1
|
Li C, Czyż EA, Halitschke R, Baldwin IT, Schaepman ME, Schuman MC. Evaluating potential of leaf reflectance spectra to monitor plant genetic variation. PLANT METHODS 2023; 19:108. [PMID: 37833725 PMCID: PMC10576306 DOI: 10.1186/s13007-023-01089-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Remote sensing of vegetation by spectroscopy is increasingly used to characterize trait distributions in plant communities. How leaves interact with electromagnetic radiation is determined by their structure and contents of pigments, water, and abundant dry matter constituents like lignins, phenolics, and proteins. High-resolution ("hyperspectral") spectroscopy can characterize trait variation at finer scales, and may help to reveal underlying genetic variation-information important for assessing the potential of populations to adapt to global change. Here, we use a set of 360 inbred genotypes of the wild coyote tobacco Nicotiana attenuata: wild accessions, recombinant inbred lines (RILs), and transgenic lines (TLs) with targeted changes to gene expression, to dissect genetic versus non-genetic influences on variation in leaf spectra across three experiments. We calculated leaf reflectance from hand-held field spectroradiometer measurements covering visible to short-wave infrared wavelengths of electromagnetic radiation (400-2500 nm) using a standard radiation source and backgrounds, resulting in a small and quantifiable measurement uncertainty. Plants were grown in more controlled (glasshouse) or more natural (field) environments, and leaves were measured both on- and off-plant with the measurement set-up thus also in more to less controlled environmental conditions. Entire spectra varied across genotypes and environments. We found that the greatest variance in leaf reflectance was explained by between-experiment and non-genetic between-sample differences, with subtler and more specific variation distinguishing groups of genotypes. The visible spectral region was most variable, distinguishing experimental settings as well as groups of genotypes within experiments, whereas parts of the short-wave infrared may vary more specifically with genotype. Overall, more genetically variable plant populations also showed more varied leaf spectra. We highlight key considerations for the application of field spectroscopy to assess genetic variation in plant populations.
Collapse
Affiliation(s)
- Cheng Li
- Department of Geography, Faculty of Science, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Ewa A Czyż
- Department of Geography, Faculty of Science, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Strasse 8, 07745, Jena, Germany
| | - Michael E Schaepman
- Department of Geography, Faculty of Science, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Meredith C Schuman
- Department of Geography, Faculty of Science, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Chemistry, Faculty of Science, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
2
|
Xiang X, Liu S, Li H, Danso Ofori A, Yi X, Zheng A. Defense Strategies of Rice in Response to the Attack of the Herbivorous Insect, Chilo suppressalis. Int J Mol Sci 2023; 24:14361. [PMID: 37762665 PMCID: PMC10531896 DOI: 10.3390/ijms241814361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Chilo suppressalis is a notorious pest that attacks rice, feeding throughout the entire growth period of rice and posing a serious threat to rice production worldwide. Due to the boring behavior and overlapping generations of C. suppressalis, the pest is difficult to control. Moreover, no rice variety with high resistance to the striped stem borer (SSB) has been found in the available rice germplasm, which also poses a challenge to controlling the SSB. At present, chemical control is widely used in agricultural production to manage the problem, but its effect is limited and it also pollutes the environment. Therefore, developing genetic resistance is the only way to avoid the use of chemical insecticides. This article primarily focuses on the research status of the induced defense of rice against the SSB from the perspective of immunity, in which plant hormones (such as jasmonic acid and ethylene) and mitogen-activated protein kinases (MAPKs) play an important role in the immune response of rice to the SSB. The article also reviews progress in using transgenic technology to study the relationship between rice and the SSB as well as exploring the resistance genes. Lastly, the article discusses prospects for future research on rice's resistance to the SSB.
Collapse
Affiliation(s)
| | | | | | | | | | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (X.X.); (S.L.); (H.L.); (A.D.O.); (X.Y.)
| |
Collapse
|
3
|
Estarague A, Violle C, Vile D, Hany A, Martino T, Moulin P, Vasseur F. Plant-herbivore interactions: Experimental demonstration of genetic variability in plant-plant signalling. Evol Appl 2023; 16:772-780. [PMID: 37124083 PMCID: PMC10130558 DOI: 10.1111/eva.13531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 03/31/2023] Open
Abstract
Plant-herbivore interactions mediated by plant-plant signalling have been documented in different species but its within-species variability has hardly been quantified. Here, we tested if herbivore foraging activity on plants was influenced by a prior contact with a damaged plant and if the effect of such plant-plant signalling was variable across 113 natural genotypes of Arabidopsis thaliana. We filmed the activity of the generalist herbivore Cornu aspersum during 1 h on two plants differing only in a prior contact with a damaged plant or not. We recorded each snails' first choice, and measured its first duration on a plant, the proportion of time spent on both plants and leaf consumption. Overall, plant-plant signalling modified the foraging activity of herbivores in A. thaliana. On average, snails spent more time and consumed more of plants that experienced a prior contact with a damaged plant. However, the effects of plant-plant signalling on snail behaviour was variable: depending on genotype identity, plant-plant signalling made undamaged plants more repellant or attractive to snails. Genome-wide associations revealed that genes related to stress coping ability and jasmonate pathway were associated to this variation. Together, our findings highlight the adaptive significance of plant-plant signalling for plant-herbivore interactions.
