1
|
Kazama Y, Kobayashi T, Filatov DA. Evolution of sex-determination in dioecious plants: From active Y to X/A balance? Bioessays 2023; 45:e2300111. [PMID: 37694687 PMCID: PMC11475520 DOI: 10.1002/bies.202300111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Sex chromosomes in plants have been known for a century, but only recently have we begun to understand the mechanisms behind sex determination in dioecious plants. Here, we discuss evolution of sex determination, focusing on Silene latifolia, where evolution of separate sexes is consistent with the classic "two mutations" model-a loss of function male sterility mutation and a gain of function gynoecium suppression mutation, which turned an ancestral hermaphroditic population into separate males and females. Interestingly, the gynoecium suppression function in S. latifolia evolved via loss of function in at least two sex-linked genes and works via gene dosage balance between sex-linked, and autosomal genes. This system resembles X/A-ratio-based sex determination systems in Drosophila and Rumex, and could represent a steppingstone in the evolution of X/A-ratio-based sex determination from an active Y system.
Collapse
Affiliation(s)
- Yusuke Kazama
- Graduate school of Bioscience and BiotechnologyFukui Prefectural UniversityEiheiji‐choFukuiJapan
- RIKEN Nishina CenterWakoSaitamaJapan
| | - Taiki Kobayashi
- Graduate school of Bioscience and BiotechnologyFukui Prefectural UniversityEiheiji‐choFukuiJapan
| | | |
Collapse
|
2
|
Zhang H, Zeng W, Zhao MM, Wang J, Wang Q, Chen T, Zhang Y, Lee W, Chen S, Zhang Y, Lan X, Xiang Y. Caenorhabditis elegans LIN-24, a homolog of bacterial pore-forming toxin, protects the host from microbial infection. FASEB J 2023; 37:e23162. [PMID: 37682220 DOI: 10.1096/fj.202300063r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
Aerolysin-like pore-forming protein (af-PFP) superfamily members are double-edge swords that assist the bacterial infection but shied bacteria from the host by various mechanisms in some species including the toad Bombina maxima and zebrafish. While members of this family are widely expressed in all kingdoms, especially non-bacteria species, it remains unclear whether their anti-bacterial function is conserved. LIN-24 is an af-PFP that is constitutively expressed throughout the Caenorhabditis elegans lifespan. Here, we observed that LIN-24 knockdown reduced the maximum lifespan of worms. RNA-seq analysis identified 323 differentially expressed genes (DEGs) post-LIN-24 knockdown that were enriched in "immune response" and "lysosome pathway," suggesting a possible role for LIN-24 in resisting microbial infection. In line with this, we found that Pseudomonas aeruginosa 14 (PA14) infection induced LIN-24 expression, and that survival after PA14 infection was significantly reduced by LIN-24 knockdown. In contrast, LIN-24 overexpression (LIN-24-OE) conferred protection against PA14 infection, with worms showing longer survival time and reduced bacterial load. Weighted gene co-expression network analysis of LIN-24-OE worms showed that the highest correlation module was enriched in factors related to immunity and the defense response. Finally, by predicting transcription factors from RNA-seq data and knocking down candidate transcription factors in LIN-24-OE worms, we revealed that LIN-24 may protect worms against bacterial infection by stimulating DAF-16-mediated immune responses. These findings agree with our previous studies showing an anti-microbial role for the amphibian-derived af-PFP complex βγ-CAT, suggesting that af-PFPs may play a conserved role in combatting microbial infections. Further research is needed to determine the roles this protein family plays in other physio-pathological processes, such as metabolism, longevity, and aging.
