1
|
Gafni R, Nassar JA, Matzrafi M, Blank L, Eizenberg H. Unraveling the reasons for failure to control Amaranthus albus: insights into herbicide application at different growth stages, temperature effect, and herbicide resistance on a regional scale. PEST MANAGEMENT SCIENCE 2024; 80:4757-4769. [PMID: 38809094 DOI: 10.1002/ps.8192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/16/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND This study investigates factors contributing Amaranthus albus control failure in processing tomato fields in northern Israel. The study region is characterized by a significant climate gradient from east to west, providing the opportunity to investigate the effect of critical elements of the agricultural environment, e.g., temperature. Eight populations were collected from commercial fields in this region. Post-emergence herbicide efficacy of metribuzin, a photosystem II inhibitor, and rimsulfuron, an acetolactate synthase (ALS) inhibitor, was assessed through dose-response analyses at various growth stages. Temperature effects on control efficacy and resistance mechanisms were also explored. RESULTS Standard metribuzin dose (X) was ineffective on A. albus plants with more than six true-leaves, whereas 2X dose proved effective. Rimsulfuron at 16X dose was ineffective on plants with more than four true-leaves. We report here the first case of target site resistance to ALS inhibitors in A. albus, due to point mutation in the ALS gene (Pro197 to Leu). Furthermore, our findings suggest potential involvement of CYT P450 enzymes in enhanced metabolizing of rimsulfuron. An overall decrease in dry weight was observed in response to both herbicides at 16/22 °C (P < 0.0001). Rimsulfuron was effective against only one population when applied at 28/34 °C. A possible fitness cost associated with target site-resistant biotypes was observed under low temperature conditions, leading to effective control. CONCLUSION This regional-scale study highlights the challenges faced by growers, emphasizes the need for adapting management practices to the local climatic conditions and lays the groundwork for implementing location-specific weed management strategies in commercial fields. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Roni Gafni
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)-Volcani Institute, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Jackline Abu Nassar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)-Volcani Institute, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Maor Matzrafi
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)-Volcani Institute, Newe Ya'ar Research Center, Ramat Yishay, Israel
| | - Lior Blank
- Department of Plant Pathology and Weed Research, ARO, Volcani Center, Rishon LeZion, Israel
| | - Hanan Eizenberg
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)-Volcani Institute, Newe Ya'ar Research Center, Ramat Yishay, Israel
| |
Collapse
|
2
|
Koo DH, Sathishraj R, Nakka S, Ju Y, Nandula VK, Jugulam M, Friebe B, Gill BS. Extrachromosomal circular DNA-mediated spread of herbicide resistance in interspecific hybrids of pigweed. PLANT PHYSIOLOGY 2023; 193:229-233. [PMID: 37186777 PMCID: PMC10469533 DOI: 10.1093/plphys/kiad281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Extrachromosomal circular DNAs (eccDNAs) are found in many eukaryotic organisms. EccDNA-powered copy number variation plays diverse roles, from oncogenesis in humans to herbicide resistance in crop weeds. Here, we report interspecific eccDNA flow and its dynamic behavior in soma cells of natural populations and F1 hybrids of Amaranthus sp. The glyphosate-resistance (GR) trait is controlled by eccDNA-based amplification harboring the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene (eccDNA replicon), the molecular target of glyphosate. We documented pollen-mediated transfer of eccDNA in experimental hybrids between glyphosate-susceptible Amaranthus tuberculatus and GR Amaranthus palmeri. Experimental hybridization and fluorescence in situ hybridization (FISH) analysis revealed that the eccDNA replicon in Amaranthus spinosus derived from GR A. palmeri by natural hybridization. FISH analysis also revealed random chromosome anchoring and massive eccDNA replicon copy number variation in soma cells of weedy hybrids. The results suggest that eccDNAs are inheritable across compatible species, contributing to genome plasticity and rapid adaptive evolution.
