1
|
Zhang S, Shan X, Wang Y, Lu T, Xu D, Gong H, Fan Y, Guan Y, Zhao J, Sun H, Li D, Hu H, Ru Z, Gu YQ. Recent duplications and rare structural variations revealed by comparative sequence analysis of low molecular weight glutenin subunits (LMW-GS) genes re-identified using LMWgsFinder in 26 genomes of the grass family. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:128. [PMID: 40425835 DOI: 10.1007/s00122-025-04919-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 05/01/2025] [Indexed: 05/29/2025]
Abstract
KEY MESSAGE LMWgs Finder developed by this study was used to re-identify the LMW-GS genes in a total of 26 genomes across the grass family and several important and novel findings were obtained. LMW-GS are one of the primary components of wheat (Triticum aestivum L.) seed storage proteins, which have an important impact on wheat end-use quality traits. Identifying LMW-GS genes accurately within wheat genomes has consistently presented a significant challenge. LMWgsFinder developed by this study was used to re-identify the LMW-GS genes in a total of 26 genomes of the grass family. Apart from six species, a total of 291 LMW-GS genes were identified. Except for the two versions of the TaCS (Triticum aestivum Chinese Spring) genome, only 38.13% (98/257) of the LMW-GS genes identified by LMWgsFinder were annotated in the coding sequence annotation files (provided by the sequencing research groups) of the remaining 18 genomes. EnSpm-like transposon activity mediated recent duplication or triplication of the same LMW-GS gene has been observed in 8 wheat species for the first time, indicating that the replication of LMW-GS genes has been ongoing alongside the evolution of wheat. Several cases of rare structural variations associated with the loss or acquisition of LMW-GS gene function have been discovered and experimentally verified. Twenty-one new LMW-GS genes were discovered in 15 species of Triticeae. The results of this study provide the first empirical support at the DNA level, with confirmed chromosomal localization information, for the widely accepted notion that LMW-GS genes undergo gene duplication during wheat evolution. Additionally, this study offers gene sequence resources and a wealth of valuable information for further research on LMW-GS gene function, molecular-assisted selection, gene aggregation breeding, and molecular design breeding.
Collapse
Affiliation(s)
- Shengli Zhang
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China.
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China.
| | - Xiaojing Shan
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China
| | - Yun Wang
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
| | - Tairui Lu
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China
| | - Daxing Xu
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
| | - Han Gong
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
| | - Yuchao Fan
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China
| | - Yuanyuan Guan
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China
| | - Junjie Zhao
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
| | - Haili Sun
- School of Life Sciences, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
| | - Dongfang Li
- School of Resource and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China
| | - Haiyan Hu
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China
- School of Agriculture, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China
| | - Zhengang Ru
- Henan Provincial Key Laboratory of Hybrid Wheat, Henan Engineering Research Center of Crop Genome Editing, Henan Collaborative Innovation Center of Modern Biological Breeding, Xinxiang, 453003, Henan, China.
- School of Agriculture, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, 453003, Henan, China.
| | - Yong Q Gu
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, 94710, USA.
| |
Collapse
|
2
|
Zhai Z, Che Y, Geng S, Liu S, Zhang S, Cui D, Deng Z, Fu M, Li Y, Zou X, Liu J, Li A, Mao L. Comprehensive Comparative Analysis of the JAZ Gene Family in Common Wheat ( Triticum aestivum) and Its D-Subgenome Donor Aegilops tauschii. PLANTS (BASEL, SWITZERLAND) 2024; 13:1259. [PMID: 38732475 PMCID: PMC11085061 DOI: 10.3390/plants13091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
JASMONATE-ZIM DOMAIN (JAZ) repressor proteins work as co-receptors in the jasmonic acid (JA) signalling pathway and are essential for plant development and environmental adaptation. Despite wheat being one of the main staple food crops, until recently, comprehensive analysis of its JAZ gene family has been limited due to the lack of complete and high-quality reference genomes. Here, using the latest reference genome, we identified 17 JAZ genes in the wheat D-genome donor Aegilops tauschii. Then, 54 TaJAZs were identified in common wheat. A systematic examination of the gene structures, conserved protein domains, and phylogenetic relationships of this gene family was performed. Five new JAZ genes were identified as being derived from tandem duplication after wheat divergence from other species. We integrated RNA-seq data and yield QTL information and found that tandemly duplicated TaJAZ genes were prone to association with spike-related traits. Moreover, 12 TaJAZ genes were located within breeding selection sweeps, including 9 tandemly duplicated ones. Haplotype variation analysis of selected JAZ genes showed significant association of TaJAZ7A and TaJAZ13A with thousand-grain weight. Our work provides a clearer picture of wheat JAZ gene evolution and puts forward the possibility of using these genes for wheat yield improvement.
