1
|
Chen L, Zhang Y, Bu Y, Zhou J, Man Y, Wu X, Yang H, Lin J, Wang X, Jing Y. Imaging the spatial distribution of structurally diverse plant hormones. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6980-6997. [PMID: 39269320 DOI: 10.1093/jxb/erae384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Plant hormones are essential and structurally diverse molecules that regulate various aspects of plant growth, development, and stress responses. However, the precise analysis of plant hormones in complex biological samples poses a challenge due to their low concentrations, dynamic levels, and intricate spatial distribution. Moreover, the complexity and interconnectedness of hormone signaling networks make it difficult to simultaneously trace multiple hormone spatial distributions. In this review, we provide an overview of currently recognized small-molecule plant hormones, signal peptide hormones, and plant growth regulators, along with the analytical methods employed for their analysis. We delve into the latest advancements in mass spectrometry imaging and in situ fluorescence techniques, which enable the examination of the spatial distribution of plant hormones. The advantages and disadvantages of these imaging techniques are further discussed. Finally, we propose potential avenues in imaging techniques to further enhance our understanding of plant hormone biology.
Collapse
Affiliation(s)
- Lulu Chen
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yue Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yufen Bu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Junhui Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Yi Man
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xinyuan Wu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Haobo Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Jinxing Lin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| | - Xiaodong Wang
- College of Life and Environmental Sciences, Centre for Imaging & Systems Biology, Minzu University of China, Beijing 100081, China
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Yanping Jing
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, No. 35 Qinghua East Road, Beijing, 100083, China
| |
Collapse
|
2
|
Zhou Y, Zheng J, Wu H, Yang Y, Han H. A novel toolbox to record CLE peptide signaling. FRONTIERS IN PLANT SCIENCE 2024; 15:1468763. [PMID: 39206038 PMCID: PMC11349659 DOI: 10.3389/fpls.2024.1468763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Yong Zhou
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China
| | - Jie Zheng
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China
| | - Youxin Yang
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruits & Vegetables, Jiangxi Agricultural University, Nanchang, China
| | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Daignan-Fornier S, Keita A, Boyer FD. Chemistry of Strigolactones, Key Players in Plant Communication. Chembiochem 2024; 25:e202400133. [PMID: 38607659 DOI: 10.1002/cbic.202400133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/13/2024]
Abstract
Today, the use of artificial pesticides is questionable and the adaptation to global warming is a necessity. The promotion of favorable natural interactions in the rhizosphere offers interesting perspectives for changing the type of agriculture. Strigolactones (SLs), the latest class of phytohormones to be discovered, are also chemical mediators in the rhizosphere. We present in this review the diversity of natural SLs, their analogs, mimics, and probes essential for the biological studies of this class of compounds. Their biosynthesis and access by organic synthesis are highlighted especially concerning noncanonical SLs, the more recently discovered natural SLs. Organic synthesis of analogs, stable isotope-labeled standards, mimics, and probes are also reviewed here. In the last part, the knowledge about the SL perception is described as well as the different inhibitors of SL receptors that have been developed.
Collapse
Affiliation(s)
- Suzanne Daignan-Fornier
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - Antoinette Keita
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Probing strigolactone perception mechanisms with rationally designed small-molecule agonists stimulating germination of root parasitic weeds. Nat Commun 2022; 13:3987. [PMID: 35810153 PMCID: PMC9271048 DOI: 10.1038/s41467-022-31710-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 06/29/2022] [Indexed: 01/11/2023] Open
Abstract
The development of potent strigolactone (SL) agonists as suicidal germination inducers could be a useful strategy for controlling root parasitic weeds, but uncertainty about the SL perception mechanism impedes real progress. Here we describe small-molecule agonists that efficiently stimulate Phelipanchce aegyptiaca, and Striga hermonthica, germination in concentrations as low as 10−8 to 10−17 M. We show that full efficiency of synthetic SL agonists in triggering signaling through the Striga SL receptor, ShHTL7, depends on the receptor-catalyzed hydrolytic reaction of the agonists. Additionally, we reveal that the stereochemistry of synthetic SL analogs affects the hydrolytic ability of ShHTL7 by influencing the probability of the privileged conformations of ShHTL7. Importantly, an alternative ShHTL7-mediated hydrolysis mechanism, proceeding via nucleophilic attack of the NE2 atom of H246 to the 2′C of the D-ring, is reported. Together, our findings provide insight into SL hydrolysis and structure-perception mechanisms, and potent suicide germination stimulants, which would contribute to the elimination of the noxious parasitic weeds. Strigolactone agonists could potentially help control noxious weeds by promoting suicidal germination. Here the authors describe a series of small molecule agonists that stimulate germination via the Striga ShHTL7 receptor and show that stereochemistry and hydrolysis-independent signalling mediate potency.