Collapse
Affiliation(s)
- Huijie Zhang
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Weirong Zeng
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Ming-Ming Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Jiali Wang
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Qiquan Wang
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Ting Chen
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Yuyan Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Wenhui Lee
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Shenghan Chen
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
| | - Xinqiang Lan
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Yang Xiang
- Metabolic Control and Aging, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| |
Collapse
|
3
|
Gautam R, Shukla P, Kirti PB. Male sterility in plants: an overview of advancements from natural CMS to genetically manipulated systems for hybrid seed production. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:195. [PMID: 37606708 DOI: 10.1007/s00122-023-04444-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
KEY MESSAGE The male sterility system in plants has traditionally been utilized for hybrid seed production. In last three decades, genetic manipulation for male sterility has revolutionized this area of research related to hybrid seed production technology. Here, we have surveyed some of the natural cytoplasmic male sterility (CMS) systems that existed/ were developed in different crop plants for developing male sterility-fertility restoration systems used in hybrid seed production and highlighted some of the recent biotechnological advancements in the development of genetically engineered systems that occurred in this area. We have indicated the possible future directions toward the development of engineered male sterility systems. Cytoplasmic male sterility (CMS) is an important trait that is naturally prevalent in many plant species, which has been used in the development of hybrid varieties. This is associated with the use of appropriate genes for fertility restoration provided by the restorer line that restores fertility on the corresponding CMS line. The development of hybrids based on a CMS system has been demonstrated in several different crops. However, there are examples of species, which do not have usable cytoplasmic male sterility and fertility restoration systems (Cytoplasmic Genetic Male Sterility Systems-CGMS) for hybrid variety development. In such plants, it is necessary to develop usable male sterile lines through genetic engineering with the use of heterologous expression of suitable genes that control the development of male gametophyte and fertile male gamete formation. They can also be developed through gene editing using the recently developed CRISPR-Cas technology to knock out suitable genes that are responsible for the development of male gametes. The present review aims at providing an insight into the development of various technologies for successful production of hybrid varieties and is intended to provide only essential information on male sterility systems starting from naturally occurring ones to the genetically engineered systems obtained through different means.
Collapse
Affiliation(s)
- Ranjana Gautam
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India
| | - Pawan Shukla
- Seri-Biotech Research Laboratory, Central Silk Board, Carmelram Post, Kodathi, Bangalore, 560035, India.
| | - P B Kirti
- Agri Biotech Foundation, PJTS Agricultural University Campus, Rajendranagar, Hyderabad, Telangana, 500030, India
| |
Collapse
|
4
|
Singh L, Sinha A, Gupta M, Xiao S, Hammond R, Rawat N. Wheat Pore-Forming Toxin-Like Protein Confers Broad-Spectrum Resistance to Fungal Pathogens in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:489-501. [PMID: 36892820 DOI: 10.1094/mpmi-12-22-0247-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fusarium head blight (FHB), caused by the hemibiotrophic fungus Fusarium graminearum, is one of the major threats to global wheat productivity. A wheat pore-forming toxin-like (PFT) protein was previously reported to underlie Fhb1, the most widely used quantitative trait locus in FHB breeding programs worldwide. In the present work, wheat PFT was ectopically expressed in the model dicot plant Arabidopsis. Heterologous expression of wheat PFT in Arabidopsis provided a broad-spectrum quantitative resistance to fungal pathogens including F. graminearum, Colletotrichum higginsianum, Sclerotinia sclerotiorum, and Botrytis cinerea. However, there was no resistance to bacterial or oomycete pathogens Pseudomonas syringae and Phytophthora capsici, respectively in the transgenic Arabidopsis plants. To explore the reason for the resistance response to, exclusively, the fungal pathogens, purified PFT protein was hybridized to a glycan microarray having 300 different types of carbohydrate monomers and oligomers. It was found that PFT specifically hybridized with chitin monomer, N-acetyl glucosamine (GlcNAc), which is present in fungal cell walls but not in bacteria or oomycete species. This exclusive recognition of chitin may be responsible for the specificity of PFT-mediated resistance to fungal pathogens. Transfer of the atypical quantitative resistance of wheat PFT to a dicot system highlights its potential utility in designing broad-spectrum resistance in diverse host plants. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Lovepreet Singh