Collapse
Affiliation(s)
- Zhiwen Zhai
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (Y.C.); (S.G.); (S.L.); (D.C.); (Z.D.); (M.F.); (Y.L.); (X.Z.); (J.L.)
| | - Yuqing Che
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (Y.C.); (S.G.); (S.L.); (D.C.); (Z.D.); (M.F.); (Y.L.); (X.Z.); (J.L.)
| | - Shuaifeng Geng
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (Y.C.); (S.G.); (S.L.); (D.C.); (Z.D.); (M.F.); (Y.L.); (X.Z.); (J.L.)
| | - Shaoshuai Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (Y.C.); (S.G.); (S.L.); (D.C.); (Z.D.); (M.F.); (Y.L.); (X.Z.); (J.L.)
| | - Shuqin Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Genetics and Breeding, National Center for Evaluation of Agricultural Wild Plants (Rice), China Agricultural University, Beijing 100094, China;
| | - Dada Cui
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (Y.C.); (S.G.); (S.L.); (D.C.); (Z.D.); (M.F.); (Y.L.); (X.Z.); (J.L.)
| | - Zhongyin Deng
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (Y.C.); (S.G.); (S.L.); (D.C.); (Z.D.); (M.F.); (Y.L.); (X.Z.); (J.L.)
| | - Mingxue Fu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (Y.C.); (S.G.); (S.L.); (D.C.); (Z.D.); (M.F.); (Y.L.); (X.Z.); (J.L.)
| | - Yang Li
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (Y.C.); (S.G.); (S.L.); (D.C.); (Z.D.); (M.F.); (Y.L.); (X.Z.); (J.L.)
| | - Xinyu Zou
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (Y.C.); (S.G.); (S.L.); (D.C.); (Z.D.); (M.F.); (Y.L.); (X.Z.); (J.L.)
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (Y.C.); (S.G.); (S.L.); (D.C.); (Z.D.); (M.F.); (Y.L.); (X.Z.); (J.L.)
| | - Aili Li
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (Y.C.); (S.G.); (S.L.); (D.C.); (Z.D.); (M.F.); (Y.L.); (X.Z.); (J.L.)
| | - Long Mao
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (Y.C.); (S.G.); (S.L.); (D.C.); (Z.D.); (M.F.); (Y.L.); (X.Z.); (J.L.)
| |
Collapse
|
3
|
Zhou Z, Geng S, Guan H, Liu C, Qin M, Li W, Shi X, Dai Z, Yao W, Lei Z, Wu Z, Hou J. Dissection of the Genetic Architecture for Quantities of Gliadins Fractions in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:826909. [PMID: 35401644 PMCID: PMC8988047 DOI: 10.3389/fpls.2022.826909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Gliadin is a group of grain storage proteins that confers extensibility/viscosity to the dough and are vital to end-use quality in wheat. Moreover, gliadins are one of the important components for nutritional quality because they contain the nutritional unprofitable epitopes that cause chronic immune-mediated intestinal disorder in genetically susceptible individuals designated celiac disease (CD). The main genetic loci encoding the gliadins were revealed by previous studies; however, the genes related to the content of gliadins and their fractions were less elucidated. To illustrate the genetic basis of the content of gliadins and their fractions comprehensively, a recombinant inbred line (RIL) population that consisted of 196 lines was constructed from the two parents, Luozhen No.1 and Zhengyumai 9987. Quantitative trait loci (QTL) controlling the content of total gliadins and their fractions (ω-, α-, and γ-gliadin) were screened genome-widely under four environments across 2 years. Totally, thirty QTL which explained 1.97-12.83% of the phenotypic variation were detected to be distributed on 17 chromosomes and they were gathered into 12 clusters. One hundred and one pairs of epistatic QTL (E-QTL) were revealed, among which five were involved with the total gliadins and its fractions content QTL located on chromosome 1AS, 1DS, 4DS, 1DL, and 6AS. Three Kompetitive Allele-Specific PCR (KASP) markers were developed from three major QTL clusters located on chromosomes 6A, 6D, and 7D, respectively. The present research not only dissects the genetic loci for improving the content of gliadins and their three fractions, but may also contribute to marker-assisted selection of varieties with appropriate gliadin fractions content for end-use quality and health benefit at the early developmental stages and early breeding generations.