Collapse
Affiliation(s)
- Aurélien Estarague
- CEFE, Univ Montpellier, CNRS, EPHE, IRDMontpellierFrance
- LEPSE, Univ Montpellier, INRAE, Institut AgroMontpellierFrance
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | - Denis Vile
- LEPSE, Univ Montpellier, INRAE, Institut AgroMontpellierFrance
| | - Anaïs Hany
- CEFE, Univ Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | | | - Pierre Moulin
- CEFE, Univ Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | | |
Collapse
|
4
|
Bai Y, Yang C, Halitschke R, Paetz C, Kessler D, Burkard K, Gaquerel E, Baldwin IT, Li D. Natural history-guided omics reveals plant defensive chemistry against leafhopper pests. Science 2022; 375:eabm2948. [PMID: 35113706 DOI: 10.1126/science.abm2948] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Although much is known about plant traits that function in nonhost resistance against pathogens, little is known about nonhost resistance against herbivores, despite its agricultural importance. Empoasca leafhoppers, serious agricultural pests, identify host plants by eavesdropping on unknown outputs of jasmonate (JA)-mediated signaling. Forward- and reverse-genetics lines of a native tobacco plant were screened in native habitats with native herbivores using high-throughput genomic, transcriptomic, and metabolomic tools to reveal an Empoasca-elicited JA-JAZi module. This module induces an uncharacterized caffeoylputrescine-green leaf volatile compound, catalyzed by a polyphenol oxidase in a Michael addition reaction, which we reconstitute in vitro; engineer in crop plants, where it requires a berberine bridge enzyme-like 2 (BBL2) for its synthesis; and show that it confers resistance to leafhoppers. Natural history-guided forward genetics reveals a conserved nonhost resistance mechanism useful for crop protection.
Collapse
Affiliation(s)
- Yuechen Bai
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Caiqiong Yang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Rayko Halitschke
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Christian Paetz
- Department of Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Danny Kessler
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Konrad Burkard
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Emmanuel Gaquerel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany
| | - Dapeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Mitra S, Estrada-Tejedor R, Volke DC, Phillips MA, Gershenzon J, Wright LP. Negative regulation of plastidial isoprenoid pathway by herbivore-induced β-cyclocitral in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2021; 118:e2008747118. [PMID: 33674379 PMCID: PMC7958287 DOI: 10.1073/pnas.2008747118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Insect damage to plants is known to up-regulate defense and down-regulate growth processes. While there are frequent reports about up-regulation of defense signaling and production of defense metabolites in response to herbivory, much less is understood about the mechanisms by which growth and carbon assimilation are down-regulated. Here we demonstrate that insect herbivory down-regulates the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway in Arabidopsis (Arabidopsis thaliana), a pathway making primarily metabolites for use in photosynthesis. Simulated feeding by the generalist herbivore Spodoptera littoralis suppressed flux through the MEP pathway and decreased steady-state levels of the intermediate 1-deoxy-D-xylulose 5-phosphate (DXP). Simulated herbivory also increased reactive oxygen species content which caused the conversion of β-carotene to β-cyclocitral (βCC). This volatile oxidation product affected the MEP pathway by directly inhibiting DXP synthase (DXS), the rate-controlling enzyme of the MEP pathway in Arabidopsis and inducing plant resistance against S. littoralis βCC inhibited both DXS transcript accumulation and DXS activity. Molecular models suggested that βCC binds to DXS at the binding site for the thymine pyrophosphate cofactor and blocks catalysis, which was confirmed by direct assays of βCC with the purified DXS protein in vitro. Another intermediate of the MEP pathway, 2-C-methyl-D-erythritol-2, 4-cyclodiphosphate, which is known to stimulate salicylate defense signaling, showed greater accumulation and enhanced export out of the plastid in response to simulated herbivory. Together, our work implicates βCC as a signal of herbivore damage in Arabidopsis that increases defense and decreases flux through the MEP pathway, a pathway involved in growth and carbon assimilation.