- Department of Plant Science and Landscape Architecture, University of Maryland College Park, MD 20742, U.S.A
| | - Arunima Sinha
- Department of Plant Science and Landscape Architecture, University of Maryland College Park, MD 20742, U.S.A
| | - Megha Gupta
- Department of Plant Science and Landscape Architecture, University of Maryland College Park, MD 20742, U.S.A
| | - Shunyuan Xiao
- Department of Plant Science and Landscape Architecture, University of Maryland College Park, MD 20742, U.S.A
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, U.S.A
| | - Rosemarie Hammond
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, U.S.A
| | - Nidhi Rawat
- Department of Plant Science and Landscape Architecture, University of Maryland College Park, MD 20742, U.S.A
| |
Collapse
|
5
|
He L, Fan Y, Zhang Z, Wei X, Yu J. Identifying Genes Associated with Female Flower Development of Phellodendron amurense Rupr. Using a Transcriptomics Approach. Genes (Basel) 2023; 14:661. [PMID: 36980934 PMCID: PMC10048520 DOI: 10.3390/genes14030661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Phellodendron amurense Rupr., a species of Rutaceae, is a nationally protected and valuable medicinal plant. It is generally considered to be dioecious. With the discovery of monoecious P. amurense, the phenomenon that its sex development is regulated by epigenetics has been revealed, but the way epigenetics affects the sex differentiation of P. amurense is still unclear. In this study, we investigated the effect of DNA methylation on the sexual development of P. amurense. The young inflorescences of male plants were treated with the demethylation agent 5-azaC, and the induced female flowers were obtained. The induced female flowers' morphological functions and transcriptome levels were close to those of normally developed plants. Genes associated with the development of female flowers were studied by comparing the differences in transcriptome levels between the male and female flowers. Referring to sex-related genes reported in other plants, 188 candidate genes related to the development of female flowers were obtained, including sex-regulating genes, genes related to the formation and development of sexual organs, genes related to biochemical pathways, and hormone-related genes. RPP0W, PAL3, MCM2, MCM6, SUP, PIN1, AINTEGUMENTA, AINTEGUMENTA-LIKE6, AGL11, SEUSS, SHI-RELATED SEQUENCE 5, and ESR2 were preliminarily considered the key genes for female flower development. This study has demonstrated that epigenetics was involved in the sex regulation of P. amurense, with DNA methylation as one of its regulatory modes. Moreover, some candidate genes related to the sexual differentiation of P. amurense were obtained with analysis. These results are of great significance for further exploring the mechanism of sex differentiation of P. amurense and studying of sex differentiation of plants.
Collapse
Affiliation(s)
| | | | - Zhao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | | | | |
Collapse
|
6
|
Mai Y, Sun P, Suo Y, Li H, Han W, Diao S, Wang L, Yuan J, Wang Y, Ye L, Zhang Y, Li F, Fu J. Regulatory mechanism of MeGI on sexuality in Diospyros oleifera. FRONTIERS IN PLANT SCIENCE 2023; 14:1046235. [PMID: 36909399 PMCID: PMC9994623 DOI: 10.3389/fpls.2023.1046235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Dioecy system is an important strategy for maintaining genetic diversity. The transcription factor MeGI, contributes to dioecy by promoting gynoecium development in Diospyros lotus and D. kaki. However, the function of MeGI in D. oleifera has not been identified. In this study, we confirmed that MeGI, cloned from D. oleifera, repressed the androecium development in Arabidopsis thaliana. Subsequently, chromatin immunoprecipitation-sequencing (ChIP-seq), DNA affinity purification-sequencing (DAP-seq), and RNA-seq were used to uncover the gene expression response to MeGI. The results showed that the genes upregulated and downregulated in response to MeGI were mainly enriched in the circadian rhythm-related and flavonoid biosynthetic pathways, respectively. Additionally, the WRKY DNA-binding protein 28 (WRKY28) gene, which was detected by ChIP-seq, DAP-seq, and RNA-seq, was emphasized. WRKY28 has been reported to inhibit salicylic acid (SA) biosynthesis and was upregulated in MeGI-overexpressing A. thaliana flowers, suggesting that MeGI represses the SA level by increasing the expression level of WRKY28. This was confirmed that SA level was lower in D. oleifera female floral buds than male. Overall, our findings indicate that the MeGI mediates its sex control function in D. oleifera mainly by regulating genes in the circadian rhythm, SA biosynthetic, and flavonoid biosynthetic pathways.
