1
|
Abreha KB, Hammenhag C, Seifert F, Geleta M. Whole-genome mapping reveals QTLs linked to key agronomic traits in bi-parental populations of field cress (Lepidium campestre). BMC PLANT BIOLOGY 2025; 25:246. [PMID: 39994504 PMCID: PMC11849345 DOI: 10.1186/s12870-025-06197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/03/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Field cress, Lepidium campestre, is an oil and catch crop undergoing domestication for the Nordic region. In this study, the genetic bases of domestication-related traits of field cress are identified using three bi-parental F2 mapping populations (MPs). The MPs were phenotyped for plant height (PH), inflorescence length (IL), pod density (PD), seed yield per plant (SYPP), seed dormancy (SD), and pod shattering measured with two different parameters (PSH1 and PSH2). RESULTS The MPs were genotyped, with a targeted Genotyping-by-sequencing (GBS) method, SeqSNP, using 9,378 Single Nucleotide Polymorphisms (SNP) spanning across eight linkage groups (LGs) of field cress. There was wide phenotypic variation among the individuals for the agronomic traits measured in all MPs. A linkage map was constructed for each MP by mapping high-quality SNPs spanning 607 cM, 893 cM, and 732 cM to the eight field cress LGs, in each of the respective MPs. Quantitative trait loci (QTLs) mapping identified nine QTLs linked to PSH2, three for PH, two for SYPP, and one each for SD, IL, and PD distributed across all LGs. Taking advantage of field cress genome synteny with Arabidopsis thaliana chromosomes, annotation of the genes found within a major QTL for PSH2 found in LG5 (for MP3) revealed putative roles related to flowering, seed, and siliques development, cellulose and lignin biosynthesis, and water loss prevention. CONCLUSION This study identified QTLs for multiple domestication-related traits and provides genomic resources useful for applying novel breeding tools to accelerate field cress domestication and improvement.
Collapse
Affiliation(s)
- Kibrom B Abreha
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, 234 22, Sweden
| | - Cecilia Hammenhag
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, 234 22, Sweden
| | | | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, 234 22, Sweden.
| |
Collapse
|
2
|
Wu S, Zhang H, Fang Z, Li Z, Yang N, Yang F. Genetic dissection of ear-related trait divergence between maize and teosinte. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17202. [PMID: 39699908 DOI: 10.1111/tpj.17202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/27/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Maize has undergone remarkable domestication and shows striking differences in architecture and ear morphology compared to its wild progenitor, called teosinte. However, our understanding of the genetic mechanisms underlying the ear morphology differences between teosinte and cultivated maize is still limited. In this study, we explored the genetic basis of ear-related traits at both early and mature stages by analyzing a population derived from a cross between Mo17 and a teosinte line, mexicana. We identified 31 quantitative trait loci (QTLs) associated with four IM-related and four ear-related traits, with 27 QTLs subjected to selection during the domestication process. Several key genes related to ear development were found under selection, including KN1 and RA1. Analysis of gene expression in the IM of developing ears from the population revealed the prominent roles of cis-variants in gene regulation. We also identified a large number of trans-eQTLs responsible for gene expression variation, and enrichment analysis on a trans-eQTL hotspot revealed the possible involvement of the sulfur metabolic pathway in controlling ear traits. Integrating the expression and phenotypic mapping data, we pinpointed several candidate genes potentially influencing ear development. Our findings advance the understanding of the genetic basis driving ear trait variation during maize domestication.
Collapse
Affiliation(s)
- Shenshen Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Han Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhengfu Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zichao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
3
|
Kong Q, Jiang Y, Sun M, Wang Y, Zhang L, Zeng X, Wang Z, Wang Z, Liu Y, Gan Y, Liu H, Gao X, Yang X, Song X, Liu H, Shi J. Biparental graph strategy to represent and analyze hybrid plant genomes. PLANT PHYSIOLOGY 2024; 196:1284-1297. [PMID: 38991561 PMCID: PMC11444280 DOI: 10.1093/plphys/kiae375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 05/14/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
Hybrid plants are found extensively in the wild, and they often demonstrate superior performance of complex traits over their parents and other selfing plants. This phenomenon, known as heterosis, has been extensively applied in plant breeding for decades. However, the process of decoding hybrid plant genomes has seriously lagged due to the challenges associated with genome assembly and the lack of appropriate methodologies for their subsequent representation and analysis. Here, we present the assembly and analysis of 2 hybrids, an intraspecific hybrid between 2 maize (Zea mays ssp. mays) inbred lines and an interspecific hybrid between maize and its wild relative teosinte (Z. mays ssp. parviglumis), utilizing a combination of PacBio High Fidelity sequencing and chromatin conformation capture sequencing data. The haplotypic assemblies are well phased at chromosomal scale, successfully resolving the complex loci with extensive parental structural variations (SVs). By integrating into a biparental genome graph, the haplotypic assemblies can facilitate downstream short-read-based SV calling and allele-specific gene expression analysis, demonstrating outstanding advantages over a single linear genome. Our work offers a comprehensive workflow that aims to facilitate the decoding of numerous hybrid plant genomes, particularly those with unknown or inaccessible parentage, thereby enhancing our understanding of genome evolution and heterosis.