Collapse
Affiliation(s)
- Dal-Hoe Koo
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Rajendran Sathishraj
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Sridevi Nakka
- Heartland Plant Innovations Inc., Manhattan, KS 66506, USA
| | - Yoonha Ju
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Vijay K Nandula
- National Institute of Food and Agriculture, USDA, Kansas City, MO 64105, USA
- Crop Production Systems Research Unit, USDA-ARS, Stoneville, MS 38776, USA
| | - Mithila Jugulam
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Bernd Friebe
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Bikram S Gill
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
3
|
Inheritance of 2,4-dichlorophenoxyacetic acid (2,4-D) resistance in Amaranthus palmeri. Sci Rep 2022; 12:21822. [PMID: 36528649 PMCID: PMC9759536 DOI: 10.1038/s41598-022-25686-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
In this study, the inheritance of 2,4-D resistance in a multiple herbicide-resistant Palmer amaranth (KCTR) was investigated. Direct and reciprocal crosses were performed using 2,4-D-resistant KCTR and susceptible KSS plants to generate F1 progenies. 2,4-D dose-response assays were conducted to evaluate the response of progenies from each F1 family along with KCTR and KSS plants in controlled environmental growth chambers. Additionally, 2,4-D-resistant male and female plants from each of the F1 families were used in pairwise crosses to generate pseudo-F2 families. Segregation (resistance or susceptibility) of progenies from the F2 families in response to a discriminatory rate of 2,4-D (i.e., 560 g ae ha-1) was evaluated. Dose-response analysis of F1 progenies derived from direct and reciprocal crosses suggested that the 2,4-D resistance in KCTR is a nuclear trait. Chi-square analyses of F2 segregation data implied that 2,4-D resistance in KCTR is controlled by multiple gene(s). Overall, our data suggest that the 2,4-D resistance in KCTR Palmer amaranth is a nuclear inherited trait controlled by multiple genes. Such resistance can spread both via pollen or seed-mediated gene flow. In future, efforts will be directed towards identifying genes mediating 2,4-D resistance in KCTR population.
Collapse
|
4
|
Radanović A, Sprycha Y, Jocković M, Sundt M, Miladinović D, Jansen C, Horn R. KASP Markers Specific for the Fertility Restorer Locus Rf1 and Application for Genetic Purity Testing in Sunflowers ( Helianthus annuus L.). Genes (Basel) 2022; 13:465. [PMID: 35328019 PMCID: PMC8951052 DOI: 10.3390/genes13030465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Single nucleotide polymorphisms (SNPs) were significantly associated with fertility restoration of cytoplasmic male sterility (CMS) PET1 by the restorer gene Rf1. For these SNPs, four Kompetitive allele-specific PCR (KASP) markers were successfully designed. The KASP markers cover the fertility restorer locus Rf1, spanning about 3 Mb, and clearly differentiate restorer and maintainer lines. For genetic purity testing in sunflower hybrid production, the efficiency for detecting contaminations in samples was simulated using mixtures of hypocotyls or leaves. Contaminations of restorer lines with 1%, 3%, 5%, 10%, and 50% of maintainer lines were screened with all four KASP markers. Contaminations of 10% could be clearly detected in pools of 100 plants. Contaminations below this level require detection on a single plant level. For single plant detections, ethyl methanesulfonate-treated sunflower F1 hybrids, which had been phenotypically evaluated for male sterility (potential mutation in the Rf1 gene) were screened. Nine identified either partially male-sterile or male-sterile plants were analyzed with all four KASP markers and only one proved to be a hybrid with a mutation, seven were male-sterile contaminants in the F1 seeds used (1.6%) and one a recombinant plant. The four KASP markers should be valuable tools for marker-assisted selection (MAS) in sunflower breeding regarding the restorer locus Rf1.
Collapse
Affiliation(s)
- Aleksandra Radanović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (M.J.); (D.M.)
| | - Yves Sprycha
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany; (Y.S.); (M.S.)
| | - Milan Jocković
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (M.J.); (D.M.)
| | - Monja Sundt
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany; (Y.S.); (M.S.)
| | - Dragana Miladinović
- Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Serbia; (A.R.); (M.J.); (D.M.)
| | - Constantin Jansen
- Strube Research GmbH & Co. KG, Hauptstr. 1, D-38387 Söllingen, Germany;
| | - Renate Horn
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany; (Y.S.); (M.S.)