Collapse
Affiliation(s)
- Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Shenghui Geng
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huiyue Guan
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Congcong Liu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Maomao Qin
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenxu Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xia Shi
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Ziju Dai
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wen Yao
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jinna Hou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
4
|
Schaart JG, Salentijn EMJ, Goryunova SV, Chidzanga C, Esselink DG, Gosman N, Bentley AR, Gilissen LJWJ, Smulders MJM. Exploring the alpha-gliadin locus: the 33-mer peptide with six overlapping coeliac disease epitopes in Triticum aestivum is derived from a subgroup of Aegilops tauschii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:86-94. [PMID: 33369792 PMCID: PMC8248119 DOI: 10.1111/tpj.15147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 05/28/2023]
Abstract
Most alpha-gliadin genes of the Gli-D2 locus on the D genome of hexaploid bread wheat (Triticum aestivum) encode for proteins with epitopes that can trigger coeliac disease (CD), and several contain a 33-mer peptide with six partly overlapping copies of three epitopes, which is regarded as a remarkably potent T-cell stimulator. To increase genetic diversity in the D genome, synthetic hexaploid wheat lines are being made by hybridising accessions of Triticum turgidum (AB genome) and Aegilops tauschii (the progenitor of the D genome). The diversity of alpha-gliadins in A. tauschii has not been studied extensively. We analysed the alpha-gliadin transcriptome of 51 A. tauschii accessions representative of the diversity in A. tauschii. We extracted RNA from developing seeds and performed 454 amplicon sequencing of the first part of the alpha-gliadin genes. The expression profile of allelic variants of the alpha-gliadins was different between accessions, and also between accessions of the Western and Eastern clades of A. tauschii. Generally, both clades expressed many allelic variants not found in bread wheat. In contrast to earlier studies, we detected the 33-mer peptide in some A. tauschii accessions, indicating that it was introduced along with the D genome into bread wheat. In these accessions, transcripts with the 33-mer peptide were present at lower frequencies than in bread wheat varieties. In most A. tauschii accessions, however, the alpha-gliadins do not contain the epitope, and this may be exploited, through synthetic hexaploid wheats, to breed bread wheat varieties with fewer or no coeliac disease epitopes.
Collapse
Affiliation(s)
- Jan G. Schaart
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
| | - Elma M. J. Salentijn
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
| | - Svetlana V. Goryunova
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
- Present address:
FSBSI Lorch Potato Research InstituteKraskovo140051Russia
- Present address:
Institute of General GeneticsRussian Academy of ScienceMoscow119333Russia
| | - Charity Chidzanga
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
- Present address:
University of AdelaideSchool of Agriculture, Food and WineWaite CampusUrrbraeSouth Australia5064Australia
| | - Danny G. Esselink
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
| | - Nick Gosman
- The John Bingham LaboratoryNIAB93 Lawrence Weaver RoadCambridgeCB3 0LEUK
- Present address:
Gosman AssociatesAg‐Biotech Consultingthe StreetBressingham, DissIP22 2BLUK
| | - Alison R. Bentley
- The John Bingham LaboratoryNIAB93 Lawrence Weaver RoadCambridgeCB3 0LEUK
- Present address:
International Maize and Wheat Improvement Center (CIMMYT)TexcocoMexico
| | - Luud J. W. J. Gilissen
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
- BioscienceWageningen University and ResearchDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
- Allergy Consortium WageningenDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
| | - Marinus J. M. Smulders
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
- Allergy Consortium WageningenDroevendaalsesteeg 1NL‐6708 PB Wageningenthe Netherlands
| |
Collapse
|
5
|
Guo J, Li H, Liu J, Liu A, Cao X, Liu C, Cheng D, Zhao Z, Song J. Genome-Wide Identification and Expression Profiling of Starch-Biosynthetic Genes in Common Wheat. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542012008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Li G, Wang L, Yang J, He H, Jin H, Li X, Ren T, Ren Z, Li F, Han X, Zhao X, Dong L, Li Y, Song Z, Yan Z, Zheng N, Shi C, Wang Z, Yang S, Xiong Z, Zhang M, Sun G, Zheng X, Gou M, Ji C, Du J, Zheng H, Doležel J, Deng XW, Stein N, Yang Q, Zhang K, Wang D. A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat Genet 2021; 53:574-584. [PMID: 33737755 PMCID: PMC8035075 DOI: 10.1038/s41588-021-00808-z] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
Rye is a valuable food and forage crop, an important genetic resource for wheat and triticale improvement and an indispensable material for efficient comparative genomic studies in grasses. Here, we sequenced the genome of Weining rye, an elite Chinese rye variety. The assembled contigs (7.74 Gb) accounted for 98.47% of the estimated genome size (7.86 Gb), with 93.67% of the contigs (7.25 Gb) assigned to seven chromosomes. Repetitive elements constituted 90.31% of the assembled genome. Compared to previously sequenced Triticeae genomes, Daniela, Sumaya and Sumana retrotransposons showed strong expansion in rye. Further analyses of the Weining assembly shed new light on genome-wide gene duplications and their impact on starch biosynthesis genes, physical organization of complex prolamin loci, gene expression features underlying early heading trait and putative domestication-associated chromosomal regions and loci in rye. This genome sequence promises to accelerate genomic and breeding studies in rye and related cereal crops.