Collapse
Affiliation(s)
- Qianqian Kong
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yi Jiang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Mingfei Sun
- Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yunpeng Wang
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Lin Zhang
- College of Agriculture, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Xing Zeng
- College of Agriculture, Northeast Agricultural University, Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Zhiheng Wang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Zijie Wang
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuting Liu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yuanxian Gan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Han Liu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xiang Gao
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Xuerong Yang
- Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xinyuan Song
- Jilin Provincial Crop Transgenic Science and Technology Innovation Center, Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Hongjun Liu
- Modern Crop Biotechnology Research and Application Laboratory, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Junpeng Shi
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
4
|
Liu F, Wodajo B, Zhao K, Tang S, Xie Q, Xie P. Unravelling sorghum functional genomics and molecular breeding: past achievements and future prospects. J Genet Genomics 2024:S1673-8527(24)00194-2. [PMID: 39053846 DOI: 10.1016/j.jgg.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Sorghum, renowned for its substantial biomass production and remarkable tolerance to various stresses, possesses extensive gene resources and phenotypic variations. A comprehensive understanding of the genetic basis underlying complex agronomic traits is essential for unlocking the potential of sorghum in addressing food and feed security and utilizing marginal lands. In this context, we provide an overview of the major trends in genomic resource studies focusing on key agronomic traits over the past decade, accompanied by a summary of functional genomic platforms. We also delve into the molecular functions and regulatory networks of impactful genes for important agricultural traits. Lastly, we discuss and synthesize the current challenges and prospects for advancing molecular design breeding by gene-editing and polymerization of the excellent alleles, with the aim of accelerating the development of desired sorghum varieties.
Collapse
Affiliation(s)
- Fangyuan Liu
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Baye Wodajo
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Natural and Computational Science, Woldia University, Woldia, Po.box-400, Ethiopia.
| | - Kangxu Zhao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Sanyuan Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Xie
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
5
|
Zheng H, Dang Y, Sui N. Sorghum: A Multipurpose Crop. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17570-17583. [PMID: 37933850 DOI: 10.1021/acs.jafc.3c04942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Sorghum (Sorghum bicolor L.) is one of the top five cereal crops in the world in terms of production and planting area and is widely grown in areas with severe abiotic stresses such as drought and saline-alkali land due to its excellent stress resistance. Moreover, sorghum is a rare multipurpose crop that can be classified into grain sorghum, energy sorghum, and silage sorghum according to its domestication direction and utilization traits, endowing it with broad breeding and economic value. In this review, we mainly discuss the latest research progress and regulatory genes of agronomic traits of sorghum as a grain, energy, and silage crop, as well as the future improvement direction of multipurpose sorghum. We also emphasize the feasibility of cultivating multipurpose sorghum through genetic engineering methods by exploring potential targets using wild sorghum germplasm and genetic resources, as well as genomic resources.
Collapse
Affiliation(s)
- Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, 250014, China
- Dongying Institute, Shandong Normal University, Dongying, 257000, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
6
|
Higgins J, Santos B, Khanh TD, Trung KH, Duong TD, Doai NTP, Hall A, Dyer S, Ham LH, Caccamo M, De Vega J. Genomic regions and candidate genes selected during the breeding of rice in Vietnam. Evol Appl 2022; 15:1141-1161. [PMID: 35899250 PMCID: PMC9309459 DOI: 10.1111/eva.13433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Vietnam harnesses a rich diversity of rice landraces adapted to a range of conditions, which constitute a largely untapped source of diversity for the continuous improvement of cultivars. We previously identified a strong population structure in Vietnamese rice, which is captured in five Indica and four Japonica subpopulations, including an outlying Indica-5 group. Here, we leveraged that strong differentiation and 672 native rice genomes to identify genomic regions and genes putatively selected during the breeding of rice in Vietnam. We identified significant distorted patterns in allele frequency (XP-CLR) and population differentiation scores (F ST) resulting from differential selective pressures between native subpopulations, and later annotated them with QTLs previously identified by GWAS in the same panel. We particularly focussed on the outlying Indica-5 subpopulation because of its likely novelty and differential evolution, where we annotated 52 selected regions, which represented 8.1% of the rice genome. We annotated the 4576 genes in these regions and selected 65 candidate genes as promising breeding targets, several of which harboured alleles with nonsynonymous substitutions. Our results highlight genomic differences between traditional Vietnamese landraces, which are likely the product of adaption to multiple environmental conditions and regional culinary preferences in a very diverse country. We also verified the applicability of this genome scanning approach to identify potential regions harbouring novel loci and alleles to breed a new generation of sustainable and resilient rice.
