1
|
Spanic V, Duvnjak J, Hefer D, D’Auria JC. Changes in Metabolites Produced in Wheat Plants Against Water-Deficit Stress. PLANTS (BASEL, SWITZERLAND) 2024; 14:10. [PMID: 39795270 PMCID: PMC11722727 DOI: 10.3390/plants14010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Drought stress can adversely affect the seed germination and seedling growth of wheat plants. This study analyzed the effect of drought on seed germination and the morphological parameters of seedlings from ten winter wheat genotypes. The primary focus was to elucidate the effects of two drought intensities on metabolic status in wheat seedlings. The findings suggest that most wheat genotypes exhibited a significant reduction in germination and growth traits under severe drought, while the genotype Srpanjka exhibited less reduction under both drought conditions. Out of 668 metabolic features, 54 were altered under 10% PEG stress and 140 under 20% PEG stress, with 48 commonly shared between these two stress intensities. This study demonstrated that the metabolic response of shoots to 10% PEG stress contrasts with that of 20% PEG stress. Some growth metabolites, such as oxalic acid, sophorose, and turanose, showed the highest positive increase under both stresses, while butanoic acid, tropic acid, glycine, propionic acid, and phosphonoacetic acid decreased. It is suggested that the accumulation of amino acids, such as proline, contributed to the drought tolerance of the plants. Among all organic acids, succinic and aspartic acids particularly increased the plant response to mild and severe drought stress, respectively. Our results suggest that different metabolites in wheat seedlings enhance the potential ability of wheat to cope with drought stress in the early growth stages by activating a rapid and comprehensive tolerance mechanism. This discovery presents a new approach for enhancing wheat tolerance to abiotic stress, including water deficit.
Collapse
Affiliation(s)
- Valentina Spanic
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia; (J.D.); (D.H.)
| | - Jurica Duvnjak
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia; (J.D.); (D.H.)
| | - Dubravka Hefer
- Agricultural Institute Osijek, Južno Predgrađe 17, 31000 Osijek, Croatia; (J.D.); (D.H.)
| | - John C. D’Auria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), OT Gatersleben, Corrensstraße 3, 06466 Seeland, Germany;
| |
Collapse
|
2
|
Meng Y, Li J, Zhu P, Wang Y, Cheng C, Zhao Q, Chen J. Characterization and fine mapping of cold-inducible parthenocarpy in cucumber (Cucumis sativus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112237. [PMID: 39182620 DOI: 10.1016/j.plantsci.2024.112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/15/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Cold stress detrimentally influences fruit development, leading to a substantial yield reduction in many fruit-bearing vegetables. Cucumber, a vegetable of subtropical origin, is especially sensitive to cold. Cold-inducible parthenocarpy (CIP) promises fruit yield under cold conditions. Previously, we identified a CIP line EC5 in cucumber, which showed strong parthenocarpy and sustained fruit growth under cold conditions (16°C day/10°C night). However, the candidate gene and genetic mechanism underlying CIP in cucumber remain unknown. In this study, both BSA-seq and conventional QTL mapping strategies were employed on F2 populations to delve into the genetic control of CIP. A single QTL, CIP5.1, was consistently mapped across two winter seasons in 2021 and 2022. Fine mapping delimited the CIP locus into a 38.3 kb region on chromosome 5, harboring 8 candidate genes. Among these candidates, CsAGL11 (CsaV3_5G040370) was identified, exhibiting multiple deletions/insertions in the promoter and 5'UTR region. The CsAGL11 gene encodes a MADS-box transcription factor protein, which is homologous to the genes previously recognized as negative regulators in ovule and fruit development of Arabidopsis and tomato. Correspondingly, cold treatment resulted in decreased expression of CsAGL11 during the early developmental stage of the fruit in EC5. A promoter activity assay confirmed promoter polymorphisms leading to weak transcriptional activation of CsAGL11 under cold conditions. This study deepens our understanding of the genetic characteristics of CIP and elucidates the potential role of the CsAGL11 gene in developing cucumber cultivars with enhanced fruiting under cold conditions.
Collapse
Affiliation(s)
- Yongjiao Meng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing, 210095, China.
| | - Ji Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing, 210095, China.
| | - Pinyu Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing, 210095, China.
| | - Yuhui Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing, 210095, China.
| | - Chunyan Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing, 210095, China.
| | - Qinzheng Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing, 210095, China.
| | - Jinfeng Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Weigang Campus, Nanjing, 210095, China.
| |
Collapse
|
3
|
Knoch D, Meyer RC, Heuermann MC, Riewe D, Peleke FF, Szymański J, Abbadi A, Snowdon RJ, Altmann T. Integrated multi-omics analyses and genome-wide association studies reveal prime candidate genes of metabolic and vegetative growth variation in canola. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:713-728. [PMID: 37964699 DOI: 10.1111/tpj.16524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
Genome-wide association studies (GWAS) identified thousands of genetic loci associated with complex plant traits, including many traits of agronomical importance. However, functional interpretation of GWAS results remains challenging because of large candidate regions due to linkage disequilibrium. High-throughput omics technologies, such as genomics, transcriptomics, proteomics and metabolomics open new avenues for integrative systems biological analyses and help to nominate systems information supported (prime) candidate genes. In the present study, we capitalise on a diverse canola population with 477 spring-type lines which was previously analysed by high-throughput phenotyping of growth-related traits and by RNA sequencing and metabolite profiling for multi-omics-based hybrid performance prediction. We deepened the phenotypic data analysis, now providing 123 time-resolved image-based traits, to gain insight into the complex relations during early vegetative growth and reanalysed the transcriptome data based on the latest Darmor-bzh v10 genome assembly. Genome-wide association testing revealed 61 298 robust quantitative trait loci (QTL) including 187 metabolite QTL, 56814 expression QTL and 4297 phenotypic QTL, many clustered in pronounced hotspots. Combining information about QTL colocalisation across omics layers and correlations between omics features allowed us to discover prime candidate genes for metabolic and vegetative growth variation. Prioritised candidate genes for early biomass accumulation include A06p05760.1_BnaDAR (PIAL1), A10p16280.1_BnaDAR, C07p48260.1_BnaDAR (PRL1) and C07p48510.1_BnaDAR (CLPR4). Moreover, we observed unequal effects of the Brassica A and C subgenomes on early biomass production.
Collapse
Affiliation(s)
- Dominic Knoch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - Rhonda C Meyer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - Marc C Heuermann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - David Riewe
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, 14195, Berlin, Germany
| | - Fritz F Peleke
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| | - Jędrzej Szymański
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
- Institute of Bio- and Geosciences IBG-4: Bioinformatics, Forschungszentrum Jülich, 52428, Jülich, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth, 24363, Holtsee, Germany
- Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth, 24363, Holtsee, Germany
| | - Rod J Snowdon
- Department of Plant Breeding, Research Centre for Biosystems, Land Use and Nutrition (iFZ), Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Thomas Altmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Corrensstrasse 3, Seeland OT, Gatersleben, Germany
| |
Collapse
|
4
|
Kitashova A, Brodsky V, Chaturvedi P, Pierides I, Ghatak A, Weckwerth W, Nägele T. Quantifying the impact of dynamic plant-environment interactions on metabolic regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154116. [PMID: 37839392 DOI: 10.1016/j.jplph.2023.154116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
A plant's genome encodes enzymes, transporters and many other proteins which constitute metabolism. Interactions of plants with their environment shape their growth, development and resilience towards adverse conditions. Although genome sequencing technologies and applications have experienced triumphantly rapid development during the last decades, enabling nowadays a fast and cheap sequencing of full genomes, prediction of metabolic phenotypes from genotype × environment interactions remains, at best, very incomplete. The main reasons are a lack of understanding of how different levels of molecular organisation depend on each other, and how they are constituted and expressed within a setup of growth conditions. Phenotypic plasticity, e.g., of the genetic model plant Arabidopsis thaliana, has provided important insights into plant-environment interactions and the resulting genotype x phenotype relationships. Here, we summarize previous and current findings about plant development in a changing environment and how this might be shaped and reflected in metabolism and its regulation. We identify current challenges in the study of plant development and metabolic regulation and provide an outlook of how methodological workflows might support the application of findings made in model systems to crops and their cultivation.