| |
Collapse
|
5
|
Hu W, Gao S, Zhao LX, Guo KL, Wang JY, Gao YC, Shao XX, Fu Y, Ye F. Design, synthesis and biological activity of novel triketone-containing quinoxaline as HPPD inhibitor. PEST MANAGEMENT SCIENCE 2022; 78:938-946. [PMID: 34719096 DOI: 10.1002/ps.6703] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/11/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND 4-Hydroxyphenyl pyruvate dioxygenase (EC 1.13.11.27, HPPD) is one of the important target enzymes used to address the issue of weed control. HPPD-inhibiting herbicides can reduce the carotenoid content in plants and hinder photosynthesis, eventually causing albinism and death. Exploring novel HPPD-inhibiting herbicides is a significant direction in pesticide research. In the process of exploring new high-efficiency HPPD inhibitors, a series of novel quinoxaline derivatives were designed and synthesized using an active fragment splicing strategy. RESULTS The title compounds were unambiguously characterized by infrared, 1 H NMR, 13 C NMR, and high-resolution mass spectroscopy. The results of the in vitro tests indicated that the majority of the title compounds showed potent inhibition of Arabidopsis thaliana HPPD (AtHPPD). Preliminary bioevaluation results revealed that a number of novel compounds displayed better or excellent herbicidal activity against broadleaf and monocotyledonous weeds. Compound III-5 showed herbicidal effects comparable to those of mesotrione at a rate of 150 g of active ingredient (ai)/ha for post-emergence application. The results of molecular dynamics verified that compound III-5 had a more stable protein-binding ability. Molecular docking results showed that compound III-5 and mesotrione shared homologous interplay with the surrounding residues. In addition, the enlarged aromatic ring system adds more force, and the hydrogen bond formed can enhance the synergy with π-π stacking. CONCLUSIONS The present work indicates that compound III-5 may be a potential lead structure for the development of new HPPD inhibitors.
Collapse
Affiliation(s)
- Wei Hu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Shuang Gao
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Li-Xia Zhao
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Ke-Liang Guo
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Jia-Yu Wang
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Ying-Chao Gao
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Xin-Xin Shao
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Ying Fu
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, People's Republic of China
| | - Fei Ye
- Department of Applied Chemistry, College of Science, Northeast Agricultural University, Harbin, People's Republic of China
| |
Collapse
|
6
|
Brusa A, Patterson EL, Gaines TA, Dorn K, Westra P, Sparks CD, Wyse D. A needle in a seedstack: an improved method for detection of rare alleles in bulk seed testing through KASP. PEST MANAGEMENT SCIENCE 2021; 77:2477-2484. [PMID: 33442897 DOI: 10.1002/ps.6278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/06/2021] [Accepted: 01/14/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Amaranthus palmeri is an aggressive and prolific weed species with major impact on agricultural yield and is a prohibited noxious weed across the Midwest. Morphological identification of A. palmeri from other Amaranthus species is extremely difficult in seeds, which has led to genetic testing for seed identification in commercial seed lots. RESULTS We created an inexpensive and reliable genetic test based on novel, species-specific, single nucleotide polymorphisms (SNPs) from GBS (Genotyping by Sequencing) data. We report three SNP-based genetic tests for identifying A. palmeri alone or in a mixed pool of Amaranthus spp. Sensitivity ranged from 99.8 to 100%, specificity from 99.59 to 100%. Accuracy for all three tests is > 99.7%. All three are capable of reliably detecting one A. palmeri seed in a pool of 200 Amaranthus spp. seeds. The test was validated across 20 populations of A. palmeri, along with eight other Amaranthus species, the largest and most genetically diverse panel of Amaranthus samples to date. CONCLUSION Our work represents a marked improvement over existing commercial assays resulting in an identification assay that is (i) accurate, (ii) robust, (iii) easy to interpret and (iv) applicable to both leaf tissue and pools of up to 200 seeds. Included is a data transformation method for calling of closely grouped competitive fluorescence assays. We also present a comprehensive GBS dataset from the largest geographic panel of Amaranthus populations sequenced. Our approach serves as a model for developing markers for other difficult to identify species. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anthony Brusa
- Department of Agronomy and Plant Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Eric L Patterson
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Kevin Dorn
- Soil Management and Sugarbeet Research, United States Department of Agriculture - Agricultural Research Service, Fort Collins, CO, USA
| | - Philip Westra
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Crystal D Sparks
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Don Wyse
- Department of Agronomy and Plant Genetics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Oliveira MC, Osipitan OA, Begcy K, Werle R. Cover crops, hormones and herbicides: Priming an integrated weed management strategy. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110550. [PMID: 33218616 DOI: 10.1016/j.plantsci.2020.110550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Herbicide weed resistance has been a major issue of conventional global row crop agriculture for decades. Still current strategies and novel technologies available to address weed resistance are mainly herbicide-based. Thus, there is a need for innovative means of integrated weed management strategies. Our approach proposed herein integrates cover crops, plant hormones and pre-emergence (PRE) herbicides as part of weed management programs. Plant hormones such as gibberellic acid (GA3) and abscisic acid (ABA) have the potential to induce seed germination and seed dormancy, respectively. Prior to crop emergence, plant hormones are tank mixed with PRE herbicides and sprayed to cover crop residue. Two strategies are proposed (1) PRE herbicides + GA3 and (2) PRE herbicide + ABA. The hormones provide different results; GA3 is likely to stimulate a more uniform weed seed germination, thus enhancing efficacy of PRE herbicides. Conversely, ABA could promote weed seed dormancy, reducing selection pressure and weed infestations until crop canopy closure. Much research is needed to understand the impact of hormones on weed and crop species, optimize products and rates, and compatibility of hormones with herbicides and cover crops. If successful, this approach could open a new opportunity for agricultural business, enhance farming sustainability by reducing dependence on herbicides and minimizing agronomic, economic and environmental issues related to weed resistance.