Collapse
Affiliation(s)
| | | | - Tran Dang Khanh
- Agriculture Genetics Institute (AGI)HanoiVietnam
- Vietnam National University of AgricultureHanoiVietnam
| | | | | | | | | | | | - Le Huy Ham
- Agriculture Genetics Institute (AGI)HanoiVietnam
| | | | | |
Collapse
|
7
|
Curtin S, Qi Y, Peres LEP, Fernie AR, Zsögön A. Pathways to de novo domestication of crop wild relatives. PLANT PHYSIOLOGY 2022; 188:1746-1756. [PMID: 34850221 PMCID: PMC8968405 DOI: 10.1093/plphys/kiab554] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/03/2021] [Indexed: 05/24/2023]
Abstract
Growing knowledge about crop domestication, combined with increasingly powerful gene-editing toolkits, sets the stage for the continual domestication of crop wild relatives and other lesser-known plant species.
Collapse
Affiliation(s)
- Shaun Curtin
- United States Department of Agriculture, Plant Science Research Unit, St. Paul, Minnesota 55108, USA
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, Minnesota 55108, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, Minnesota 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, São Paulo, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
8
|
Wu X, Liu Y, Luo H, Shang L, Leng C, Liu Z, Li Z, Lu X, Cai H, Hao H, Jing HC. Genomic footprints of sorghum domestication and breeding selection for multiple end uses. MOLECULAR PLANT 2022; 15:537-551. [PMID: 34999019 DOI: 10.1016/j.molp.2022.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/01/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Domestication and diversification have had profound effects on crop genomes. Originating in Africa and subsequently spreading to different continents, sorghum (Sorghum bicolor) has experienced multiple onsets of domestication and intensive breeding selection for various end uses. However, how these processes have shaped sorghum genomes is not fully understood. In the present study, population genomics analyses were performed on a worldwide collection of 445 sorghum accessions, covering wild sorghum and four end-use subpopulations with diverse agronomic traits. Frequent genetic exchanges were found among various subpopulations, and strong selective sweeps affected 14.68% (∼107.5 Mb) of the sorghum genome, including 3649, 4287, and 3888 genes during sorghum domestication, improvement of grain sorghum, and improvement of sweet sorghum, respectively. Eight different models of haplotype changes in domestication genes from wild sorghum to landraces and improved sorghum were observed, and Sh1- and SbTB1-type genes were representative of two prominent models, one of soft selection or multiple origins and one of hard selection or an early single domestication event. We also demonstrated that the Dry gene, which regulates stem juiciness, was unconsciously selected during the improvement of grain sorghum. Taken together, these findings provide new genomic insights into sorghum domestication and breeding selection, and will facilitate further dissection of the domestication and molecular breeding of sorghum.
Collapse
Affiliation(s)
- Xiaoyuan Wu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuanming Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Luo
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Li Shang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Chuanyuan Leng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhiquan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhigang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaochun Lu
- Institute of Sorghum Research, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Hongwei Cai
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Huaiqing Hao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Hai-Chun Jing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; Engineering Laboratory for Grass-Based Livestock Husbandry, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Gladman N, Olson A, Wei S, Chougule K, Lu Z, Tello-Ruiz M, Meijs I, Van Buren P, Jiao Y, Wang B, Kumar V, Kumari S, Zhang L, Burke J, Chen J, Burow G, Hayes C, Emendack Y, Xin Z, Ware D. SorghumBase: a web-based portal for sorghum genetic information and community advancement. PLANTA 2022; 255:35. [PMID: 35015132 PMCID: PMC8752523 DOI: 10.1007/s00425-022-03821-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/27/2021] [Indexed: 05/05/2023]
Abstract
SorghumBase provides a community portal that integrates genetic, genomic, and breeding resources for sorghum germplasm improvement. Public research and development in agriculture rely on proper data and resource sharing within stakeholder communities. For plant breeders, agronomists, molecular biologists, geneticists, and bioinformaticians, centralizing desirable data into a user-friendly hub for crop systems is essential for successful collaborations and breakthroughs in germplasm development. Here, we present the SorghumBase web portal ( https://www.sorghumbase.org ), a resource for the sorghum research community. SorghumBase hosts a wide range of sorghum genomic information in a modular framework, built with open-source software, to provide a sustainable platform. This initial release of SorghumBase includes: (1) five sorghum reference genome assemblies in a pan-genome browser; (2) genetic variant information for natural diversity panels and ethyl methanesulfonate (EMS)-induced mutant populations; (3) search interface and integrated views of various data types; (4) links supporting interconnectivity with other repositories including genebank, QTL, and gene expression databases; and (5) a content management system to support access to community news and training materials. SorghumBase offers sorghum investigators improved data collation and access that will facilitate the growth of a robust research community to support genomics-assisted breeding.