Collapse
Affiliation(s)
- Anastasia Kitashova
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Vladimir Brodsky
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Palak Chaturvedi
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Iro Pierides
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Arindam Ghatak
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Wolfram Weckwerth
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| |
Collapse
|
5
|
Weiszmann J, Walther D, Clauw P, Back G, Gunis J, Reichardt I, Koemeda S, Jez J, Nordborg M, Schwarzerova J, Pierides I, Nägele T, Weckwerth W. Metabolome plasticity in 241 Arabidopsis thaliana accessions reveals evolutionary cold adaptation processes. PLANT PHYSIOLOGY 2023; 193:980-1000. [PMID: 37220420 PMCID: PMC10517190 DOI: 10.1093/plphys/kiad298] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Acclimation and adaptation of metabolism to a changing environment are key processes for plant survival and reproductive success. In the present study, 241 natural accessions of Arabidopsis (Arabidopsis thaliana) were grown under two different temperature regimes, 16 °C and 6 °C, and growth parameters were recorded, together with metabolite profiles, to investigate the natural genome × environment effects on metabolome variation. The plasticity of metabolism, which was captured by metabolic distance measures, varied considerably between accessions. Both relative growth rates and metabolic distances were predictable by the underlying natural genetic variation of accessions. Applying machine learning methods, climatic variables of the original growth habitats were tested for their predictive power of natural metabolic variation among accessions. We found specifically habitat temperature during the first quarter of the year to be the best predictor of the plasticity of primary metabolism, indicating habitat temperature as the causal driver of evolutionary cold adaptation processes. Analyses of epigenome- and genome-wide associations revealed accession-specific differential DNA-methylation levels as potentially linked to the metabolome and identified FUMARASE2 as strongly associated with cold adaptation in Arabidopsis accessions. These findings were supported by calculations of the biochemical Jacobian matrix based on variance and covariance of metabolomics data, which revealed that growth under low temperatures most substantially affects the accession-specific plasticity of fumarate and sugar metabolism. Our findings indicate that the plasticity of metabolic regulation is predictable from the genome and epigenome and driven evolutionarily by Arabidopsis growth habitats.
Collapse
Affiliation(s)
- Jakob Weiszmann
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, 1030 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, 1030 Vienna, Austria
| | - Dirk Walther
- Bioinformatics, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Pieter Clauw
- Austrian Academy of Sciences, Gregor Mendel Institute (GMI), 1030 Vienna, Austria
| | - Georg Back
- Bioinformatics, Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Joanna Gunis
- Austrian Academy of Sciences, Gregor Mendel Institute (GMI), 1030 Vienna, Austria
| | - Ilka Reichardt
- Genome Engineering Facility, Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Stefanie Koemeda
- Plant Sciences Facility, Vienna BioCenter Core Facilities GmbH (VBCF), 1030 Vienna, Austria
| | - Jakub Jez
- Plant Sciences Facility, Vienna BioCenter Core Facilities GmbH (VBCF), 1030 Vienna, Austria
| | - Magnus Nordborg
- Austrian Academy of Sciences, Gregor Mendel Institute (GMI), 1030 Vienna, Austria
| | - Jana Schwarzerova
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, 1030 Vienna, Austria
- Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Biomedical Engineering, Technická 12, 616 00 Brno, Czech Republic
| | - Iro Pierides
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, 1030 Vienna, Austria
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152 Planegg, Germany
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, 1030 Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, 1030 Vienna, Austria
| |
Collapse
|
6
|
Meyer RC, Weigelt-Fischer K, Tschiersch H, Topali G, Altschmied L, Heuermann MC, Knoch D, Kuhlmann M, Zhao Y, Altmann T. Dynamic growth QTL action in diverse light environments: characterization of light regime-specific and stable QTL in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5341-5362. [PMID: 37306093 DOI: 10.1093/jxb/erad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/10/2023] [Indexed: 06/13/2023]
Abstract
Plant growth is a complex process affected by a multitude of genetic and environmental factors and their interactions. To identify genetic factors influencing plant performance under different environmental conditions, vegetative growth was assessed in Arabidopsis thaliana cultivated under constant or fluctuating light intensities, using high-throughput phenotyping and genome-wide association studies. Daily automated non-invasive phenotyping of a collection of 382 Arabidopsis accessions provided growth data during developmental progression under different light regimes at high temporal resolution. Quantitative trait loci (QTL) for projected leaf area, relative growth rate, and PSII operating efficiency detected under the two light regimes were predominantly condition-specific and displayed distinct temporal activity patterns, with active phases ranging from 2 d to 9 d. Eighteen protein-coding genes and one miRNA gene were identified as potential candidate genes at 10 QTL regions consistently found under both light regimes. Expression patterns of three candidate genes affecting projected leaf area were analysed in time-series experiments in accessions with contrasting vegetative leaf growth. These observations highlight the importance of considering both environmental and temporal patterns of QTL/allele actions and emphasize the need for detailed time-resolved analyses under diverse well-defined environmental conditions to effectively unravel the complex and stage-specific contributions of genes affecting plant growth processes.
Collapse
Affiliation(s)
- Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Kathleen Weigelt-Fischer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Georgia Topali
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Marc C Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Breeding Research, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| |
Collapse
|
7
|
Le QTN, Sugi N, Yamaguchi M, Hirayama T, Kobayashi M, Suzuki Y, Kusano M, Shiba H. Morphological and metabolomics profiling of intraspecific Arabidopsis hybrids in relation to biomass heterosis. Sci Rep 2023; 13:9529. [PMID: 37308530 DOI: 10.1038/s41598-023-36618-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/07/2023] [Indexed: 06/14/2023] Open
Abstract
Heterosis contributes greatly to the worldwide agricultural yield. However, the molecular mechanism underlying heterosis remains unclear. This study took advantage of Arabidopsis intraspecific hybrids to identify heterosis-related metabolites. Forty-six intraspecific hybrids were used to examine parental effects on seed area and germination time. The degree of heterosis was evaluated based on biomass: combinations showing high heterosis of F1 hybrids exhibited a biomass increase from 6.1 to 44% over the better parent value (BPV), whereas that of the low- and no-heterosis hybrids ranged from - 19.8 to 9.8% over the BPV. Metabolomics analyses of F1 hybrids with high heterosis and those with low one suggested that changes in TCA cycle intermediates are key factors that control growth. Notably, higher fumarate/malate ratios were observed in the high heterosis F1 hybrids, suggesting they provide metabolic support associated with the increased biomass. These hybrids may produce more energy-intensive biomass by speeding up the efficiency of TCA fluxes. However, the expression levels of TCA-process-related genes in F1 hybrids were not associated with the intensity of heterosis, suggesting that the post-transcriptional or post-translational regulation of these genes may affect the productivity of the intermediates in the TCA cycle.