Collapse
Affiliation(s)
- Yini Mai
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
| | - Peng Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
| | - Yujing Suo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
| | - Huawei Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
| | - Weijuan Han
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
| | - Songfeng Diao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
| | - Liyuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
- Chinese Academy of Sciences (CAS) Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jiaying Yuan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
| | - Yiru Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
| | - Lingshuai Ye
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
| | - Fangdong Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
| | - Jianmin Fu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China
| |
Collapse
|
7
|
Li J, Li M, Wang W, Wang D, Hu Y, Zhang Y, Zhang X. Morphological and physiological mechanism of cytoplasmic inheritance stigma exsertion trait expression in tobacco (Nicotiana tabacum). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111528. [PMID: 36332767 DOI: 10.1016/j.plantsci.2022.111528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Stigma exsertion is an essential outcrossing trait that can improve hybrid seed production efficiencies. In this study, the morphological and physiological mechanisms of cytoplasmic inheritance stigma exsertion trait expression in a tobacco line (MSK326SE) which generated from a stigma exsertion tobacco mutant through continuous backcross were investigated. Compared with its homonuclear-heteroplasmic lines (MSK326 and K326 with inserted stigmas), the exserted stigma phenotype of MSK326SE was mainly caused by corolla shortening, while was stable under different environmental temperature. The different responses of mainly endogenous hormones and expression of cell division- and expansion-related genes caused the differences in cell division and expansion in different flower organs, which further determined the lengths of the corolla. Furthermore, the significant decrease of MSK326SE corolla epidermal cell size caused corolla shortening and finally resulting in stigma exsertion. Exogenous JA could shorten the corolla and more effective increased stigma exsertion degree of MSK326SE, suggesting a potential relationship between stigma exsertion and high JA levels during early bud development. The hybrid seed production efficiency could be improved in tobacco. Our results provide a basis for elucidating the cytoplasmic inheritance stigma exsertion trait expression in tobacco while helping to improve hybrid seed production efficiency.
Collapse
Affiliation(s)
- Juxu Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Man Li
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Weimin Wang
- China Tobacco Zhejiang Industrial Co., Ltd, Hangzhou 310024, China
| | - Dong Wang
- Henan Provincial Branch of China National Tobacco Corporation, Zhengzhou 450046, China
| | - Yuwei Hu
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yunyun Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
8
|
Šolinc G, Švigelj T, Omersa N, Snoj T, Pirc K, Žnidaršič N, Yamaji-Hasegawa A, Kobayashi T, Anderluh G, Podobnik M. Pore-forming moss protein bryoporin is structurally and mechanistically related to actinoporins from evolutionarily distant cnidarians. J Biol Chem 2022; 298:102455. [PMID: 36063994 PMCID: PMC9526159 DOI: 10.1016/j.jbc.2022.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 10/26/2022] Open
Abstract
Pore-forming proteins perforate lipid membranes and consequently affect their integrity and cell fitness. Therefore, it is not surprising that many of these proteins from bacteria, fungi, or certain animals act as toxins. While pore-forming proteins have also been found in plants, there is little information on their molecular structure and mode of action. Bryoporin is a protein from the moss Physcomitrium patens, and its corresponding gene was found to be upregulated by various abiotic stresses, especially dehydration, as well as upon fungal infection. Based on the amino acid sequence, it was suggested that bryoporin was related to the actinoporin family of pore-forming proteins, originally discovered in sea anemones. Here, we provide the first detailed structural and functional analysis of this plant cytolysin. The crystal structure of the monomeric bryoporin is highly similar to those of actinoporins. Our cryo-EM analysis of its pores showed an actinoporin-like octameric structure, thereby revealing a close kinship of proteins from evolutionarily distant organisms. This was further confirmed by our observation of bryoporin's preferential binding to and formation of pores in membranes containing animal sphingolipids, such as sphingomyelin and ceramide phosphoethanolamine; however, its binding affinity was weaker than that of actinoporin equinatoxin II. We determined bryoporin did not bind to major sphingolipids found in fungi or plants, and its membrane-binding and pore-forming activity were enhanced by various sterols. Our results suggest that bryoporin could represent a part of the moss defense arsenal, acting as a pore-forming toxin against membranes of potential animal pathogens, parasites, or predators.