Collapse
Affiliation(s)
- Nicholas Gladman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Andrew Olson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Sharon Wei
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Zhenyuan Lu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | | | - Ivar Meijs
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Peter Van Buren
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Yinping Jiao
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, 79409, USA
| | - Bo Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Vivek Kumar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Lifang Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - John Burke
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Lubbock, TX, 79415, USA
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Lubbock, TX, 79415, USA
| | - Gloria Burow
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Lubbock, TX, 79415, USA
| | - Chad Hayes
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Lubbock, TX, 79415, USA
| | - Yves Emendack
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Lubbock, TX, 79415, USA
| | - Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Lubbock, TX, 79415, USA
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
- U.S. Department of Agriculture-Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
10
|
Su H, Liang J, Abou-Elwafa SF, Cheng H, Dou D, Ren Z, Xie J, Chen Z, Gao F, Ku L, Chen Y. ZmCCT regulates photoperiod-dependent flowering and response to stresses in maize. BMC PLANT BIOLOGY 2021; 21:453. [PMID: 34615461 PMCID: PMC8493678 DOI: 10.1186/s12870-021-03231-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/23/2021] [Indexed: 05/30/2023]
Abstract
BACKGROUND Appropriate flowering time is very important to the success of modern agriculture. Maize (Zea mays L.) is a major cereal crop, originated in tropical areas, with photoperiod sensitivity. Which is an important obstacle to the utilization of tropical/subtropical germplasm resources in temperate regions. However, the study on the regulation mechanism of photoperiod sensitivity of maize is still in the early stage. Although it has been previously reported that ZmCCT is involved in the photoperiod response and delays maize flowering time under long-day conditions, the underlying mechanism remains unclear. RESULTS Here, we showed that ZmCCT overexpression delays flowering time and confers maize drought tolerance under LD conditions. Implementing the Gal4-LexA/UAS system identified that ZmCCT has a transcriptional inhibitory activity, while the yeast system showed that ZmCCT has a transcriptional activation activity. DAP-Seq analysis and EMSA indicated that ZmCCT mainly binds to promoters containing the novel motifs CAAAAATC and AAATGGTC. DAP-Seq and RNA-Seq analysis showed that ZmCCT could directly repress the expression of ZmPRR5 and ZmCOL9, and promote the expression of ZmRVE6 to delay flowering under long-day conditions. Moreover, we also demonstrated that ZmCCT directly binds to the promoters of ZmHY5, ZmMPK3, ZmVOZ1 and ZmARR16 and promotes the expression of ZmHY5 and ZmMPK3, but represses ZmVOZ1 and ZmARR16 to enhance stress resistance. Additionally, ZmCCT regulates a set of genes associated with plant development. CONCLUSIONS ZmCCT has dual functions in regulating maize flowering time and stress response under LD conditions. ZmCCT negatively regulates flowering time and enhances maize drought tolerance under LD conditions. ZmCCT represses most flowering time genes to delay flowering while promotes most stress response genes to enhance stress tolerance. Our data contribute to a comprehensive understanding of the regulatory mechanism of ZmCCT in controlling maize flowering time and stress response.
Collapse
Affiliation(s)
- Huihui Su
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Jiachen Liang
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | | | - Haiyang Cheng
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Dandan Dou
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Zhenzhen Ren
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Jiarong Xie
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Zhihui Chen
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Fengran Gao
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Lixia Ku
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| | - Yanhui Chen
- Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
11
|
Advances in Genomics Approaches Shed Light on Crop Domestication. PLANTS 2021; 10:plants10081571. [PMID: 34451616 PMCID: PMC8401213 DOI: 10.3390/plants10081571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 11/18/2022]
Abstract
Crop domestication occurred ~10,000–12,000 years ago when humans shifted from a hunter–gatherer to an agrarian society. Crops were domesticated by selecting the traits in wild plant species that were suitable for human use. Research is crucial to elucidate the mechanisms and processes involved in modern crop improvement and breeding. Recent advances in genomics have revolutionized our understanding of crop domestication. In this review, we summarized cutting-edge crop domestication research by presenting its (1) methodologies, (2) current status, (3) applications, and (4) perspectives. Advanced genomics approaches have clarified crop domestication processes and mechanisms, and supported crop improvement.