Collapse
Affiliation(s)
- Quynh Thi Ngoc Le
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-Nodai, Tsukuba, Ibaraki, Japan
- Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Viet Nam
| | - Naoya Sugi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-Nodai, Tsukuba, Ibaraki, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Masaaki Yamaguchi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Ten-Nodai, Tsukuba, Ibaraki, Japan
| | - Touko Hirayama
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Ten-Nodai, Tsukuba, Ibaraki, Japan
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Japan
| | - Miyako Kusano
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Ten-Nodai, Tsukuba, Ibaraki, Japan
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Japan
| | - Hiroshi Shiba
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Ten-Nodai, Tsukuba, Ibaraki, Japan.
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Ten-Nodai 1-1-1, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
8
|
Sunic K, D’Auria JC, Sarkanj B, Spanic V. Metabolic Profiling Identifies Changes in the Winter Wheat Grains Following Fusarium Treatment at Two Locations in Croatia. PLANTS (BASEL, SWITZERLAND) 2023; 12:911. [PMID: 36840259 PMCID: PMC9962043 DOI: 10.3390/plants12040911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Fusarium head blight (FHB) is one of the most dangerous diseases of winter wheat, resulting in reduced grain yield and quality, and production of mycotoxins by the Fusarium fungi. In the present study, changes in the grain metabolomics of winter wheat samples infected with Fusarium spp. and corresponding non-infected samples from two locations in Croatia were investigated by GC-MS. A Mann-Whitney test revealed that 24 metabolites detected were significantly separated between Fusarium-inoculated and non-infected samples during the variety by treatment interactions. The results confirmed that in grains of six FHB-resistant varieties, ten metabolites were identified as possible resistance-related metabolites. These metabolites included heptadecanoic acid, 9-(Z)-hexadecenoic acid, sophorose, and secolaganin in grains of FHB-resistant varieties at the Osijek location, as well as 2-methylaminomethyltartronic acid, maleamic acid, 4-hydroxyphenylacetonitrile, 1,4-lactonearabinonic acid, secolaganin, and alanine in grains of FHB-resistant varieties at the Tovarnik location. Moreover, on the PCA bi-plot, FHB-susceptible wheat varieties were closer to glycyl proline, decanoic acid, and lactic acid dimer that could have affected other metabolites, and thus, suppressed resistance to FHB. Although defense reactions were genetically conditioned and variety specific, resulting metabolomics changes may give insight into defense-related pathways that could be manipulated to engineer plants with improved resistance to the pathogen.
Collapse
Affiliation(s)
- Katarina Sunic
- Department for Breeding and Genetics of Small Cereal Crops, Agricultural Institute Osijek, Juzno Predgradje 17, 31000 Osijek, Croatia
| | - John Charles D’Auria
- Department of Molecular Genetics Leibniz, Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), OT Gatersleben Corrensstraße 3, 06466 Seeland, Germany
| | - Bojan Sarkanj
- Department of Food Technology, University North, Trg dr. Zarka Dolinara 1, 48000 Koprivnica, Croatia
| | - Valentina Spanic
- Department for Breeding and Genetics of Small Cereal Crops, Agricultural Institute Osijek, Juzno Predgradje 17, 31000 Osijek, Croatia
| |
Collapse
|
9
|
Li C, Dong S, Beckles DM, Miao H, Sun J, Liu X, Wang W, Zhang S, Gu X. The qLTG1.1 candidate gene CsGAI regulates low temperature seed germination in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2593-2607. [PMID: 35764690 DOI: 10.1007/s00122-022-04097-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
The CsGAI gene, identified by map-based, was involved in regulating seed germination in low temperature via the GA and ABA signaling pathways. Low temperature reduces the percentage of seeds germinating and delays seed germinating time, thus posing a threat to cucumber production. However, the molecular mechanism regulating low temperature germination in cucumber is unknown. We here dissected a major quantitative trait locus qLTG1.1 that controls seed germination at low temperature in cucumber. First, we fine-mapped qLTG1.1 to a 46.3-kb interval, containing three candidate genes. Sequence alignment and gene expression analysis identified Csa1G408720 as the gene of interest that was highly expressed in seeds, and encoded a highly conserved, low temperature-regulated DELLA family protein CsGAI. GUS expression analysis indicated that higher promoter activity underscored higher transcriptional expression of the CsGAI gene. Consistent with the known roles of GAI in ABA and GA signaling during germination, genes involved in the GA (CsGA2ox, CsGA3ox) and ABA biosynthetic pathways (CsABA1, CsABA2, CsAAO3 and CsNCED) were found to be differently regulated in the tolerant and sensitive genotypes under low temperatures, and this was reflected in differences in their ratio of GA-to-ABA. Based on these data, we proposed a working model explaining how CsGAI integrates the GA and ABA signaling pathways, to regulate cucumber seed germination at low temperature, thus providing new insights into this mechanism.
Collapse
Affiliation(s)
- Caixia Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoyun Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Diane M Beckles
- Department of Plant Sciences, University of California, One Shield Avenue, Dav is Davis, CA, 95616, USA
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoping Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weiping Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengping Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xingfang Gu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
10
|
Melandri G, Monteverde E, Riewe D, AbdElgawad H, McCouch SR, Bouwmeester H. Can biochemical traits bridge the gap between genomics and plant performance? A study in rice under drought. PLANT PHYSIOLOGY 2022; 189:1139-1152. [PMID: 35166848 PMCID: PMC9157150 DOI: 10.1093/plphys/kiac053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/17/2022] [Indexed: 05/13/2023]
Abstract
The possibility of introducing metabolic/biochemical phenotyping to complement genomics-based predictions in breeding pipelines has been considered for years. Here we examine to what extent and under what environmental conditions metabolic/biochemical traits can effectively contribute to understanding and predicting plant performance. In this study, multivariable statistical models based on flag leaf central metabolism and oxidative stress status were used to predict grain yield (GY) performance for 271 indica rice (Oryza sativa) accessions grown in the field under well-watered and reproductive stage drought conditions. The resulting models displayed significantly higher predictability than multivariable models based on genomic data for the prediction of GY under drought (Q2 = 0.54-0.56 versus 0.35) and for stress-induced GY loss (Q2 = 0.59-0.64 versus 0.03-0.06). Models based on the combined datasets showed predictabilities similar to metabolic/biochemical-based models alone. In contrast to genetic markers, models with enzyme activities and metabolite values also quantitatively integrated the effect of physiological differences such as plant height on GY. The models highlighted antioxidant enzymes of the ascorbate-glutathione cycle and a lipid oxidation stress marker as important predictors of rice GY stability under drought at the reproductive stage, and these stress-related variables were more predictive than leaf central metabolites. These findings provide evidence that metabolic/biochemical traits can integrate dynamic cellular and physiological responses to the environment and can help bridge the gap between the genome and the phenome of crops as predictors of GY performance under drought.