Collapse
Affiliation(s)
- Guangwei Li
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Lijian Wang
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Jianping Yang
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Hang He
- grid.11135.370000 0001 2256 9319Peking University Institute of Advanced Agricultural Sciences, Weifang, China ,grid.11135.370000 0001 2256 9319School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| | - Huaibing Jin
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Xuming Li
- grid.410751.6Biomarker Technologies Corporation, Beijing, China
| | - Tianheng Ren
- grid.80510.3c0000 0001 0185 3134Agronomy College, Sichuan Agricultural University, Chengdu, China
| | - Zhenglong Ren
- grid.80510.3c0000 0001 0185 3134Agronomy College, Sichuan Agricultural University, Chengdu, China
| | - Feng Li
- grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xue Han
- grid.11135.370000 0001 2256 9319Peking University Institute of Advanced Agricultural Sciences, Weifang, China ,grid.11135.370000 0001 2256 9319School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| | - Xiaoge Zhao
- grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lingli Dong
- grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yiwen Li
- grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhongping Song
- grid.80510.3c0000 0001 0185 3134Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zehong Yan
- grid.80510.3c0000 0001 0185 3134Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Nannan Zheng
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Cuilan Shi
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Zhaohui Wang
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Shuling Yang
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Zijun Xiong
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Menglan Zhang
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Guanghua Sun
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Xu Zheng
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Mingyue Gou
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Changmian Ji
- grid.410751.6Biomarker Technologies Corporation, Beijing, China
| | - Junkai Du
- grid.410751.6Biomarker Technologies Corporation, Beijing, China
| | - Hongkun Zheng
- grid.410751.6Biomarker Technologies Corporation, Beijing, China
| | - Jaroslav Doležel
- grid.454748.eInstitute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Xing Wang Deng
- grid.11135.370000 0001 2256 9319Peking University Institute of Advanced Agricultural Sciences, Weifang, China ,grid.11135.370000 0001 2256 9319School of Advanced Agriculture Sciences and School of Life Sciences, State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, China
| | - Nils Stein
- grid.418934.30000 0001 0943 9907Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany ,grid.7450.60000 0001 2364 4210Center for Integrated Breeding Research (CiBreed), Department of Crop Sciences, Georg-August-University, Göttingen, Germany
| | - Qinghua Yang
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Kunpu Zhang
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Daowen Wang
- grid.108266.b0000 0004 1803 0494College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China ,grid.9227.e0000000119573309The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China ,grid.108266.b0000 0004 1803 0494The State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
7
|
Wang D, Li F, Cao S, Zhang K. Genomic and functional genomics analyses of gluten proteins and prospect for simultaneous improvement of end-use and health-related traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1521-1539. [PMID: 32020238 PMCID: PMC7214497 DOI: 10.1007/s00122-020-03557-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/24/2020] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE Recent genomic and functional genomics analyses have substantially improved the understanding on gluten proteins, which are important determinants of wheat grain quality traits. The new insights obtained and the availability of precise, versatile and high-throughput genome editing technologies will accelerate simultaneous improvement of wheat end-use and health-related traits. Being a major staple food crop in the world, wheat provides an indispensable source of dietary energy and nutrients to the human population. As worldwide population grows and living standards rise in both developed and developing countries, the demand for wheat with high quality attributes increases globally. However, efficient breeding of high-quality wheat depends on critically the knowledge on gluten proteins, which mainly include several families of prolamin proteins specifically accumulated in the endospermic tissues of grains. Although gluten proteins have been studied for many decades, efficient manipulation of these proteins for simultaneous enhancement of end-use and health-related traits has been difficult because of high complexities in their expression, function and genetic variation. However, recent genomic and functional genomics analyses have substantially improved the understanding on gluten proteins. Therefore, the main objective of this review is to summarize the genomic and functional genomics information obtained in the last 10 years on gluten protein chromosome loci and genes and the cis- and trans-factors regulating their expression in the grains, as well as the efforts in elucidating the involvement of gluten proteins in several wheat sensitivities affecting genetically susceptible human individuals. The new insights gathered, plus the availability of precise, versatile and high-throughput genome editing technologies, promise to speed up the concurrent improvement of wheat end-use and health-related traits and the development of high-quality cultivars for different consumption needs.