Collapse
|
5
|
de Saint Germain A, Clavé G, Schouveiler P, Pillot JP, Singh AV, Chevalier A, Daignan Fornier S, Guillory A, Bonhomme S, Rameau C, Boyer FD. Expansion of the Strigolactone Profluorescent Probes Repertory: The Right Probe for the Right Application. FRONTIERS IN PLANT SCIENCE 2022; 13:887347. [PMID: 35720613 PMCID: PMC9201908 DOI: 10.3389/fpls.2022.887347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/02/2022] [Indexed: 05/29/2023]
Abstract
Strigolactones (SLs) are intriguing phytohormones that not only regulate plant development and architecture but also interact with other organisms in the rhizosphere as root parasitic plants (Striga, Orobanche, and Phelipanche) and arbuscular mycorrhizal fungi. Starting with a pioneering work in 2003 for the isolation and identification of the SL receptor in parasitic weeds, fluorescence labeling of analogs has proven a major strategy to gain knowledge in SL perception and signaling. Here, we present novel chemical tools for understanding the SL perception based on the enzymatic properties of SL receptors. We designed different profluorescent SL Guillaume Clavé (GC) probes and performed structure-activity relationship studies on pea, Arabidopsis thaliana, and Physcomitrium (formerly Physcomitrella) patens. The binding of the GC probes to PsD14/RMS3, AtD14, and OsD14 proteins was tested. We demonstrated that coumarin-based profluorescent probes were highly bioactive and well-adapted to dissect the enzymatic properties of SL receptors in pea and a resorufin profluorescent probe in moss, contrary to the commercially available fluorescein profluorescent probe, Yoshimulactone Green (YLG). These probes offer novel opportunities for the studies of SL in various plants.
Collapse
Affiliation(s)
| | - Guillaume Clavé
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Paul Schouveiler
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Jean-Paul Pillot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Abhay-Veer Singh
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Arnaud Chevalier
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Suzanne Daignan Fornier
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Ambre Guillory
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Sandrine Bonhomme
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Catherine Rameau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - François-Didier Boyer
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Lei B, Song M, Li X, Dang X, Qin R, Zhu S, An X, Liu Q, Yao X, Nie Y, Ma C. SMART v1.0: A Database for Small Molecules with Functional Implications in Plants. Interdiscip Sci 2022; 14:279-283. [PMID: 34648133 DOI: 10.1007/s12539-021-00480-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
We developed SMART v1.0 ( http://smart.omicstudio.cloud ), the first database for small molecules with functional implications in plants. The SMART database is devoted to providing and managing small molecules and their associated structural data, chemoinformatic data, protein targets, pathways and induced phenotype/function information. Currently, SMART v1.0 encompasses 1218 unique small molecules which are involved in multiple biological pathways. SMART v1.0 is featured with user-friendly interfaces, through which pathway-centered visualization of small molecules can be efficiently performed, and multiple types of searches (i.e., text search, structure similarity search and sequence similarity search) can be conveniently conducted. SMART v1.0 is also specifically designed to be a small molecule-sharing database, allowing users to release their newly discovered small molecules to public via the Contribute webpage. The SMART database will facilitate the comprehensive understanding of small molecules in complex biological processes in plants.