Collapse
Affiliation(s)
- Maxwel C Oliveira
- Department of Agronomy, Western São Paulo University, Presidente Prudente, São Paulo, 19067, Brazil; Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, United States.
| | - O Adewale Osipitan
- Department of Plant Sciences, University of California-Davis, Davis, CA, 95616, United States.
| | - Kevin Begcy
- Environmental Horticulture Department, University of Florida, Gainesville, FL 32611, United States.
| | - Rodrigo Werle
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
8
|
Vieira BC, Luck JD, Amundsen KL, Werle R, Gaines TA, Kruger GR. Herbicide drift exposure leads to reduced herbicide sensitivity in Amaranthus spp. Sci Rep 2020; 10:2146. [PMID: 32034222 PMCID: PMC7005892 DOI: 10.1038/s41598-020-59126-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
While the introduction of herbicide tolerant crops provided growers new options to manage weeds, the widespread adoption of these herbicides increased the risk for herbicide spray drift to surrounding vegetation. The impact of herbicide drift in sensitive crops is extensively investigated, whereas scarce information is available on the consequences of herbicide drift in non-target plants. Weeds are often abundant in field margins and ditches surrounding agricultural landscapes. Repeated herbicide drift exposure to weeds could be detrimental to long-term management as numerous weeds evolved herbicide resistance following recurrent-selection with low herbicide rates. The objective of this study was to evaluate if glyphosate, 2,4-D, and dicamba spray drift could select Amaranthus spp. biotypes with reduced herbicide sensitivity. Palmer amaranth and waterhemp populations were recurrently exposed to herbicide drift in a wind tunnel study over two generations. Seeds from survival plants were used for the subsequent rounds of herbicide drift exposure. Progenies were subjected to herbicide dose-response studies following drift selection. Herbicide drift exposure rapidly selected for Amaranthus spp. biotypes with reduced herbicide sensitivity over two generations. Weed management programs should consider strategies to mitigate near-field spray drift and suppress the establishment of resistance-prone weeds on field borders and ditches in agricultural landscapes.
Collapse
Affiliation(s)
- Bruno C Vieira
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, USA.
| | - Joe D Luck
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Keenan L Amundsen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rodrigo Werle
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Greg R Kruger
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, USA
| |
Collapse
|
9
|
Nie H, Mansfield BC, Harre NT, Young JM, Steppig NR, Young BG. Investigating target-site resistance mechanism to the PPO-inhibiting herbicide fomesafen in waterhemp and interspecific hybridization of Amaranthus species using next generation sequencing. PEST MANAGEMENT SCIENCE 2019; 75:3235-3244. [PMID: 30983048 DOI: 10.1002/ps.5445] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/07/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Waterhemp (Amaranthus tuberculatus (Moq.) J. D. Sauer) is one of the most pernicious weeds in cropping systems of the USA due to its evolved resistance against several herbicide sites-of-action, including protoporphyrinogen oxidase inhibitors (PPO-R). Currently, the only source of PPO-R documented in waterhemp is ΔG210 of PPX2. Gene flow may not only lead to a transfer of herbicide-resistant alleles, but also produce a hybrid genotype more competitively fit than one or both parents. However, investigating gene flow of Amaranthus species has been of interest in the past two decades with limited evidence. RESULTS Here, a high-throughput MiSeq amplicon sequencing method was used to investigate alterations of the PPX2 gene in 146 PPO-R waterhemp populations across five Midwest states of the USA. Five R128 codons of PPX2, novel to waterhemp, were found including AGG (R), GGA (G), GGG (G), AAA (K) and ATA (I). R128G, R128I, and R128K were found in 11, 3, and 2 populations, respectively. R128G and R128I, but not R128K, conferred fomesafen resistance in a bacterial system. Sequence alignment of the R128 region of PPX2 identified a tumble pigweed (Amaranthus albus)-type and Palmer amaranth (Amaranthus palmeri)-type PPX2 allele to be present and widespread in the surveyed waterhemp populations, thus providing strong evidence of gene flow between Amaranthus species. CONCLUSION Using a next-generation sequencing method, we identified two PPO target-site mutations R128G/I novel to waterhemp and provided evidence of gene flow of Amaranthus species in a large group of screened waterhemp populations from five Midwest states of the USA. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haozhen Nie
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Brent C Mansfield
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Nick T Harre