Collapse
|
12
|
Ke Q, Tao W, Li T, Pan W, Chen X, Wu X, Nie X, Cui L. Genome-wide Identification, Evolution and Expression Analysis of Basic Helix-loop-helix (bHLH) Gene Family in Barley ( Hordeum vulgare L.). Curr Genomics 2021; 21:621-644. [PMID: 33414683 PMCID: PMC7770637 DOI: 10.2174/1389202921999201102165537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022] Open
Abstract
Background The basic helix-loop-helix (bHLH) transcription factor is one of the most important gene families in plants, playing a key role in diverse metabolic, physiological, and developmental processes. Although it has been well characterized in many plants, the significance of the bHLH family in barley is not well understood at present. Methods Through a genome-wide search against the updated barley reference genome, the genomic organization, evolution and expression of the bHLH family in barley were systematically analyzed. Results We identified 141 bHLHs in the barley genome (HvbHLHs) and further classified them into 24 subfamilies based on phylogenetic analysis. It was found that HvbHLHs in the same subfamily shared a similar conserved motif composition and exon-intron structures. Chromosome distribution and gene duplication analysis revealed that segmental duplication mainly contributed to the expansion of HvbHLHs and the duplicated genes were subjected to strong purifying selection. Furthermore, expression analysis revealed that HvbHLHs were widely expressed in different tissues and also involved in response to diverse abiotic stresses. The co-expression network was further analyzed to underpin the regulatory function of HvbHLHs. Finally, 25 genes were selected for qRT-PCR validation, the expression profiles of HvbHLHs showed diverse patterns, demonstrating their potential roles in relation to stress tolerance regulation. Conclusion This study reported the genome organization, evolutionary characteristics and expression profile of the bHLH family in barley, which not only provide the targets for further functional analysis, but also facilitate better understanding of the regulatory network bHLH genes involved in stress tolerance in barley.
Collapse
Affiliation(s)
- Qinglin Ke
- 1College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang330045, Jiangxi, China; 2State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenjing Tao
- 1College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang330045, Jiangxi, China; 2State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tingting Li
- 1College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang330045, Jiangxi, China; 2State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenqiu Pan
- 1College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang330045, Jiangxi, China; 2State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyun Chen
- 1College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang330045, Jiangxi, China; 2State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Wu
- 1College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang330045, Jiangxi, China; 2State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaojun Nie
- 1College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang330045, Jiangxi, China; 2State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Licao Cui
- 1College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang330045, Jiangxi, China; 2State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
13
|
Lozano R, Gazave E, Dos Santos JPR, Stetter MG, Valluru R, Bandillo N, Fernandes SB, Brown PJ, Shakoor N, Mockler TC, Cooper EA, Taylor Perkins M, Buckler ES, Ross-Ibarra J, Gore MA. Comparative evolutionary genetics of deleterious load in sorghum and maize. NATURE PLANTS 2021; 7:17-24. [PMID: 33452486 DOI: 10.1038/s41477-020-00834-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Sorghum and maize share a close evolutionary history that can be explored through comparative genomics1,2. To perform a large-scale comparison of the genomic variation between these two species, we analysed ~13 million variants identified from whole-genome resequencing of 499 sorghum lines together with 25 million variants previously identified in 1,218 maize lines. Deleterious mutations in both species were prevalent in pericentromeric regions, enriched in non-syntenic genes and present at low allele frequencies. A comparison of deleterious burden between sorghum and maize revealed that sorghum, in contrast to maize, departed from the domestication-cost hypothesis that predicts a higher deleterious burden among domesticates compared with wild lines. Additionally, sorghum and maize population genetic summary statistics were used to predict a gene deleterious index with an accuracy greater than 0.5. This research represents a key step towards understanding the evolutionary dynamics of deleterious variants in sorghum and provides a comparative genomics framework to start prioritizing these variants for removal through genome editing and breeding.
Collapse
Affiliation(s)
- Roberto Lozano
- Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Elodie Gazave
- Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Jhonathan P R Dos Santos
- Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Markus G Stetter
- Botanical Institute, Biozentrum, University of Cologne, Cologne, Germany
| | - Ravi Valluru
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
- University of Lincoln, Lincoln, UK
| | - Nonoy Bandillo
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA
| | - Samuel B Fernandes
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Patrick J Brown
- Department of Plant Sciences, University of California Davis, Davis, CA, USA
| | - Nadia Shakoor
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Elizabeth A Cooper
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - M Taylor Perkins
- Department of Evolution and Ecology, University of California Davis, Davis, CA, USA
| | - Edward S Buckler
- Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS) R. W. Holley Center for Agriculture and Health, Ithaca, NY, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, University of California Davis, Davis, CA, USA.