Collapse
Affiliation(s)
- Giovanni Melandri
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, the Netherlands
- School of Integrative Plant Sciences, Plant Breeding and Genetics Section, Cornell University, Ithaca, New York, USA
| | - Eliana Monteverde
- School of Integrative Plant Sciences, Plant Breeding and Genetics Section, Cornell University, Ithaca, New York, USA
- Departamento de Biología Vegetal, Facultad de Agronomía, Laboratorio de Evolución y Domesticación de las Plantas, Universidad de La República, Montevideo, Uruguay
| | - David Riewe
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
- Department of Botany, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Susan R McCouch
- School of Integrative Plant Sciences, Plant Breeding and Genetics Section, Cornell University, Ithaca, New York, USA
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, the Netherlands
- Plant Hormone Biology group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Saunders HA, Calzadilla PI, Schwartz JM, Johnson GN. Cytosolic fumarase acts as a metabolic fail-safe for both high and low temperature acclimation of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2112-2124. [PMID: 34951633 DOI: 10.1093/jxb/erab560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Plants acclimate their photosynthetic capacity (Pmax) in response to changing environmental conditions. In Arabidopsis thaliana, photosynthetic acclimation to cold requires the accumulation of the organic acid fumarate, catalysed by a cytosolically localized fumarase, FUM2. However, the role of this accumulation is currently unknown. Here, we use an integrated experimental and modelling approach to examine the role of FUM2 and fumarate across the physiological temperature range. We have studied three genotypes: Col-0; a fum2 mutant in a Col-0 background; and C24, an accession with reduced FUM2 expression. While low temperature causes an increase in Pmax in the Col-0 plants, this parameter decreases following exposure of plants to 30 °C for 7 d. Plants in which fumarate accumulation is partially (C24) or completely (fum2) abolished show a reduced acclimation of Pmax across the physiological temperature range (i.e. Pmax changes less in response to changing temperature). To understand the role of fumarate accumulation, we have adapted a reliability engineering technique, Failure Mode and Effect Analysis (FMEA), to formalize a rigorous approach for ranking metabolites according to the potential risk that they pose to the metabolic system. FMEA identifies fumarate as a low-risk metabolite, while its precursor, malate, is shown to be high risk and liable to cause system instability. We propose that the role of FUM2 is to provide a fail-safe in order to control malate concentration, maintaining system stability in a changing environment. We suggest that FMEA is a technique that is not only useful in understanding plant metabolism but can also be used to study reliability in other systems and synthetic pathways.
Collapse
Affiliation(s)
- Helena A Saunders
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PT, UK
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Pablo I Calzadilla
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PT, UK
| | - Jean-Marc Schwartz
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Giles N Johnson
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
12
|
Knoch D, Werner CR, Meyer RC, Riewe D, Abbadi A, Lücke S, Snowdon RJ, Altmann T. Multi-omics-based prediction of hybrid performance in canola. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1147-1165. [PMID: 33523261 PMCID: PMC7973648 DOI: 10.1007/s00122-020-03759-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/19/2020] [Indexed: 05/05/2023]
Abstract
Complementing or replacing genetic markers with transcriptomic data and use of reproducing kernel Hilbert space regression based on Gaussian kernels increases hybrid prediction accuracies for complex agronomic traits in canola. In plant breeding, hybrids gained particular importance due to heterosis, the superior performance of offspring compared to their inbred parents. Since the development of new top performing hybrids requires labour-intensive and costly breeding programmes, including testing of large numbers of experimental hybrids, the prediction of hybrid performance is of utmost interest to plant breeders. In this study, we tested the effectiveness of hybrid prediction models in spring-type oilseed rape (Brassica napus L./canola) employing different omics profiles, individually and in combination. To this end, a population of 950 F1 hybrids was evaluated for seed yield and six other agronomically relevant traits in commercial field trials at several locations throughout Europe. A subset of these hybrids was also evaluated in a climatized glasshouse regarding early biomass production. For each of the 477 parental rapeseed lines, 13,201 single nucleotide polymorphisms (SNPs), 154 primary metabolites, and 19,479 transcripts were determined and used as predictive variables. Both, SNP markers and transcripts, effectively predict hybrid performance using (genomic) best linear unbiased prediction models (gBLUP). Compared to models using pure genetic markers, models incorporating transcriptome data resulted in significantly higher prediction accuracies for five out of seven agronomic traits, indicating that transcripts carry important information beyond genomic data. Notably, reproducing kernel Hilbert space regression based on Gaussian kernels significantly exceeded the predictive abilities of gBLUP models for six of the seven agronomic traits, demonstrating its potential for implementation in future canola breeding programmes.
Collapse
Affiliation(s)
- Dominic Knoch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben Germany
| | - Christian R. Werner
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| | - Rhonda C. Meyer
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben Germany
| | - David Riewe
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben Germany
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 14195 Berlin, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth, 24363 Holtsee, Germany
- Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth, 24363 Holtsee, Germany
| | - Sophie Lücke
- Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth, 24363 Holtsee, Germany
| | - Rod J. Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Thomas Altmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, OT Gatersleben Germany
| |
Collapse
|
13
|
Sugi N, Le QTN, Kobayashi M, Kusano M, Shiba H. Integrated transcript and metabolite profiling reveals coordination between biomass size and nitrogen metabolism in Arabidopsis F 1 hybrids. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:67-75. [PMID: 34177326 PMCID: PMC8215461 DOI: 10.5511/plantbiotechnology.20.1126a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/26/2020] [Indexed: 05/24/2023]
Abstract
Heterosis refers to the improved agronomic performance of F1 hybrids relative to their parents. Although this phenomenon is widely employed to increase biomass, yield, and stress tolerance of plants, the underlying molecular mechanisms remain unclear. To dissect the metabolic fluctuations derived from genomic and/or environmental differences contributing to the improved biomass of F1 hybrids relative to their parents, we optimized the growth condition for Arabidopsis thaliana F1 hybrids and their parents. Modest but statistically significant increase in the biomass of F1 hybrids was observed. Plant samples grown under the optimized condition were also utilized for integrated omics analysis to capture specific changes in the F1 hybrids. Metabolite profiling of F1 hybrids and parent plants was performed using gas chromatography-mass spectrometry. Among the detected 237 metabolites, 2-oxoglutarate (2-OG) and malate levels were lower and the level of aspartate was higher in the F1 hybrids than in each parent. In addition, microarray analysis revealed that there were 44 up-regulated and 12 down-regulated genes with more than 1.5-fold changes in expression levels in the F1 hybrid compared to each parent. Gene ontology (GO) analyses indicated that genes up-regulated in the F1 hybrids were largely related to organic nitrogen (N) process. Quantitative PCR verified that glutamine synthetase 2 (AtGLN2) was upregulated in the F1 hybrids, while other genes encoding enzymes in the GS-GOGAT cycle showed no significant differences between the hybrid and parent lines. These results suggested the existence of metabolic regulation that coordinates biomass and N metabolism involving AtGLN2 in F1 hybrids.