Collapse
Affiliation(s)
- Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Tomaž Švigelj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Tina Snoj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Katja Pirc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Nada Žnidaršič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | | | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia.
| |
Collapse
|
9
|
Cabrales-Orona G, Martínez-Gallardo N, Délano-Frier JP. Functional Characterization of an Amaranth Natterin-4-Like-1 Gene in Arabidopsis thaliana. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2021.814188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The functional characterization of an Amaranthus hypochondriacus Natterin-4-Like-1 gene (AhN4L-1) coding for an unknown function protein characterized by the presence of an aerolysin-like pore-forming domain in addition to two amaranthin-like agglutinin domains is herewith described. Natterin and nattering-like proteins have been amply described in the animal kingdom. However, the role of nattering-like proteins in plants is practically unknown. The results described in this study, obtained from gene expression data in grain amaranth and from AhN4L-1-overexpressing Arabidopsis thaliana plants indicated that this gene was strongly induced by several biotic and abiotic conditions in grain amaranth, whereas data obtained from the overexpressing Arabidopsis plants further supported the defensive function of this gene, mostly against bacterial and fungal plant pathogens. GUS and GFP AhN4L-1 localization in roots tips, leaf stomata, stamens and pistils also suggested a defensive function in these organs, although its participation in flowering processes, such as self-incompatibility and abscission, is also possible. However, contrary to expectations, the overexpression of this gene negatively affected the vegetative and reproductive growth of the transgenic plants, which also showed no increased tolerance to salinity and water-deficit stress. The latter despite the maintenance of significantly higher chlorophyll levels and photosynthetic parameters under intense salinity stress. These results are discussed in the context of the physiological roles known to be played by related lectins and AB proteins in plants.
Collapse
|
10
|
Abstract
Secretory pore-forming proteins (PFPs) have been identified in organisms from all kingdoms of life. Our studies with the toad species Bombina maxima found an interaction network among aerolysin family PFPs (af-PFPs) and trefoil factors (TFFs). As a toad af-PFP, BmALP1 can be reversibly regulated between active and inactive forms, with its paralog BmALP3 acting as a negative regulator. BmALP1 interacts with BmTFF3 to form a cellular active complex called βγ-CAT. This PFP complex is characterized by acting on endocytic pathways and forming pores on endolysosomes, including stimulating cell macropinocytosis. In addition, cell exocytosis can be induced and/or modulated in the presence of βγ-CAT. Depending on cell contexts and surroundings, these effects can facilitate the toad in material uptake and vesicular transport, while maintaining mucosal barrier function as well as immune defense. Based on experimental evidence, we hereby propose a secretory endolysosome channel (SELC) pathway conducted by a secreted PFP in cell endocytic and exocytic systems, with βγ-CAT being the first example of a SELC protein. With essential roles in cell interactions and environmental adaptations, the proposed SELC protein pathway should be conserved in other living organisms.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Qi-Quan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zhong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Cheng-Jie Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
11
|
Lassalle D, Tetreau G, Pinaud S, Galinier R, Crickmore N, Gourbal B, Duval D. Glabralysins, Potential New β-Pore-Forming Toxin Family Members from the Schistosomiasis Vector Snail Biomphalaria glabrata. Genes (Basel) 2020; 11:genes11010065. [PMID: 31936048 PMCID: PMC7016736 DOI: 10.3390/genes11010065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
Biomphalaria glabrata is a freshwater Planorbidae snail. In its environment, this mollusk faces numerous microorganisms or pathogens, and has developed sophisticated innate immune mechanisms to survive. The mechanisms of recognition are quite well understood in Biomphalaria glabrata, but immune effectors have been seldom described. In this study, we analyzed a new family of potential immune effectors and characterized five new genes that were named Glabralysins. The five Glabralysin genes showed different genomic structures and the high degree of amino acid identity between the Glabralysins, and the presence of the conserved ETX/MTX2 domain, support the hypothesis that they are pore-forming toxins. In addition, tertiary structure prediction confirms that they are structurally related to a subset of Cry toxins from Bacillus thuringiensis, including Cry23, Cry45, and Cry51. Finally, we investigated their gene expression profiles in snail tissues and demonstrated a mosaic transcription. We highlight the specificity in Glabralysin expression following immune stimulation with bacteria, yeast or trematode parasites. Interestingly, one Glabralysin was found to be expressed in immune-specialized hemocytes, and two others were induced following parasite exposure.