Collapse
Affiliation(s)
- Sirsha Mitra
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
- Department of Botany, Savitribai Phule Pune University, Pune-411007, India
| | - Roger Estrada-Tejedor
- Pharmaceutical Chemistry Group, IQS School of Engineering, Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Michael A Phillips
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Louwrance P Wright
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| |
Collapse
|
6
|
Genome-Wide Identification of the Tify Gene Family and Their Expression Profiles in Response to Biotic and Abiotic Stresses in Tea Plants ( Camellia sinensis). Int J Mol Sci 2020; 21:ijms21218316. [PMID: 33167605 PMCID: PMC7664218 DOI: 10.3390/ijms21218316] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022] Open
Abstract
The TIFY family is a plant-specific gene family that is involved in regulating a variety of plant processes, including developmental and defense responses. The chromosome-level genome of the tea plant (Camellia sinensis) has recently been released, but a comprehensive view of the TIFY family in C. sinensis (the CsTIFY genes) is lacking. The current study performed an extensive genome-wide identification of CsTIFY genes. The phylogenetics, chromosome location, exon/intron structure, and conserved domains of these genes were analyzed to characterize the members of the CsTIFY family. The expression profiles of the CsTIFY genes in four organs were analyzed, and they showed different spatial expression patterns. All CsJAZ genes were observed to be induced by jasmonate acid (JA) and exhibited different responses to abiotic and biotic stresses. Six of seven CsJAZ genes (CsJAZ1, CsJAZ2, CsJAZ3, CsJAZ4, CsJAZ7, and CsJAZ8) were upregulated by mechanical wounding and infestation with the tea geometrid (Ectropis obliqua), while infection with tea anthracnose (Colletotrichum camelliae) primarily upregulated the expression levels of CsJAZ1 and CsJAZ10. In addition, CsJAZs were observed to interact with CsMYC2 and AtMYC2. Therefore, the results of this study may contribute to the functional characterization of the CsTIFY genes, especially the members of the JAZ subfamily, as regulators of the JA-mediated defense response in tea plant.
Collapse
|
7
|
Szala K, Ogonowska H, Lugowska B, Zmijewska B, Wyszynska R, Dmochowska-Boguta M, Orczyk W, Nadolska-Orczyk A. Different sets of TaCKX genes affect yield-related traits in wheat plants grown in a controlled environment and in field conditions. BMC PLANT BIOLOGY 2020; 20:496. [PMID: 33121443 PMCID: PMC7597040 DOI: 10.1186/s12870-020-02713-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/20/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND TaCKX wheat gene family members (GFMs) encode the enzyme cytokinin oxidase/dehydrogenase (CKX), which irreversibly degrades cytokinins. The genes are important regulators of cytokinin content and take part in growth and development, with a major impact on yield-related traits. The goal of this research was to test whether these genes might be differentially expressed in the field compared to laboratory conditions and consequently differently affect plant development and yield. RESULTS We compared expression and crosstalk of the TaCKX GFMs and TaNAC2-5A gene in modern varieties grown in a growth chamber (GC) and in the field and looked for differences in their impact on yield-related traits. The TaNAC2-5A gene was included in the research since it was expected to play an important role in co-regulation of these genes. The range of relative expression levels of TaCKX GFMs and TaNAC2-5A gene among tested cultivars was from 5 for TaCKX8 to more than 100 for TaCKX9 in the GC and from 6 for TaCKX8 to 275 for TaCKX10 in the field. The range was similar for four of them in the GC, but was much higher for seven others and TaNAC2-5A in the field. The TaCKX GFMs and TaNAC2-5A form co-expression groups, which differ depending on growth conditions. Consequently, the genes also differently regulate yield-related traits in the GC and in the field. TaNAC2-5A took part in negative regulation of tiller number and CKX activity in seedling roots only in controlled GC conditions. Grain number and grain yield were negatively regulated by TaCKX10 in the GC but positively by TaCKX8 and others in the field. Some of the genes, which were expressed in seedling roots, negatively influenced tiller number and positively regulated seedling root weight, CKX activity in the spikes, thousand grain weight (TGW) as well as formation of semi-empty spikes. CONCLUSIONS We have documented that: 1) natural variation in expression levels of tested genes in both environments is very high, indicating the possibility of selection of beneficial genotypes for breeding purposes, 2) to create a model of an ideotype for breeding, we need to take into consideration the natural environment.
Collapse
Affiliation(s)
- Karolina Szala
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland
| | - Hanna Ogonowska
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland
| | | | - Barbara Zmijewska
- Plant Breeding Strzelce Ltd., Co. - IHAR Group, Konczewice 1, 87-140, Chelmza, Poland
| | - Renata Wyszynska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - Marta Dmochowska-Boguta
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland
| | - Waclaw Orczyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland
| | - Anna Nadolska-Orczyk
- Department of Functional Genomics, Plant Breeding and Acclimatization Institute - National Research Institute, Radzikow, 05-870, Blonie, Poland.
| |
Collapse
|
8
|
Farmer EE, Goossens A. Jasmonates: what ALLENE OXIDE SYNTHASE does for plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3373-3378. [PMID: 31273384 PMCID: PMC6609877 DOI: 10.1093/jxb/erz254] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Affiliation(s)
- Edward E Farmer
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde, Ghent, Belgium
| |
Collapse
|