Collapse
Affiliation(s)
- Naoya Sugi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Quynh Thi Ngoc Le
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Makoto Kobayashi
- Metabolomics Research Group, RIKEN Plant Science Center, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Miyako Kusano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8572, Japan
- Metabolomics Research Group, RIKEN Plant Science Center, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Shiba
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
14
|
Yoshida T, Yamaguchi-Shinozaki K. Metabolic engineering: Towards water deficiency adapted crop plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153375. [PMID: 33609854 DOI: 10.1016/j.jplph.2021.153375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Water deficiency caused by drought is one of the severe environmental conditions limiting plant growth, development, and yield. In this review article, we will summarize the changes in transcription, metabolism, and phytohormones under drought stress conditions and show the key transcription factors in these processes. We will also highlight the recent attempts to enhance stress tolerance without growth retardation and discuss the perspective on the development of stress adapted crops by engineering transcription factors.
Collapse
Affiliation(s)
- Takuya Yoshida
- Max-Planck-Institut Für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany; Centre of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657, Tokyo, Japan; Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 156-8502, Tokyo, Japan
| |
Collapse
|
15
|
Meyer RC, Weigelt-Fischer K, Knoch D, Heuermann M, Zhao Y, Altmann T. Temporal dynamics of QTL effects on vegetative growth in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:476-490. [PMID: 33080013 DOI: 10.1093/jxb/eraa490] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
We assessed early vegetative growth in a population of 382 accessions of Arabidopsis thaliana using automated non-invasive high-throughput phenotyping. All accessions were imaged daily from 7 d to 18 d after sowing in three independent experiments and genotyped using the Affymetrix 250k SNP array. Projected leaf area (PLA) was derived from image analysis and used to calculate relative growth rates (RGRs). In addition, initial seed size was determined. The generated datasets were used jointly for a genome-wide association study that identified 238 marker-trait associations (MTAs) individually explaining up to 8% of the total phenotypic variation. Co-localization of MTAs occurred at 33 genomic positions. At 21 of these positions, sequential co-localization of MTAs for 2-9 consecutive days was observed. The detected MTAs for PLA and RGR could be grouped according to their temporal expression patterns, emphasizing that temporal variation of MTA action can be observed even during the vegetative growth phase, a period of continuous formation and enlargement of seemingly similar rosette leaves. This indicates that causal genes may be differentially expressed in successive periods. Analyses of the temporal dynamics of biological processes are needed to gain important insight into the molecular mechanisms of growth-controlling processes in plants.
Collapse
Affiliation(s)
- Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Kathleen Weigelt-Fischer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Marc Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Breeding Research, Research Group Quantitative Genetics, OT Gatersleben, Corrensstraße, Seeland, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, Research Group Heterosis, OT Gatersleben, Corrensstraße, Seeland, Germany
| |
Collapse
|
16
|
Feiner A, Pitra N, Matthews P, Pillen K, Wessjohann LA, Riewe D. Downy mildew resistance is genetically mediated by prophylactic production of phenylpropanoids in hop. PLANT, CELL & ENVIRONMENT 2021; 44:323-338. [PMID: 33037636 DOI: 10.1111/pce.13906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/08/2020] [Accepted: 10/01/2020] [Indexed: 05/25/2023]
Abstract
Downy mildew in hop (Humulus lupulus L.) is caused by Pseudoperonospora humuli and generates significant losses in quality and yield. To identify the biochemical processes that confer natural downy mildew resistance (DMR), a metabolome- and genome-wide association study was performed. Inoculation of a high density genotyped F1 hop population (n = 192) with the obligate biotrophic oomycete P. humuli led to variation in both the levels of thousands of specialized metabolites and DMR. We observed that metabolites of almost all major phytochemical classes were induced 48 hr after inoculation. But only a small number of metabolites were found to be correlated with DMR and these were enriched with phenylpropanoids. These metabolites were also correlated with DMR when measured from the non-infected control set. A genome-wide association study revealed co-localization of the major DMR loci and the phenylpropanoid pathway markers indicating that the major contribution to resistance is mediated by these metabolites in a heritable manner. The application of three putative prophylactic phenylpropanoids led to a reduced degree of leaf infection in susceptible genotypes, confirming their protective activity either directly or as precursors of active compounds.
Collapse
Affiliation(s)
- Alexander Feiner
- Plant Science and Breeding, Simon H. Steiner, Hopfen GmbH, Mainburg, Germany
- Deptartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Halle/Saale, Germany
| | - Nicholi Pitra
- Research and Development, S.S. Steiner, Inc., New York, USA
| | - Paul Matthews
- Research and Development, S.S. Steiner, Inc., New York, USA
| | - Klaus Pillen
- Institute of Agricultural and Nutritional Sciences, Martin-Luther University (MLU), Halle/Saale, Germany
| | - Ludger A Wessjohann
- Deptartment of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry (IPB), Halle/Saale, Germany
| | - David Riewe
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Berlin, Germany
| |
Collapse
|
17
|
Nakano Y, Kusunoki K, Maruyama H, Enomoto T, Tokizawa M, Iuchi S, Kobayashi M, Kochian LV, Koyama H, Kobayashi Y. A single-population GWAS identified AtMATE expression level polymorphism caused by promoter variants is associated with variation in aluminum tolerance in a local Arabidopsis population. PLANT DIRECT 2020; 4:e00250. [PMID: 32793853 PMCID: PMC7419912 DOI: 10.1002/pld3.250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 05/14/2023]
Abstract
Organic acids (OA) are released from roots in response to aluminum (Al), conferring an Al tolerance to plants that is regulated by OA transporters such as ALMT (Al-activated malate transporter) and multi-drug and toxic compound extrusion (MATE). We have previously reported that the expression level polymorphism (ELP) of AtALMT1 is strongly associated with variation in Al tolerance among natural accessions of Arabidopsis. However, although AtMATE is also expressed following Al exposure and contributes to Al tolerance, whether AtMATE contributes to the variation of Al tolerance and the molecular mechanisms of ELP remains unclear. Here, we dissected the natural variation in AtMATE expression level in response to Al at the root using diverse natural accessions of Arabidopsis. Phylogenetic analysis revealed that more than half of accessions belonging to the Central Asia (CA) population show markedly low AtMATE expression levels, while the majority of European populations show high expression levels. The accessions of the CA population with low AtMATE expression also show significantly weakened Al tolerance. A single-population genome-wide association study (GWAS) of AtMATE expression in the CA population identified a retrotransposon insertion in the AtMATE promoter region associated with low gene expression levels. This may affect the transcriptional regulation of AtMATE by disrupting the effect of a cis-regulatory element located upstream of the insertion site, which includes AtSTOP1 (sensitive to proton rhizotoxicity 1) transcription factor-binding sites revealed by chromatin immunoprecipitation-qPCR analysis. Furthermore, the GWAS performed without the accessions expressing low levels of AtMATE, excluding the effect of AtMATE promoter polymorphism, identified several candidate genes potentially associated with AtMATE expression.