- Center for Population Biology and Genome Center, University of California Davis, Davis, CA, USA.
| | - Michael A Gore
- Plant Breeding and Genetics, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
14
|
Burgarella C, Berger A, Glémin S, David J, Terrier N, Deu M, Pot D. The Road to Sorghum Domestication: Evidence From Nucleotide Diversity and Gene Expression Patterns. FRONTIERS IN PLANT SCIENCE 2021; 12:666075. [PMID: 34527004 PMCID: PMC8435843 DOI: 10.3389/fpls.2021.666075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/20/2021] [Indexed: 05/17/2023]
Abstract
Native African cereals (sorghum, millets) ensure food security to millions of low-income people from low fertility and drought-prone regions of Africa and Asia. In spite of their agronomic importance, the genetic bases of their phenotype and adaptations are still not well-understood. Here we focus on Sorghum bicolor, which is the fifth cereal worldwide for grain production and constitutes the staple food for around 500 million people. We leverage transcriptomic resources to address the adaptive consequences of the domestication process. Gene expression and nucleotide variability were analyzed in 11 domesticated and nine wild accessions. We documented a downregulation of expression and a reduction of diversity both in nucleotide polymorphism (30%) and gene expression levels (18%) in domesticated sorghum. These findings at the genome-wide level support the occurrence of a global reduction of diversity during the domestication process, although several genes also showed patterns consistent with the action of selection. Nine hundred and forty-nine genes were significantly differentially expressed between wild and domesticated gene pools. Their functional annotation points to metabolic pathways most likely contributing to the sorghum domestication syndrome, such as photosynthesis and auxin metabolism. Coexpression network analyzes revealed 21 clusters of genes sharing similar expression patterns. Four clusters (totaling 2,449 genes) were significantly enriched in differentially expressed genes between the wild and domesticated pools and two were also enriched in domestication and improvement genes previously identified in sorghum. These findings reinforce the evidence that the combined and intricated effects of the domestication and improvement processes do not only affect the behaviors of a few genes but led to a large rewiring of the transcriptome. Overall, these analyzes pave the way toward the identification of key domestication genes valuable for genetic resources characterization and breeding purposes.
Collapse
Affiliation(s)
- Concetta Burgarella
- CIRAD, UMR AGAP Institut, Montpellier, France
- AGAP Institut, Univ F-34398 Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- *Correspondence: Concetta Burgarella
| | - Angélique Berger
- CIRAD, UMR AGAP Institut, Montpellier, France
- AGAP Institut, Univ F-34398 Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Sylvain Glémin
- CNRS, Univ. Rennes, ECOBIO – UMR 6553, Rennes, France
- Department of Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Jacques David
- AGAP Institut, Univ F-34398 Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Nancy Terrier
- AGAP Institut, Univ F-34398 Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Monique Deu
- CIRAD, UMR AGAP Institut, Montpellier, France
- AGAP Institut, Univ F-34398 Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - David Pot
- CIRAD, UMR AGAP Institut, Montpellier, France
- AGAP Institut, Univ F-34398 Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- David Pot
| |
Collapse
|
15
|
Leiboff S, Hake S. Reconstructing the Transcriptional Ontogeny of Maize and Sorghum Supports an Inverse Hourglass Model of Inflorescence Development. Curr Biol 2019; 29:3410-3419.e3. [PMID: 31587998 DOI: 10.1016/j.cub.2019.08.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/29/2019] [Accepted: 08/19/2019] [Indexed: 12/31/2022]
Abstract
Assembling meaningful comparisons between species is a major limitation in studying the evolution of organismal form. To understand development in maize and sorghum, closely related species with architecturally distinct inflorescences, we collected RNA-seq profiles encompassing inflorescence body-plan specification in both species. We reconstructed molecular ontogenies from 40 B73 maize tassels and 47 BTx623 sorghum panicles and separated them into transcriptional stages. To discover new markers of inflorescence development, we used random forest machine learning to determine stage by RNA-seq. We used two descriptions of transcriptional conservation to identify hourglass-like stages during inflorescence development. Despite a relatively short 12 million years since their last common ancestor, we found maize and sorghum inflorescences are most different during their hourglass-like stages of development, following an inverse-hourglass model of development. We discuss whether agricultural selection may account for the rapid divergence signatures in these species and the observed separation of evolutionary pressure and developmental reprogramming.