Collapse
Affiliation(s)
- Damien Lassalle
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860 Perpignan France; (D.L.); (G.T.); (S.P.); (R.G.); (B.G.)
| | - Guillaume Tetreau
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860 Perpignan France; (D.L.); (G.T.); (S.P.); (R.G.); (B.G.)
| | - Silvain Pinaud
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860 Perpignan France; (D.L.); (G.T.); (S.P.); (R.G.); (B.G.)
| | - Richard Galinier
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860 Perpignan France; (D.L.); (G.T.); (S.P.); (R.G.); (B.G.)
| | - Neil Crickmore
- School of Life Sciences, University of Sussex, Brighton BN1 9RH, UK;
| | - Benjamin Gourbal
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860 Perpignan France; (D.L.); (G.T.); (S.P.); (R.G.); (B.G.)
| | - David Duval
- IHPE, University of Montpellier, CNRS, Ifremer, University of Perpignan Via Domitia, 66860 Perpignan France; (D.L.); (G.T.); (S.P.); (R.G.); (B.G.)
- Correspondence:
| |
Collapse
|
12
|
Devani RS, Chirmade T, Sinha S, Bendahmane A, Dholakia BB, Banerjee AK, Banerjee J. Flower bud proteome reveals modulation of sex-biased proteins potentially associated with sex expression and modification in dioecious Coccinia grandis. BMC PLANT BIOLOGY 2019; 19:330. [PMID: 31337343 PMCID: PMC6651928 DOI: 10.1186/s12870-019-1937-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 07/11/2019] [Indexed: 05/27/2023]
Abstract
BACKGROUND Dioecy is an important sexual system wherein, male and female flowers are borne on separate unisexual plants. Knowledge of sex-related differences can enhance our understanding in molecular and developmental processes leading to unisexual flower development. Coccinia grandis is a dioecious species belonging to Cucurbitaceae, a family well-known for diverse sexual forms. Male and female plants have 22A + XY and 22A + XX chromosomes, respectively. Previously, we have reported a gynomonoecious form (22A + XX) of C. grandis bearing morphologically hermaphrodite flowers (GyM-H) and female flowers (GyM-F). Also, we have showed that foliar spray of AgNO3 on female plant induces morphologically hermaphrodite bud development (Ag-H) despite the absence of Y-chromosome. RESULTS To identify sex-related differences, total proteomes from male, female, GyM-H and Ag-H flower buds at early and middle stages of development were analysed by label-free proteomics. Protein search against the cucumber protein sequences (Phytozome) as well as in silico translated C. grandis flower bud transcriptome database, resulted in the identification of 2426 and 3385 proteins (FDR ≤ 1%), respectively. The latter database was chosen for further analysis as it led to the detection of higher number of proteins. Identified proteins were annotated using BLAST2GO pipeline. SWATH-MS-based comparative abundance analysis between Female_Early_vs_Male_Early, Ag_Early_vs_Female_Early, GyM-H_Middle_vs_Male_Middle and Ag_Middle_vs_ Male_Middle led to the identification of 650, 1108, 905 and 805 differentially expressed proteins, respectively, at fold change ≥1.5 and P ≤ 0.05. Ethylene biosynthesis-related candidates as highlighted in protein interaction network were upregulated in female buds compared to male buds. AgNO3 treatment on female plant induced proteins related to pollen development in Ag-H buds. Additionally, a few proteins governing pollen germination and tube growth were highly enriched in male buds compared to Ag-H and GyM-H buds. CONCLUSION Overall, current proteomic analysis provides insights in the identification of key proteins governing dioecy and unisexual flower development in cucurbitaceae, the second largest horticultural family in terms of economic importance. Also, our results suggest that the ethylene-mediated stamen inhibition might be conserved in dioecious C. grandis similar to its monoecious cucurbit relatives. Further, male-biased proteins associated with pollen germination and tube growth identified here can help in understanding pollen fertility.