Collapse
Affiliation(s)
- Yuki Nakano
- Faculty of Applied Biological SciencesGifu UniversityGifuGifuJapan
| | | | - Haruka Maruyama
- Faculty of Applied Biological SciencesGifu UniversityGifuGifuJapan
| | - Takuo Enomoto
- Faculty of Applied Biological SciencesGifu UniversityGifuGifuJapan
| | - Mutsutomo Tokizawa
- Faculty of Applied Biological SciencesGifu UniversityGifuGifuJapan
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Satoshi Iuchi
- Experimental Plant DivisionRIKEN BioResource Research CenterTsukubaIbarakiJapan
| | - Masatomo Kobayashi
- Experimental Plant DivisionRIKEN BioResource Research CenterTsukubaIbarakiJapan
| | - Leon V. Kochian
- Global Institute for Food SecurityUniversity of SaskatchewanSaskatoonSKCanada
| | - Hiroyuki Koyama
- Faculty of Applied Biological SciencesGifu UniversityGifuGifuJapan
| | - Yuriko Kobayashi
- Faculty of Applied Biological SciencesGifu UniversityGifuGifuJapan
| |
Collapse
|
18
|
Xu X, Wei C, Liu Q, Qu W, Qi X, Xu Q, Chen X. The major-effect quantitative trait locus Fnl7.1 encodes a late embryogenesis abundant protein associated with fruit neck length in cucumber. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1598-1609. [PMID: 31916321 PMCID: PMC7292543 DOI: 10.1111/pbi.13326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 12/06/2019] [Indexed: 06/03/2023]
Abstract
Fruit neck length (FNL) is an important quality trait in cucumber because it directly affects its market value. However, its genetic basis remains largely unknown. We identified a candidate gene for FNL in cucumber using a next-generation sequencing-based bulked segregant analysis in F2 populations, derived from a cross between Jin5-508 (long necked) and YN (short necked). A quantitative trait locus (QTL) on chromosome 7, Fnl7.1, was identified through a genome-wide comparison of single nucleotide polymorphisms between long and short FNL F2 pools, and it was confirmed by traditional QTL mapping in multiple environments. Fine genetic mapping, sequences alignment and gene expression analysis revealed that CsFnl7.1 was the most likely candidate Fnl7.1 locus, which encodes a late embryogenesis abundant protein. The increased expression of CsFnl7.1 in long-necked Jin5-508 may be attributed to mutations in the promoter region upstream of the gene body. The function of CsFnl7.1 in FNL control was confirmed by its overexpression in transgenic cucumbers. CsFnl7.1 regulates fruit neck development by modulating cell expansion. Probably, this is achieved through the direct protein-protein interactions between CsFnl7.1 and a dynamin-related protein CsDRP6 and a germin-like protein CsGLP1. Geographical distribution differences of the FNL phenotype were found among the different cucumber types. The East Asian and Eurasian cucumber accessions were highly enriched with the long-necked and short-necked phenotypes, respectively. A further phylogenetic analysis revealed that the Fnl7.1 locus might have originated from India. Thus, these data support that the CsFnl7.1 has an important role in increasing cucumber FNL.
Collapse
Affiliation(s)
- Xuewen Xu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
- Joint International Research Laboratory of Agriculture and Agri‐Product Safetythe Ministry of Education of ChinaYangzhou UniversityYangzhouJiangsuChina
| | - Chenxi Wei
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Qianya Liu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Wenqing Qu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Xiaohua Qi
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Qiang Xu
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Xuehao Chen
- School of Horticulture and Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
- Joint International Research Laboratory of Agriculture and Agri‐Product Safetythe Ministry of Education of ChinaYangzhou UniversityYangzhouJiangsuChina
| |
Collapse
|
19
|
Wiebach J, Nagel M, Börner A, Altmann T, Riewe D. Age-dependent loss of seed viability is associated with increased lipid oxidation and hydrolysis. PLANT, CELL & ENVIRONMENT 2020; 43:303-314. [PMID: 31472094 DOI: 10.1111/pce.13651] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 05/05/2023]
Abstract
The accumulation of reactive oxygen species has been associated with a loss of seed viability. Therefore, we have investigated the germination ability of a range of seed stocks, including two wheat collections and one barley collection that had been dry-aged for 5-40 years. Metabolite profiling analysis revealed that the accumulation of glycerol was negatively correlated with the ability to germinate in all seed sets. Furthermore, lipid degradation products such as glycerol phosphates and galactose were accumulated in some seed sets. A quantitative analysis of nonoxidized and oxidized lipids was performed in the wheat seed set that showed the greatest variation in germination. This analysis revealed that the levels of fully acylated and nonoxidized storage lipids like triacylglycerols and structural lipids like phospho- and galactolipids were decreasing. Moreover, the abundance of oxidized variants and hydrolysed products such as mono-/diacylglycerols, lysophospholipids, and fatty acids accumulated as viability decreased. The proportional formation of oxidized and nonoxidized fatty acids provides evidence for an enzymatic hydrolysis of specifically oxidized lipids in dry seeds. The results link reactive oxygen species with lipid oxidation, structural damage, and death in long-term aged seeds.
Collapse
Affiliation(s)
- Janine Wiebach
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, 06466, Germany
- Charité - Universitaetsmedizin Berlin, corporate member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, and Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Berlin, 10117, Germany
| | - Manuela Nagel
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, 06466, Germany
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, 06466, Germany
| | - Thomas Altmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, 06466, Germany
| | - David Riewe
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, 06466, Germany
- Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, 14195, Germany
| |
Collapse
|
20
|
Melandri G, AbdElgawad H, Riewe D, Hageman JA, Asard H, Beemster GTS, Kadam N, Jagadish K, Altmann T, Ruyter-Spira C, Bouwmeester H. Biomarkers for grain yield stability in rice under drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:669-683. [PMID: 31087074 PMCID: PMC6946010 DOI: 10.1093/jxb/erz221] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/10/2019] [Indexed: 05/23/2023]
Abstract
Crop yield stability requires an attenuation of the reduction of yield losses caused by environmental stresses such as drought. Using a combination of metabolomics and high-throughput colorimetric assays, we analysed central metabolism and oxidative stress status in the flag leaf of 292 indica rice (Oryza sativa) accessions. Plants were grown in the field and were, at the reproductive stage, exposed to either well-watered or drought conditions to identify the metabolic processes associated with drought-induced grain yield loss. Photorespiration, protein degradation, and nitrogen recycling were the main processes involved in the drought-induced leaf metabolic reprogramming. Molecular markers of drought tolerance and sensitivity in terms of grain yield were identified using a multivariate model based on the values of the metabolites and enzyme activities across the population. The model highlights the central role of the ascorbate-glutathione cycle, particularly dehydroascorbate reductase, in minimizing drought-induced grain yield loss. In contrast, malondialdehyde was an accurate biomarker for grain yield loss, suggesting that drought-induced lipid peroxidation is the major constraint under these conditions. These findings highlight new breeding targets for improved rice grain yield stability under drought.
Collapse
Affiliation(s)
- Giovanni Melandri
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Hamada AbdElgawad
- Laboratory for Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
- Department of Botany, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - David Riewe
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | - Jos A Hageman
- Wageningen University and Research, Biometris, Wageningen, The Netherlands
| | - Han Asard
- Laboratory for Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
| | - Gerrit T S Beemster
- Laboratory for Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerp, Belgium
| | - Niteen Kadam
- Centre for Crop Systems Analysis, Wageningen University and Research, Wageningen, The Netherlands
- International Rice Research Institute, Los Baños, Philippines
| | - Krishna Jagadish
- International Rice Research Institute, Los Baños, Philippines
- Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Thomas Altmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
21
|
Le QTN, Sugi N, Furukawa J, Kobayashi M, Saito K, Kusano M, Shiba H. Association analysis of phenotypic and metabolomic changes in Arabidopsis accessions and their F 1 hybrids affected by different photoperiod and sucrose supply. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:155-165. [PMID: 31768117 PMCID: PMC6854347 DOI: 10.5511/plantbiotechnology.19.0604a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Photoperiod and sucrose (Suc) assimilation play important roles in the regulation of plant growth and development. However, it remains unclear how natural variation of plants could contribute to metabolic changes under various growth conditions. Here, we investigated the developmental and metabolomic responses of two natural accessions of Arabidopsis thaliana, Columbia (Col) and C24, and their reciprocal F1 hybrids grown under four carbon source regimens, i.e., two different photoperiods and the presence or absence of exogenous Suc supply. The effect of exogenous Suc clearly appeared in the growth of Col and the F1 hybrid but not in C24, whereas long-day conditions had significant positive effects on the growth of all lines. Comparative metabolite profiling of Col, C24, and the F1 hybrid revealed that changes in metabolite levels, particularly sugars, were highly dependent on genotype-specific responses rather than growth conditions. The presence of Suc led to over-accumulation of seven metabolites, including four sugars, a polyamine, and two amino acids in C24, whereas no such accumulation was observed in the profiles of Col and the F1 hybrid. Thus, the comparative metabolite profiling revealed that the two parental lines of the hybrid show a distinct difference in sugar metabolism.