Collapse
Affiliation(s)
- Daowen Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, 15 Longzi Lake College Park, Zhengzhou, 450046, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China.
| | - Feng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China
| | - Shuanghe Cao
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Kunpu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China.
| |
Collapse
|
8
|
Watry H, Zerkle A, Laudencia-Chingcuanco D. Modified acid-PAGE method for rapid screening and phenotyping of wheat gliadin mutant lines. MethodsX 2020; 7:100858. [PMID: 32322542 PMCID: PMC7163331 DOI: 10.1016/j.mex.2020.100858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/07/2020] [Indexed: 12/19/2022] Open
Abstract
Acid-polyacrylamide gel electrophoresis (A-PAGE) is used to phenotype different varieties of wheat based on their gliadin profiles. The family of gliadin proteins is a major component of wheat gluten. Gluten is the major determinant of the unique viscoelastic property of wheat dough that is necessary in the production of important food products including bread, cake, cookies and pasta. However, several gliadin proteins are also known to be causal agents in triggering human immunogenic responses that lead to several gluten-related health risks like celiac disease and wheat-dependent exercise-induced anaphylaxis. Therefore, research to identify wheat lines with reduced levels of immunogenic proteins is being vigorously pursued in several laboratories around the world. Unfortunately, no commercial A-PAGE gels are currently available for cereal researchers to use for separating wheat gliadins. This work reports the development of an easy-to-use A-PAGE protocol to resolve gliadins with high reproducibility and resolution to screen and phenotype gliadin deficient lines in wheat.•This acetic acid based A-PAGE method with urea utilizes commercially available reagents and materials to make gel casting simpler and more efficient.•It can be used to phenotype different wheat varieties to establish purity and to identify mutants of wheat with altered gliadin protein profiles.
Collapse
Affiliation(s)
- Hannah Watry
- USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, U.S.A
| | - Alexander Zerkle
- USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, U.S.A
| | | |
Collapse
|
9
|
Badaeva ED, Fisenko AV, Surzhikov SA, Yankovskaya AA, Chikida NN, Zoshchuk SA, Belousova MK, Dragovich AY. Genetic Heterogeneity of a Diploid Grass Aegilops tauschii Revealed by Chromosome Banding Methods and Electrophoretic Analysis of the Seed Storage Proteins (Gliadins). RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419110024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Huo N, Zhu T, Zhang S, Mohr T, Luo MC, Lee JY, Distelfeld A, Altenbach S, Gu YQ. Rapid evolution of α-gliadin gene family revealed by analyzing Gli-2 locus regions of wild emmer wheat. Funct Integr Genomics 2019; 19:993-1005. [PMID: 31197605 PMCID: PMC6797660 DOI: 10.1007/s10142-019-00686-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022]
Abstract
α-Gliadins are a major group of gluten proteins in wheat flour that contribute to the end-use properties for food processing and contain major immunogenic epitopes that can cause serious health-related issues including celiac disease (CD). α-Gliadins are also the youngest group of gluten proteins and are encoded by a large gene family. The majority of the gene family members evolved independently in the A, B, and D genomes of different wheat species after their separation from a common ancestral species. To gain insights into the origin and evolution of these complex genes, the genomic regions of the Gli-2 loci encoding α-gliadins were characterized from the tetraploid wild emmer, a progenitor of hexaploid bread wheat that contributed the AABB genomes. Genomic sequences of Gli-2 locus regions for the wild emmer A and B genomes were first reconstructed using the genome sequence scaffolds along with optical genome maps. A total of 24 and 16 α-gliadin genes were identified for the A and B genome regions, respectively. α-Gliadin pseudogene frequencies of 86% for the A genome and 69% for the B genome were primarily caused by C to T substitutions in the highly abundant glutamine codons, resulting in the generation of premature stop codons. Comparison with the homologous regions from the hexaploid wheat cv. Chinese Spring indicated considerable sequence divergence of the two A genomes at the genomic level. In comparison, conserved regions between the two B genomes were identified that included α-gliadin pseudogenes containing shared nested TE insertions. Analyses of the genomic organization and phylogenetic tree reconstruction indicate that although orthologous gene pairs derived from speciation were present, large portions of α-gliadin genes were likely derived from differential gene duplications or deletions after the separation of the homologous wheat genomes ~ 0.5 MYA. The higher number of full-length intact α-gliadin genes in hexaploid wheat than that in wild emmer suggests that human selection through domestication might have an impact on α-gliadin evolution. Our study provides insights into the rapid and dynamic evolution of genomic regions harboring the α-gliadin genes in wheat.