Collapse
Affiliation(s)
- Samuel Leiboff
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California, Berkeley, Albany, CA 94710, USA.
| | - Sarah Hake
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service and University of California, Berkeley, Albany, CA 94710, USA
| |
Collapse
|
16
|
Dawson IK, Powell W, Hendre P, Bančič J, Hickey JM, Kindt R, Hoad S, Hale I, Jamnadass R. The role of genetics in mainstreaming the production of new and orphan crops to diversify food systems and support human nutrition. THE NEW PHYTOLOGIST 2019; 224:37-54. [PMID: 31063598 DOI: 10.1111/nph.15895] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/28/2019] [Indexed: 05/27/2023]
Abstract
Especially in low-income nations, new and orphan crops provide important opportunities to improve diet quality and the sustainability of food production, being rich in nutrients, capable of fitting into multiple niches in production systems, and relatively adapted to low-input conditions. The evolving space for these crops in production systems presents particular genetic improvement requirements that extensive gene pools are able to accommodate. Particular needs for genetic development identified in part with plant breeders relate to three areas of fundamental importance for addressing food production and human demographic trends and associated challenges, namely: facilitating integration into production systems; improving the processability of crop products; and reducing farm labour requirements. Here, we relate diverse involved target genes and crop development techniques. These techniques include transgressive methods that involve defining exemplar crop models for effective new and orphan crop improvement pathways. Research on new and orphan crops not only supports the genetic improvement of these crops, but they serve as important models for understanding crop evolutionary processes more broadly, guiding further major crop evolution. The bridging position of orphan crops between new and major crops provides unique opportunities for investigating genetic approaches for de novo domestications and major crop 'rewildings'.
Collapse
Affiliation(s)
- Ian K Dawson
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| | - Wayne Powell
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Prasad Hendre
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| | - Jon Bančič
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
- The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - John M Hickey
- The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Roeland Kindt
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| | - Steve Hoad
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Iago Hale
- University of New Hampshire, Durham, NH,, 03824, USA
| | - Ramni Jamnadass
- World Agroforestry (ICRAF), Headquarters, PO Box 30677, Nairobi, Kenya
| |
Collapse
|
17
|
Yan L, Kenchanmane Raju SK, Lai X, Zhang Y, Dai X, Rodriguez O, Mahboub S, Roston RL, Schnable JC. Parallels between natural selection in the cold-adapted crop-wild relative Tripsacum dactyloides and artificial selection in temperate adapted maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:965-977. [PMID: 31069858 DOI: 10.1111/tpj.14376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/25/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Artificial selection has produced varieties of domesticated maize that thrive in temperate climates around the world. However, the direct progenitor of maize, teosinte, is indigenous only to a relatively small range of tropical and subtropical latitudes and grows poorly or not at all outside of this region. Tripsacum, a sister genus to maize and teosinte, is naturally endemic to the majority of areas in the western hemisphere where maize is cultivated. A full-length reference transcriptome for Tripsacum dactyloides generated using long-read Iso-Seq data was used to characterize independent adaptation to temperate climates in this clade. Genes related to phospholipid biosynthesis, a critical component of cold acclimation in other cold-adapted plant lineages, were enriched among those genes experiencing more rapid rates of protein sequence evolution in T. dactyloides. In contrast with previous studies of parallel selection, we find that there is a significant overlap between the genes that were targets of artificial selection during the adaptation of maize to temperate climates and those that were targets of natural selection in temperate-adapted T. dactyloides. Genes related to growth, development, response to stimulus, signaling, and organelles were enriched in the set of genes identified as both targets of natural and artificial selection.
Collapse
Affiliation(s)
- Lang Yan
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Laboratory of Functional Genome and Application of Potato, Xichang University, Liangshan, 615000, China
- College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | | | - Xianjun Lai
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Laboratory of Functional Genome and Application of Potato, Xichang University, Liangshan, 615000, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Zhang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Xiuru Dai
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Oscar Rodriguez
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68588, NE, USA
| | - Samira Mahboub
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rebecca L Roston
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68588, NE, USA
| |
Collapse
|
18
|
Li J, Chen GB, Rasheed A, Li D, Sonder K, Zavala Espinosa C, Wang J, Costich DE, Schnable PS, Hearne SJ, Li H. Identifying loci with breeding potential across temperate and tropical adaptation via EigenGWAS and EnvGWAS. Mol Ecol 2019; 28:3544-3560. [PMID: 31287919 PMCID: PMC6851670 DOI: 10.1111/mec.15169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 06/20/2019] [Indexed: 02/01/2023]
Abstract
Understanding the genomic basis of adaptation in maize is important for gene discovery and the improvement of breeding germplasm, but much remains a mystery in spite of significant population genetics and archaeological research. Identifying the signals underpinning adaptation are challenging as adaptation often coincided with genetic drift, and the base genomic diversity of the species in massive. In this study, tGBS technology was used to genotype 1,143 diverse maize accessions including landraces collected from 20 countries and elite breeding lines of tropical lowland, highland, subtropical/midaltitude and temperate ecological zones. Based on 355,442 high‐quality single nucleotide polymorphisms, 13 genomic regions were detected as being under selection using the bottom‐up searching strategy, EigenGWAS. Of the 13 selection regions, 10 were first reported, two were associated with environmental parameters via EnvGWAS, and 146 genes were enriched. Combining large‐scale genomic and ecological data in this diverse maize panel, our study supports a polygenic adaptation model of maize and offers a framework to enhance our understanding of both the mechanistic basis and the evolutionary consequences of maize domestication and adaptation. The regions identified here are promising candidates for further, targeted exploration to identify beneficial alleles and haplotypes for deployment in maize breeding.