Collapse
Affiliation(s)
- Quynh Thi Ngoc Le
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Naoya Sugi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jun Furukawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Makoto Kobayashi
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Miyako Kusano
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | - Hiroshi Shiba
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- E-mail: Tel & Fax: +81-29-853-6355
| |
Collapse
|
22
|
A robust circadian rhythm of metabolites in Arabidopsis thaliana mutants with enhanced growth characteristics. PLoS One 2019; 14:e0218219. [PMID: 31237908 PMCID: PMC6592530 DOI: 10.1371/journal.pone.0218219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/28/2019] [Indexed: 01/06/2023] Open
Abstract
Climate change and the rising food demand provide a need for smart crops that yield more biomass. Recently, two Arabidopsis thaliana mutants with enhanced growth characteristics, VP16-02-003 and the VP16-05-014, were obtained by genome-wide reprogramming of gene expression, which led to the identification of novel biomarkers of these enhanced growth phenotypes. Since the circadian cycle strongly influences metabolic and physiological processes and exerts control over the photosynthetic machinery responsible for enhanced growth, in this study, we investigate the influences of the circadian clock on the metabolic rhythm of eighteen key biomarkers for the larger rosette surface area phenotype. The metabolic profile was studied in intact leaves at seven different time points throughout the circadian cycle using high-resolution magic angle spinning (HR-MAS) NMR. The results show that the circadian rhythm of biomarker metabolites are remarkably robust across wild-type Col-0 and VP16-02-003 and the VP16-05-014 mutants, with widely different metabolite levels of both mutants compared to Col-0 throughout the circadian cycle. Our analysis reveals that robustness is achieved through functional independence between the circadian clock and primary metabolic processes.
Collapse
|
23
|
Onda Y, Inoue K, Sawada Y, Shimizu M, Takahagi K, Uehara-Yamaguchi Y, Hirai MY, Garvin DF, Mochida K. Genetic Variation for Seed Metabolite Levels in Brachypodium distachyon. Int J Mol Sci 2019; 20:ijms20092348. [PMID: 31083584 PMCID: PMC6540107 DOI: 10.3390/ijms20092348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/26/2019] [Accepted: 04/27/2019] [Indexed: 12/27/2022] Open
Abstract
Metabolite composition and concentrations in seed grains are important traits of cereals. To identify the variation in the seed metabolotypes of a model grass, namely Brachypodium distachyon, we applied a widely targeted metabolome analysis to forty inbred lines of B. distachyon and examined the accumulation patterns of 183 compounds in the seeds. By comparing the metabolotypes with the population structure of these lines, we found signature metabolites that represent different accumulation patterns for each of the three B. distachyon subpopulations. Moreover, we found that thirty-seven metabolites exhibited significant differences in their accumulation between the lines Bd21 and Bd3-1. Using a recombinant inbred line (RIL) population from a cross between Bd3-1 and Bd21, we identified the quantitative trait loci (QTLs) linked with this variation in the accumulation of thirteen metabolites. Our metabolite QTL analysis illustrated that different genetic factors may presumably regulate the accumulation of 4-pyridoxate and pyridoxamine in vitamin B6 metabolism. Moreover, we found two QTLs on chromosomes 1 and 4 that affect the accumulation of an anthocyanin, chrysanthemin. These QTLs genetically interacted to regulate the accumulation of this compound. This study demonstrates the potential for metabolite QTL mapping in B. distachyon and provides new insights into the genetic dissection of metabolomic traits in temperate grasses.
Collapse
Affiliation(s)
- Yoshihiko Onda
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.
| | - Komaki Inoue
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Yuji Sawada
- Metabolic Systems Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Minami Shimizu
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Kotaro Takahagi
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Yukiko Uehara-Yamaguchi
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Masami Y Hirai
- Metabolic Systems Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - David F Garvin
- Plant Science Research Unit, United States Department of Agriculture, Agricultural Research Service, 1991 Upper Buford Circle, St. Paul, MN 55108, USA.
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
- Institute of Plant Science and Resource, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan.
- Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
24
|
Gan L, Chao Y, Su H, Ren Y, Yin S, Han L. Altered Promoter and G-Box Binding Factor for 1-Deoxy-d-Xylulose-5-Phosphate Synthase Gene Grown from Poa pratensis Seeds after Spaceflight. Int J Mol Sci 2019; 20:ijms20061398. [PMID: 30901811 PMCID: PMC6471272 DOI: 10.3390/ijms20061398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 11/21/2022] Open
Abstract
In plant cells, the nucleus DNA is considered the primary site of injury by the space environment, which could generate genetic alteration. As the part of genomic mutation, genetic variation in the promoter region could regulate gene expression. In the study, it is observed that there is a deletion in the upstream regulatory region of the 1-deoxy-d-xylulose-5-phosphate synthase 1 gene (PpDXS1) of Poa pratensis dwarf mutant and the PpDXS1 transcript abundance is lower in the dwarf mutant. It is indicated that the deletion in the promoter region between wild type and dwarf mutant could be responsible for the regulation of PpDXS1 gene expression. The PpDXS1 promoter of dwarf mutant shows a lower activity as determined by dual luciferase assay in Poa pratensis protoplast, as well as the GUS activity is lower in transgenic Poa pratensis plant. To further investigate the effect of the deletion in the promoter region on PpDXS1 transcript accumulation, the transient assay and yeast one-hybrid experiment demonstrate that the deletion comprises a motif which is a target of G-box binding factor (GBF1), and the motif correlates with an increase in transactivation by GBF1 protein. Taken together, these results indicate that the deletion in the promoter of PpDXS1 isolated from dwarf mutant is sufficient to account for the decrease in PpDXS1 transcript level and GBF1 can regulate the PpDXS1 gene expression, and subsequently affect accumulation of various isoprenoids throughout the plant.