Collapse
Affiliation(s)
- Ravi Suresh Devani
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
- IPS2, INRA, CNRS, University Paris Sud, University of Evry, University of Paris Diderot, University of Paris Saclay, Batiment 630, 91405 Orsay, France
| | - Tejas Chirmade
- Biochemical Science Division National Chemical laboratory (CSIR-NCL), Pune, 411008 India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sangram Sinha
- Department of Botany, Tripura University, Suryamaninagar, Tripura 799022 India
| | - Abdelhafid Bendahmane
- IPS2, INRA, CNRS, University Paris Sud, University of Evry, University of Paris Diderot, University of Paris Saclay, Batiment 630, 91405 Orsay, France
| | - Bhushan B. Dholakia
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
- Biochemical Science Division National Chemical laboratory (CSIR-NCL), Pune, 411008 India
- Department of Molecular Biology & Bioinformatics, Tripura University, Suryamaninagar, Tripura 799022 India
| | - Anjan Kumar Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
| | - Jayeeta Banerjee
- Biology Division, Indian Institute of Science Education and Research (IISER), Pune, 411008 India
| |
Collapse
|
13
|
Guo XL, Liu LZ, Wang QQ, Liang JY, Lee WH, Xiang Y, Li SA, Zhang Y. Endogenous pore-forming protein complex targets acidic glycosphingolipids in lipid rafts to initiate endolysosome regulation. Commun Biol 2019; 2:59. [PMID: 30775460 PMCID: PMC6370762 DOI: 10.1038/s42003-019-0304-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/08/2019] [Indexed: 12/23/2022] Open
Abstract
Bacterial pore-forming toxin aerolysin-like proteins (ALPs) are widely distributed in animals and plants. However, functional studies on these ALPs remain in their infancy. βγ-CAT is the first example of a secreted pore-forming protein that functions to modulate the endolysosome pathway via endocytosis and pore formation on endolysosomes. However, the specific cell surface molecules mediating the action of βγ-CAT remain elusive. Here, the actions of βγ-CAT were largely attenuated by either addition or elimination of acidic glycosphingolipids (AGSLs). Further study revealed that the ALP and trefoil factor (TFF) subunits of βγ-CAT bind to gangliosides and sulfatides, respectively. Additionally, disruption of lipid rafts largely impaired the actions of βγ-CAT. Finally, the ability of βγ-CAT to clear pathogens was attenuated in AGSL-eliminated frogs. These findings revealed a previously unknown double binding pattern of an animal-secreted ALP in complex with TFF that initiates ALP-induced endolysosomal pathway regulation, ultimately leading to effective antimicrobial responses.
Collapse
Affiliation(s)
- Xiao-Long Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Ling-Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Qi-Quan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Jin-Yang Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yang Xiang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Sheng-An Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
14
|
Hobza R, Hudzieczek V, Kubat Z, Cegan R, Vyskot B, Kejnovsky E, Janousek B. Sex and the flower - developmental aspects of sex chromosome evolution. ANNALS OF BOTANY 2018; 122:1085-1101. [PMID: 30032185 PMCID: PMC6324748 DOI: 10.1093/aob/mcy130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/13/2018] [Indexed: 05/07/2023]
Abstract
Background The evolution of dioecious plants is occasionally accompanied by the establishment of sex chromosomes: both XY and ZW systems have been found in plants. Structural studies of sex chromosomes are now being followed up by functional studies that are gradually shedding light on the specific genetic and epigenetic processes that shape the development of separate sexes in plants. Scope This review describes sex determination diversity in plants and the genetic background of dioecy, summarizes recent progress in the investigation of both classical and emerging model dioecious plants and discusses novel findings. The advantages of interspecies hybrids in studies focused on sex determination and the role of epigenetic processes in sexual development are also overviewed. Conclusions We integrate the genic, genomic and epigenetic levels of sex determination and stress the impact of sex chromosome evolution on structural and functional aspects of plant sexual development. We also discuss the impact of dioecy and sex chromosomes on genome structure and expression.