Collapse
Affiliation(s)
- Beilei Lei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Minggui Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiyang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoxue Dang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Runwen Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shuai Zhu
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyan An
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Qinchang Liu
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou, Gansu, China
| | - Yanming Nie
- College of Information Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| | - Chuang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
- Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
7
|
Struk S, Braem L, Matthys C, Walton A, Vangheluwe N, Van Praet S, Jiang L, Baster P, De Cuyper C, Boyer FD, Stes E, Beeckman T, Friml J, Gevaert K, Goormachtig S. Transcriptional Analysis in the Arabidopsis Roots Reveals New Regulators that Link rac-GR24 Treatment with Changes in Flavonol Accumulation, Root Hair Elongation and Lateral Root Density. PLANT & CELL PHYSIOLOGY 2022; 63:104-119. [PMID: 34791413 DOI: 10.1093/pcp/pcab149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/06/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The synthetic strigolactone (SL) analog, rac-GR24, has been instrumental in studying the role of SLs as well as karrikins because it activates the receptors DWARF14 (D14) and KARRIKIN INSENSITIVE 2 (KAI2) of their signaling pathways, respectively. Treatment with rac-GR24 modifies the root architecture at different levels, such as decreasing the lateral root density (LRD), while promoting root hair elongation or flavonol accumulation. Previously, we have shown that the flavonol biosynthesis is transcriptionally activated in the root by rac-GR24 treatment, but, thus far, the molecular players involved in that response have remained unknown. To get an in-depth insight into the changes that occur after the compound is perceived by the roots, we compared the root transcriptomes of the wild type and the more axillary growth2 (max2) mutant, affected in both SL and karrikin signaling pathways, with and without rac-GR24 treatment. Quantitative reverse transcription (qRT)-PCR, reporter line analysis and mutant phenotyping indicated that the flavonol response and the root hair elongation are controlled by the ELONGATED HYPOCOTYL 5 (HY5) and MYB12 transcription factors, but HY5, in contrast to MYB12, affects the LRD as well. Furthermore, we identified the transcription factors TARGET OF MONOPTEROS 5 (TMO5) and TMO5 LIKE1 as negative and the Mediator complex as positive regulators of the rac-GR24 effect on LRD. Altogether, hereby, we get closer toward understanding the molecular mechanisms that underlay the rac-GR24 responses in the root.
Collapse
Affiliation(s)
- Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - Lukas Braem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark 75, Ghent 9052, Belgium
- Center for Medical Biotechnology, VIB, Technologiepark 75, Ghent 9052, Belgium
| | - Cedrick Matthys
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - Alan Walton
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark 75, Ghent 9052, Belgium
- Center for Medical Biotechnology, VIB, Technologiepark 75, Ghent 9052, Belgium
| | - Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - Stan Van Praet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 21985, Republic of Korea
| | - Lingxiang Jiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - Pawel Baster
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - Carolien De Cuyper
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - François-Didier Boyer
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, Route de Saint-Cyr, Versailles 78026, France
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark 75, Ghent 9052, Belgium
- Center for Medical Biotechnology, VIB, Technologiepark 75, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - Jiří Friml
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
- Institute of Science and Technology (IST) Austria, Cell Biology Laboratory, Am Campus 1, Klosterneuburg 3400, Austria
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Technologiepark 75, Ghent 9052, Belgium
- Center for Medical Biotechnology, VIB, Technologiepark 75, Ghent 9052, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| |
Collapse
|
8
|
de Saint Germain A, Clavé G, Boyer FD. Synthesis of Profluorescent Strigolactone Probes for Biochemical Studies. Methods Mol Biol 2021; 2309:219-231. [PMID: 34028690 DOI: 10.1007/978-1-0716-1429-7_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter, we will describe a method we set up to synthesize two profluorescent strigolactone (SL) mimic probes (GC240 and GC242) and the optimized protocols developed to study the enzymatic properties of various strigolactone receptors. The Arabidopsis AtD14 SL receptor is used here as a model for this purpose.
Collapse
Affiliation(s)
| | - Guillaume Clavé
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - François-Didier Boyer
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France.
| |
Collapse
|