Collapse
Affiliation(s)
- Lu Gan
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China.
| | - Yuehui Chao
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China.
| | - Haotian Su
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China.
| | - Yujing Ren
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China.
| | - Shuxia Yin
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China.
| | - Liebao Han
- Institute of Turfgrass Science, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
25
|
Zubimendi JP, Martinatto A, Valacco MP, Moreno S, Andreo CS, Drincovich MF, Tronconi MA. The complex allosteric and redox regulation of the fumarate hydratase and malate dehydratase reactions of Arabidopsis thaliana Fumarase 1 and 2 gives clues for understanding the massive accumulation of fumarate. FEBS J 2018; 285:2205-2224. [PMID: 29688630 DOI: 10.1111/febs.14483] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/22/2018] [Accepted: 04/19/2018] [Indexed: 11/30/2022]
Abstract
Arabidopsis thaliana possesses two fumarase genes (FUM), AtFUM1 (At2g47510) encoding for the mitochondrial Krebs cycle-associated enzyme and AtFUM2 (At5g50950) for the cytosolic isoform required for fumarate massive accumulation. Here, the comprehensive biochemical studies of AtFUM1 and AtFUM2 shows that they are active enzymes with similar kinetic parameters but differential regulation. For both enzymes, fumarate hydratase (FH) activity is favored over the malate dehydratase (MD) activity; however, MD is the most regulated activity with several allosteric activators. Oxalacetate, glutamine, and/or asparagine are modulators causing the MD reaction to become preferred over the FH reaction. Activity profiles as a function of pH suggest a suboptimal FUM activity in Arabidopsis cells; moreover, the direction of the FUM reaction is sensitive to pH changes. Under mild oxidation conditions, AtFUMs form high mass molecular aggregates, which present both FUM activities decreased to a different extent. The biochemical properties of oxidized AtFUMs (oxAtFUMs) were completely reversed by NADPH-supplied Arabidopsis leaf extracts, suggesting that the AtFUMs redox regulation can be accomplished in vivo. Mass spectrometry analyses indicate the presence of an active site-associated intermolecular disulfide bridge in oxAtFUMs. Finally, a phylogenetic approach points out that other plant species may also possess cytosolic FUM2 enzymes mainly encoded by paralogous genes, indicating that the evolutionary history of this trait has been drawn through a process of parallel evolution. Overall, according to our results, a multilevel regulatory pattern of FUM activities emerges, supporting the role of this enzyme as a carbon flow monitoring point through the organic acid metabolism in plants.
Collapse
Affiliation(s)
- Juan P Zubimendi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Santa Fe, Argentina
| | - Andrea Martinatto
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Santa Fe, Argentina
| | - Maria P Valacco
- Departamento de Química Biológica, Facultad de Ciencias exactas y Naturales, Universidad de Buenos Aires (UBA), Argentina
| | - Silvia Moreno
- Departamento de Química Biológica, Facultad de Ciencias exactas y Naturales, Universidad de Buenos Aires (UBA), Argentina
| | - Carlos S Andreo
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Santa Fe, Argentina
| | - María F Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Santa Fe, Argentina
| | - Marcos A Tronconi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Santa Fe, Argentina
| |
Collapse
|
26
|
Casartelli A, Riewe D, Hubberten HM, Altmann T, Hoefgen R, Heuer S. Exploring traditional aus-type rice for metabolites conferring drought tolerance. RICE (NEW YORK, N.Y.) 2018; 11:9. [PMID: 29372429 PMCID: PMC5785456 DOI: 10.1186/s12284-017-0189-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/22/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Traditional varieties and landraces belonging to the aus-type group of rice (Oryza sativa L.) are known to be highly tolerant to environmental stresses, such as drought and heat, and are therefore recognized as a valuable genetic resource for crop improvement. Using two aus-type (Dular, N22) and two drought intolerant irrigated varieties (IR64, IR74) an untargeted metabolomics analysis was conducted to identify drought-responsive metabolites associated with tolerance. RESULTS The superior drought tolerance of Dular and N22 compared with the irrigated varieties was confirmed by phenotyping plants grown to maturity after imposing severe drought stress in a dry-down treatment. Dular and N22 did not show a significant reduction in grain yield compared to well-watered control plants, whereas the intolerant varieties showed a significant reduction in both, total spikelet number and grain yield. The metabolomics analysis was conducted with shoot and root samples of plants at the tillering stage at the end of the dry-down treatment. The data revealed an overall higher accumulation of N-rich metabolites (amino acids and nucleotide-related metabolites allantoin and uridine) in shoots of the tolerant varieties. In roots, the aus-type varieties were characterised by a higher reduction of metabolites representative of glycolysis and the TCA cycle, such as malate, glyceric acid and glyceric acid-3-phosphate. On the other hand, the oligosaccharide raffinose showed a higher fold increase in both, shoots and roots of the sensitive genotypes. The data further showed that, for certain drought-responsive metabolites, differences between the contrasting rice varieties were already evident under well-watered control conditions. CONCLUSIONS The drought tolerance-related metabolites identified in the aus-type varieties provide a valuable set of protective compounds and an entry point for assessing genetic diversity in the underlying pathways for developing drought tolerant rice and other crops.
Collapse
Affiliation(s)
- Alberto Casartelli
- School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, Adelaide, SA Australia
| | - David Riewe
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | | | - Thomas Altmann
- Julius Kühn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Berlin, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Sigrid Heuer
- School of Agriculture, Food and Wine, Waite Campus, The University of Adelaide, Adelaide, SA Australia
- Rothamsted Research, Harpenden, UK
| |
Collapse
|
27
|
Knoch D, Riewe D, Meyer RC, Boudichevskaia A, Schmidt R, Altmann T. Genetic dissection of metabolite variation in Arabidopsis seeds: evidence for mQTL hotspots and a master regulatory locus of seed metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1655-1667. [PMID: 28338798 PMCID: PMC5444479 DOI: 10.1093/jxb/erx049] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To gain insight into genetic factors controlling seed metabolic composition and its relationship to major seed properties, an Arabidopsis recombinant inbred line (RIL) population, derived from accessions Col-0 and C24, was studied using an MS-based metabolic profiling approach. Relative intensities of 311 polar primary metabolites were used to identify associated genomic loci and to elucidate their interactions by quantitative trait locus (QTL) mapping. A total of 786 metabolic QTLs (mQTLs) were unequally distributed across the genome, forming several hotspots. For the branched-chain amino acid leucine, mQTLs and candidate genes were elucidated in detail. Correlation studies displayed links between metabolite levels, seed protein content, and seed weight. Principal component analysis revealed a clustering of samples, with PC1 mapping to a region on the short arm of chromosome IV. The overlap of this region with mQTL hotspots indicates the presence of a potential master regulatory locus of seed metabolism. As a result of database queries, a series of candidate regulatory genes, including bZIP10, were identified within this region. Depending on the search conditions, metabolic pathway-derived candidate genes for 40-61% of tested mQTLs could be determined, providing an extensive basis for further identification and characterization of hitherto unknown genes causal for natural variation of Arabidopsis seed metabolism.
Collapse
Affiliation(s)
- Dominic Knoch
- Department of Molecular Genetics/Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland/OT Gatersleben, Germany
| | - David Riewe
- Department of Molecular Genetics/Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland/OT Gatersleben, Germany
| | - Rhonda Christiane Meyer
- Department of Molecular Genetics/Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland/OT Gatersleben, Germany
| | - Anastassia Boudichevskaia
- Department of Breeding Research/Genome Plasticity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland/OT Gatersleben, Germany
| | - Renate Schmidt
- Department of Breeding Research/Genome Plasticity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland/OT Gatersleben, Germany
| | - Thomas Altmann
- Department of Molecular Genetics/Heterosis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland/OT Gatersleben, Germany
| |
Collapse
|