Collapse
Affiliation(s)
- Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Vojtech Hudzieczek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Radim Cegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Boris Vyskot
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| | - Bohuslav Janousek
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska, Brno, Czech Republic
| |
Collapse
|
15
|
Henry IM, Akagi T, Tao R, Comai L. One Hundred Ways to Invent the Sexes: Theoretical and Observed Paths to Dioecy in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:553-575. [PMID: 29719167 DOI: 10.1146/annurev-arplant-042817-040615] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Dioecy, the presence of male and female flowers on separate individuals, is both widespread and uncommon within flowering plants, with only a few percent of dioecious species spread across most major phylogenetic taxa. It is therefore safe to assume that dioecy evolved independently in these different groups, which allows us to ask questions regarding the molecular and developmental mechanisms underlying these independent transitions to dioecy. We start this review by examining the problem from the standpoint of a genetic engineer trying to develop dioecy, discuss various potential solutions, and compare them to models proposed in the past and based on genetic and evolutionary considerations. Next, we present recent information regarding candidate sex determinants in three species, acquired using newly established genomic approaches. Although such specific information is still scarce, it is slowly becoming apparent that various genes or pathways can be altered to evolve dioecy.
Collapse
Affiliation(s)
- Isabelle M Henry
- Department of Plant Biology, University of California, Davis, California 95616, USA; ,
- Genome Center, University of California, Davis, California 95616, USA
| | - Takashi Akagi
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; ,
| | - Ryutaro Tao
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; ,
| | - Luca Comai
- Department of Plant Biology, University of California, Davis, California 95616, USA; ,
- Genome Center, University of California, Davis, California 95616, USA
| |
Collapse
|
16
|
Dang L, Rougé P, Van Damme EJM. Amaranthin-Like Proteins with Aerolysin Domains in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1368. [PMID: 28848572 PMCID: PMC5554364 DOI: 10.3389/fpls.2017.01368] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/21/2017] [Indexed: 05/20/2023]
Abstract
Amaranthin is a homodimeric lectin that was first discovered in the seeds of Amaranthus caudatus and serves as a model for the family of amaranthin-like lectins. Though these lectins have been purified and characterized only from plant species belonging to the Amaranthaceae, evidence accumulated in recent years suggests that sequences containing amaranthin domains are widely distributed in plants. In this study, 84 plant genomes have been screened to investigate the distribution of amaranthin domains. A total of 265 sequences with amaranthin domains were retrieved from 34 plant genomes. Within this group of amaranthin homologs, 22 different domain architectures can be distinguished. The most common domain combination consists of two amaranthin domains followed by a domain with sequence similarity to aerolysin. The latter protein belongs to the group of β-pore-forming toxins produced by bacteria such as Aeromonas sp. and exerts its toxicity by making transmembrane pores in the target membrane, as such facilitating bacterial invasion. In addition, amaranthin domains also occur in association with five other protein domains, including the fascin domain, the alpha/beta hydrolase domain, the TRAF-like domain, the B box type zinc finger domain and the Bet v1 domain. All 16 amaranthin-like proteins retrieved from the cucumber genome possess a similar domain architecture consisting of two amaranthin domains linked to one aerolysin domain. Based on phylogenetic differences, four sequences were selected for further investigation. Subcellular localization studies revealed that the amaranthin-like proteins from cucumber reside in the cytoplasm and/or the nucleus. Analyses using qPCR showed that the transcript levels for the amaranthin-like sequences are typically low and expression levels vary among tissues during the development of cucumber plants. Furthermore, the expression of amaranthin-like genes is enhanced after different abiotic stresses, suggesting that these amaranthin-like proteins play a role in the stress response. Finally, molecular modeling was performed to unravel the structure of amaranthin-like proteins and their carbohydrate-binding sites. This study provided valuable information on the distribution, phylogenetic relationships, and possible biological roles of amaranthin-like proteins in plants.
Collapse
Affiliation(s)
- Liuyi Dang
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent UniversityGhent, Belgium
| | - Pierre Rougé
- UMR 152 PHARMA-DEV, Université de ToulouseToulouse, France
| | - Els J. M. Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent UniversityGhent, Belgium
- *Correspondence: Els J. M. Van Damme,
| |
Collapse
|