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Julie M Young
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Nicholas R Steppig
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| | - Bryan G Young
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
10
|
Fu Y, Zhang D, Zhang SQ, Liu YX, Guo YY, Wang MX, Gao S, Zhao LX, Ye F. Discovery of N-Aroyl Diketone/Triketone Derivatives as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibiting-Based Herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11839-11847. [PMID: 31589436 DOI: 10.1021/acs.jafc.9b01412] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is an important target site for discovering new bleaching herbicides. To explore novel HPPD inhibitors with excellent herbicidal activity, a series of novel N-aroyl diketone/triketone derivatives were rationally designed by splicing active groups and bioisosterism. Bioassays revealed that most of these derivatives displayed preferable herbicidal activity against Echinochloa crus-galli (EC) at 0.045 mmol/m2 and Abutilon juncea (AJ) at 0.090 mmol/m2. In particular, compound I-f was more potent compared to the commercialized compound mesotrione. Molecular docking indicated that the corresponding active molecules of target compounds and mesotrione shared similar interplay with surrounding residues, which led to a perfect interaction with the active site of Arabidopsis thaliana HPPD.
Collapse
Affiliation(s)
- Ying Fu
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Dong Zhang
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Shuai-Qi Zhang
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Yong-Xuan Liu
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - You-Yuan Guo
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Meng-Xia Wang
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Shuang Gao
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Li-Xia Zhao
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| | - Fei Ye
- Department of Applied Chemistry, College of Science , Northeast Agricultural University , Harbin , Heilongjiang 150030 , People's Republic of China
| |
Collapse
|
11
|
Vieira BC, Luck JD, Amundsen KL, Gaines TA, Werle R, Kruger GR. Response of Amaranthus spp. following exposure to sublethal herbicide rates via spray particle drift. PLoS One 2019; 14:e0220014. [PMID: 31318947 PMCID: PMC6638980 DOI: 10.1371/journal.pone.0220014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/05/2019] [Indexed: 01/29/2023] Open
Abstract
The adverse consequences of herbicide drift towards sensitive crops have been extensively reported in the literature. However, little to no information is available on the consequences of herbicide drift onto weed species inhabiting boundaries of agricultural fields. Exposure to herbicide drift could be detrimental to long-term weed management as several weed species have evolved herbicide-resistance after recurrent selection with sublethal herbicide rates This study investigated the deposition of glyphosate, 2,4-D, and dicamba spray particle drift from applications with two different nozzles in a low speed wind tunnel, and their impact on growth and development of Amaranthus spp. Herbicide drift resulted in biomass reduction or complete plant mortality. Inflection points (distance to 50% biomass reduction) for Amaranthus tuberculatus were 7.7, 4.0, and 4.1 m downwind distance for glyphosate, 2,4-D, and dicamba applications with the flat-fan nozzle, respectively, whereas these values corresponded to 2.8, 2.5, and 1.9 m for applications with the air-inclusion nozzle. Inflection points for Amaranthus palmeri biomass reduction were 16.3, 10.9, and 11.5 m for glyphosate, 2,4-D, and dicamba applications with the flat-fan nozzle, respectively, whereas these values corresponded to 7.6, 5.4, and 5.4 m for applications with the air-inclusion nozzle. Plants were more sensitive to glyphosate at higher exposure rates than other herbicides, whereas plants were more sensitive to 2,4-D and dicamba at lower exposure rates compared to glyphosate. Applications with the flat-fan nozzle resulted in 32.3 and 11.5% drift of the applied rate at 1.0 and 3.0 m downwind, respectively, whereas the air-inclusion nozzle decreased the dose exposure in the same distances (11.4 and 2.7%, respectively). Herbicide drift towards field boundaries was influenced by nozzle design and exposed weeds to herbicide rates previously reported to select for herbicide-resistant biotypes.
Collapse
Affiliation(s)
- Bruno C. Vieira
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, United States of America
| | - Joe D. Luck
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Keenan L. Amundsen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Todd A. Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States of America
| | - Rodrigo Werle
- Department of Agronomy, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Greg R. Kruger
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, United States of America
| |
Collapse
|