Collapse
Affiliation(s)
- Naxin Huo
- United States Department of Agriculture-Agricultural Research Service USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA.,Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Shengli Zhang
- Hena Institute of Science and Technology, Xinxiang, Hena Province, 453003, China
| | - Toni Mohr
- United States Department of Agriculture-Agricultural Research Service USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, RDA, Jeonju, 54874, South Korea
| | - Assaf Distelfeld
- Institute for Crop Improvement, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Susan Altenbach
- United States Department of Agriculture-Agricultural Research Service USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA
| | - Yong Q Gu
- United States Department of Agriculture-Agricultural Research Service USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA, 94710, USA.
| |
Collapse
|
11
|
Krasileva KV. The role of transposable elements and DNA damage repair mechanisms in gene duplications and gene fusions in plant genomes. CURRENT OPINION IN PLANT BIOLOGY 2019; 48:18-25. [PMID: 30849712 DOI: 10.1016/j.pbi.2019.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/16/2019] [Accepted: 01/29/2019] [Indexed: 05/02/2023]
Abstract
Plant genomes are shaped by structural variation. Gene-size insertions and among most prominent events and can have significant effects on amplification of gene families as well as facilitate new gene fusions. Transposable elements as well as plant DNA repair machinery have overlapping contributions to these events, and often work in synergy. Activity of transposable elements is often lineage specific and can preferentially affect specific gene families, such as disease resistance genes. Once duplicated, genes themselves can serve templates for additional variation that can arise from non-allelic homologous recombination. Non-homologous DNA repair mechanisms contribute to additional variation and diversify the mechanisms of gene movement, such as through ligation of extra-chromosomal DNA fragments. Genomic processes that generate structural variation can be induced by stress and, therefore, can provide adaptive potential. This review describes mechanisms that contribute to gene-size structural variation in plants, result in gene duplication and generation of new plant genes through gene fusion.
Collapse
Affiliation(s)
- Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
12
|
Li D, Jin H, Zhang K, Wang Z, Wang F, Zhao Y, Huo N, Liu X, Gu YQ, Wang D, Dong L. Analysis of the Gli-D2 locus identifies a genetic target for simultaneously improving the breadmaking and health-related traits of common wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:414-426. [PMID: 29752764 DOI: 10.1111/tpj.13956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/09/2018] [Accepted: 04/13/2018] [Indexed: 05/22/2023]
Abstract
Gliadins are a major component of wheat seed proteins. However, the complex homoeologous Gli-2 loci (Gli-A2, -B2 and -D2) that encode the α-gliadins in commercial wheat are still poorly understood. Here we analyzed the Gli-D2 locus of Xiaoyan 81 (Xy81), a winter wheat cultivar. A total of 421.091 kb of the Gli-D2 sequence was assembled from sequencing multiple bacterial artificial clones, and 10 α-gliadin genes were annotated. Comparative genomic analysis showed that Xy81 carried only eight of the α-gliadin genes of the D genome donor Aegilops tauschii, with two of them each experiencing a tandem duplication. A mutant line lacking Gli-D2 (DLGliD2) consistently exhibited better breadmaking quality and dough functionalities than its progenitor Xy81, but without penalties in other agronomic traits. It also had an elevated lysine content in the grains. Transcriptome analysis verified the lack of Gli-D2 α-gliadin gene expression in DLGliD2. Furthermore, the transcript and protein levels of protein disulfide isomerase were both upregulated in DLGliD2 grains. Consistent with this finding, DLGliD2 had increased disulfide content in the flour. Our work sheds light on the structure and function of Gli-D2 in commercial wheat, and suggests that the removal of Gli-D2 and the gliadins specified by it is likely to be useful for simultaneously enhancing the end-use and health-related traits of common wheat. Because gliadins and homologous proteins are widely present in grass species, the strategy and information reported here may be broadly useful for improving the quality traits of diverse cereal crops.
