo Eom
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Korea
| | - Su Jung Park
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Min Kyung Kim
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Hoyeun Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hunseung Kang
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Korea
| | - Ilha Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|