Collapse
Affiliation(s)
- Jing Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guo-Bo Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Awais Rasheed
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Delin Li
- Data Biotech (Beijing) Co., Ltd, Beijing, China.,College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Kai Sonder
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | | | - Jiankang Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Denise E Costich
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Patrick S Schnable
- Data Biotech (Beijing) Co., Ltd, Beijing, China.,College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.,Data2Bio LLC, Ames, IA, USA.,Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Sarah J Hearne
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Huihui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| |
Collapse
|
19
|
Yang X, Song J, Todd J, Peng Z, Paudel D, Luo Z, Ma X, You Q, Hanson E, Zhao Z, Zhao Y, Zhang J, Ming R, Wang J. Target enrichment sequencing of 307 germplasm accessions identified ancestry of ancient and modern hybrids and signatures of adaptation and selection in sugarcane (Saccharum spp.), a 'sweet' crop with 'bitter' genomes. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:488-498. [PMID: 30051590 PMCID: PMC6335080 DOI: 10.1111/pbi.12992] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 05/07/2023]
Abstract
Sugarcane (Saccharum spp.) is a highly energy-efficient crop primarily for sugar and bio-ethanol production. Sugarcane genetics and cultivar improvement have been extremely challenging largely due to its complex genomes with high polyploidy levels. In this study, we deeply sequenced the coding regions of 307 sugarcane germplasm accessions. Nearly five million sequence variations were catalogued. The average of 98× sequence depth enabled different allele dosages of sequence variation to be differentiated in this polyploid collection. With selected high-quality genome-wide SNPs, we performed population genomic studies and environmental association analysis. Results illustrated that the ancient sugarcane hybrids, S. barberi and S. sinense, and modern sugarcane hybrids are significantly different in terms of genomic compositions, hybridization processes and their potential ancestry contributors. Linkage disequilibrium (LD) analysis showed a large extent of LD in sugarcane, with 962.4 Kbp, 2739.2 Kbp and 3573.6 Kbp for S. spontaneum, S. officinarum and modern S. hybrids respectively. Candidate selective sweep regions and genes were identified during domestication and historical selection processes of sugarcane in addition to genes associated with environmental variables at the original locations of the collection. This research provided an extensive amount of genomic resources for sugarcane community and the in-depth population genomic analyses shed light on the breeding and evolution history of sugarcane, a highly polyploid species.
Collapse
Affiliation(s)
- Xiping Yang
- Agronomy DepartmentUniversity of FloridaGainesvilleFLUSA
| | - Jian Song
- Agronomy DepartmentUniversity of FloridaGainesvilleFLUSA
| | - James Todd
- Sugarcane Research UnitUSDA‐ARSHoumaLAUSA
| | - Ze Peng
- Agronomy DepartmentUniversity of FloridaGainesvilleFLUSA
| | - Dev Paudel
- Agronomy DepartmentUniversity of FloridaGainesvilleFLUSA
| | - Ziliang Luo
- Agronomy DepartmentUniversity of FloridaGainesvilleFLUSA
| | - Xiaokai Ma
- Center for Genomics and BiotechnologyKey Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of EducationFujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Qian You
- Agronomy DepartmentUniversity of FloridaGainesvilleFLUSA
- Center for Genomics and BiotechnologyKey Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of EducationFujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Erik Hanson
- Agronomy DepartmentUniversity of FloridaGainesvilleFLUSA
| | - Zifan Zhao
- Agronomy DepartmentUniversity of FloridaGainesvilleFLUSA
| | - Yang Zhao
- Agronomy DepartmentUniversity of FloridaGainesvilleFLUSA
| | - Jisen Zhang
- Center for Genomics and BiotechnologyKey Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of EducationFujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ray Ming
- Center for Genomics and BiotechnologyKey Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of EducationFujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Jianping Wang
- Agronomy DepartmentUniversity of FloridaGainesvilleFLUSA
- Center for Genomics and BiotechnologyKey Laboratory of Genetics, Breeding and Multiple Utilization of CorpsMinistry of EducationFujian Provincial Key Laboratory of Haixia Applied Plant Systems BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| |
Collapse
|