Collapse
Affiliation(s)
- Da Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huaibing Jin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kunpu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhaojun Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Faming Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yue Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Naxin Huo
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Xin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Q Gu
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
13
|
Cho K, Beom HR, Jang YR, Altenbach SB, Vensel WH, Simon-Buss A, Lim SH, Kim MG, Lee JY. Proteomic Profiling and Epitope Analysis of the Complex α-, γ-, and ω-Gliadin Families in a Commercial Bread Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:818. [PMID: 29971078 PMCID: PMC6018075 DOI: 10.3389/fpls.2018.00818] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/28/2018] [Indexed: 05/24/2023]
Abstract
Wheat gliadins are a complex group of proteins that contribute to the functional properties of wheat flour doughs and contain epitopes that are relevant for celiac disease (CD) and wheat-dependent exercise-induced anaphylaxis (WDEIA). In this study, we extracted ethanol-soluble gliadin fractions from flour of the Korean bread wheat cultivar Keumkang. Proteins were separated by 2-dimensional gel electrophoresis (2-DE) using a pI range of 6-11 in the first dimension and subjected to tandem mass spectrometry. α-, γ-, and ω-gliadins were identified as the predominant proteins in 31, 28, and one 2-DE spot, respectively. An additional six ω-gliadins were identified in a separate experiment in which a pI range of 3-11 was used for protein separation. We analyzed the composition of CD- and WDEIA-relevant epitopes in the gliadin sequences from Keumkang flour, demonstrating the immunogenic potential of this cultivar. Detailed knowledge about the complement of gliadins accumulated in Keumkang flour provides the background necessary to devise either breeding or biotechnology strategies to improve the functional properties and reduce the adverse health effects of the flour.
Collapse
Affiliation(s)
- Kyoungwon Cho
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Hye-Rang Beom
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - You-Ran Jang
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Susan B. Altenbach
- Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, CA, United States
| | - William H. Vensel
- Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, CA, United States
| | - Annamaria Simon-Buss
- Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service, Albany, CA, United States
| | - Sun-Hyung Lim
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Min G. Kim
- College of Pharmacy and Research Institute of Pharmaceutical Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, South Korea
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| |
Collapse
|
14
|
Huo N, Zhu T, Altenbach S, Dong L, Wang Y, Mohr T, Liu Z, Dvorak J, Luo MC, Gu YQ. Dynamic Evolution of α-Gliadin Prolamin Gene Family in Homeologous Genomes of Hexaploid Wheat. Sci Rep 2018; 8:5181. [PMID: 29581476 PMCID: PMC5980091 DOI: 10.1038/s41598-018-23570-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Wheat Gli-2 loci encode complex groups of α-gliadin prolamins that are important for breadmaking, but also major triggers of celiac disease (CD). Elucidation of α-gliadin evolution provides knowledge to produce wheat with better end-use properties and reduced immunogenic potential. The Gli-2 loci contain a large number of tandemly duplicated genes and highly repetitive DNA, making sequence assembly of their genomic regions challenging. Here, we constructed high-quality sequences spanning the three wheat homeologous α-gliadin loci by aligning PacBio-based sequence contigs with BioNano genome maps. A total of 47 α-gliadin genes were identified with only 26 encoding intact full-length protein products. Analyses of α-gliadin loci and phylogenetic tree reconstruction indicate significant duplications of α-gliadin genes in the last ~2.5 million years after the divergence of the A, B and D genomes, supporting its rapid lineage-independent expansion in different Triticeae genomes. We showed that dramatic divergence in expression of α-gliadin genes could not be attributed to sequence variations in the promoter regions. The study also provided insights into the evolution of CD epitopes and identified a single indel event in the hexaploid wheat D genome that likely resulted in the generation of the highly toxic 33-mer CD epitope.
Collapse
Affiliation(s)
- Naxin Huo
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA.,Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Susan Altenbach
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Wang
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Toni Mohr
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| | - Yong Q Gu
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, California, 94710, USA.
| |
Collapse
|
15
|
Wang D, Zhang K, Dong L, Dong Z, Li Y, Hussain A, Zhai H. Molecular genetic and genomic analysis of wheat milling and end-use traits in China: Progress and perspectives. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
16
|
Huo N, Zhang S, Zhu T, Dong L, Wang Y, Mohr T, Hu T, Liu Z, Dvorak J, Luo MC, Wang D, Lee JY, Altenbach S, Gu YQ. Gene Duplication and Evolution Dynamics in the Homeologous Regions Harboring Multiple Prolamin and Resistance Gene Families in Hexaploid Wheat. FRONTIERS IN PLANT SCIENCE 2018; 9:673. [PMID: 29875781 PMCID: PMC5974169 DOI: 10.3389/fpls.2018.00673] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/03/2018] [Indexed: 05/19/2023]
Abstract
Improving end-use quality and disease resistance are important goals in wheat breeding. The genetic loci controlling these traits are highly complex, consisting of large families of prolamin and resistance genes with members present in all three homeologous A, B, and D genomes in hexaploid bread wheat. Here, orthologous regions harboring both prolamin and resistance gene loci were reconstructed and compared to understand gene duplication and evolution in different wheat genomes. Comparison of the two orthologous D regions from the hexaploid wheat Chinese Spring and the diploid progenitor Aegilops tauschii revealed their considerable difference due to the presence of five large structural variations with sizes ranging from 100 kb to 2 Mb. As a result, 44% of the Ae. tauschii and 71% of the Chinese Spring sequences in the analyzed regions, including 79 genes, are not shared. Gene rearrangement events, including differential gene duplication and deletion in the A, B, and D regions, have resulted in considerable erosion of gene collinearity in the analyzed regions, suggesting rapid evolution of prolamin and resistance gene families after the separation of the three wheat genomes. We hypothesize that this fast evolution is attributed to the co-evolution of the two gene families dispersed within a high recombination region. The identification of a full set of prolamin genes facilitated transcriptome profiling and revealed that the A genome contributes the least to prolamin expression because of its smaller number of expressed intact genes and their low expression levels, while the B and D genomes contribute similarly.
Collapse
Affiliation(s)
- Naxin Huo
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Shengli Zhang
- Hena Institute of Science and Technology, Xinxiang, China
| | - Tingting Zhu
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yi Wang
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Toni Mohr
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Tiezhu Hu
- Hena Institute of Science and Technology, Xinxiang, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jong-Yeol Lee
- National Institute of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Susan Altenbach
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
- *Correspondence: Susan Altenbach, Yong Q. Gu,
| | - Yong Q. Gu
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
- *Correspondence: Susan Altenbach, Yong Q. Gu,
| |
Collapse
|
17
|
Wang M, Wang S, Liang Z, Shi W, Gao C, Xia G. From Genetic Stock to Genome Editing: Gene Exploitation in Wheat. Trends Biotechnol 2017; 36:160-172. [PMID: 29102241 DOI: 10.1016/j.tibtech.2017.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
Bread wheat (Triticum aestivum) ranks as one of our most important staple crops. However, its hexaploid nature has complicated our understanding of the genetic bases underlying many of its traits. Historically, functional genetic studies in wheat have focused on identifying natural variations and have contributed to assembling and enriching its genetic stock. Recently, mold-breaking advances in whole genome sequencing, exome-capture based mutant libraries, and genome editing have revolutionized strategies for genetic research in wheat. We review new trends in wheat functional genetic studies along with germplasm conservation and innovation, including the relevance of genetic stocks, and the application of sequencing-based mutagenesis and genome editing. We also highlight the potential of multiplex genome editing toolkits in addressing species-specific challenges in wheat.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China; State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; These authors contributed equally to this work
| | - Shubin Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China; These authors contributed equally to this work
| | - Zhen Liang
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, and Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guangmin Xia
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China.
| |
Collapse
|