1
|
Chen Y, Liu X, Chen W, Zhu L. RNS2 is required for the biogenesis of a wounding responsive 16 nts tsRNA in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2024; 114:6. [PMID: 38265739 DOI: 10.1007/s11103-023-01399-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024]
Abstract
tRNA-derived small RNAs (tsRNAs), a new category of regulatory small non-coding RNA existing in almost all branches of life, have recently attracted broad attention. Increasing evidence has shown that tsRNAs are not random degradation debris of tRNAs, but products cleaved by specific endoribonucleases, with versatile functions in response to various developmental and environmental cues. However, it is still unclear about the diversity, biogenesis and function of tsRNAs in plants. In this study, we comprehensively profiled 10-60 nts small RNAs in Arabidopsis thaliana leaf with or without wounding stress and identified four 16 nts tiny tRFs (tRNA-derived fragments) sharply increased after wounding, namely tRF5'Ala. Notably, genetic, biochemical and bioinformatic data indicated that RNS2, a member of class II RNase T2 enzymes, was the main endoribonuclease responsible for the biogenesis of tRF5'Ala. Moreover, tRF5'Ala was highly abundant and conserved in Arabidopsis and rice pollen. However, tRF5'Ala did not associate with AGO 1 in vivo or display any inhibitory effect on the translation of a luciferase mRNA in vitro. Altogether, our study highlights the discovery of a novel class of tiny tsRNAs drastically increased under wounding stress as well as their generation by RNS2, which provides a new insight into tsRNAs research in plants.
Collapse
Affiliation(s)
- Yan Chen
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Waihuanxi Road, Guangzhou, 510006, China
| | - Xiaobin Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou Higher Education Mega Center, 230 Waihuanxi Road, Guangzhou, 510006, China
| | - Weiqiang Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Prescription Laboratory of Xinjiang Traditional Uyghur Medicine, Xinjiang Institute of Traditional Uyghur Medicine, Urmuqi, 830000, China.
| | - Lei Zhu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, 6100041, China.
| |
Collapse
|
2
|
Zhou L, Li K, Hunt AG. Natural variation in the plant polyadenylation complex. FRONTIERS IN PLANT SCIENCE 2024; 14:1303398. [PMID: 38317838 PMCID: PMC10839035 DOI: 10.3389/fpls.2023.1303398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
Messenger RNA polyadenylation, the process wherein the primary RNA polymerase II transcript is cleaved and a poly(A) tract added, is a key step in the expression of genes in plants. Moreover, it is a point at which gene expression may be regulated by determining the functionality of the mature mRNA. Polyadenylation is mediated by a complex (the polyadenylation complex, or PAC) that consists of between 15 and 20 subunits. While the general functioning of these subunits may be inferred by extending paradigms established in well-developed eukaryotic models, much remains to be learned about the roles of individual subunits in the regulation of polyadenylation in plants. To gain further insight into this, we conducted a survey of variability in the plant PAC. For this, we drew upon a database of naturally-occurring variation in numerous geographic isolates of Arabidopsis thaliana. For a subset of genes encoding PAC subunits, the patterns of variability included the occurrence of premature stop codons in some Arabidopsis accessions. These and other observations lead us to conclude that some genes purported to encode PAC subunits in Arabidopsis are actually pseudogenes, and that others may encode proteins with dispensable functions in the plant. Many subunits of the PAC showed patterns of variability that were consistent with their roles as essential proteins in the cell. Several other PAC subunits exhibit patterns of variability consistent with selection for new or altered function. We propose that these latter subunits participate in regulatory interactions important for differential usage of poly(A) sites.
Collapse
Affiliation(s)
| | | | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
3
|
Ramming A, Kappel C, Kanaoka MM, Higashiyama T, Lenhard M. Poly(A) polymerase 1 contributes to competence acquisition of pollen tubes growing through the style in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:651-667. [PMID: 36811355 DOI: 10.1111/tpj.16162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/16/2023] [Indexed: 05/10/2023]
Abstract
Polyadenylation of mRNAs is critical for their export from the nucleus, stability, and efficient translation. The Arabidopsis thaliana genome encodes three isoforms of canonical nuclear poly(A) polymerase (PAPS) that redundantly polyadenylate the bulk of pre-mRNAs. However, previous studies have indicated that subsets of pre-mRNAs are preferentially polyadenylated by either PAPS1 or the other two isoforms. Such functional specialization raises the possibility of an additional level of gene-expression control in plants. Here we test this notion by studying the function of PAPS1 in pollen-tube growth and guidance. Pollen tubes growing through female tissue acquire the competence to find ovules efficiently and upregulate PAPS1 expression at the transcriptional, but not detectably at the protein level compared with in vitro grown pollen tubes. Using the temperature-sensitive paps1-1 allele we show that PAPS1 activity during pollen-tube growth is required for full acquisition of competence, resulting in inefficient fertilization by paps1-1 mutant pollen tubes. While these mutant pollen tubes grow almost at the wild-type rate, they are compromised in locating the micropyles of ovules. Previously identified competence-associated genes are less expressed in paps1-1 mutant than in wild-type pollen tubes. Estimating the poly(A) tail lengths of transcripts suggests that polyadenylation by PAPS1 is associated with reduced transcript abundance. Our results therefore suggest that PAPS1 plays a key role in the acquisition of competence and underline the importance of functional specialization between PAPS isoforms throughout different developmental stages.
Collapse
Affiliation(s)
- Anna Ramming
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Christian Kappel
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Masahiro M Kanaoka
- Prefectural University of Hiroshima, Faculty of Life and Environmental Sciences, Faculty of Bioresource Sciences, Shobara, Hiroshima, Japan
| | - Tetsuya Higashiyama
- The University of Tokyo Graduate School of Science, Faculty of Science, Bunkyo-ku, Tokyo, Japan
| | - Michael Lenhard
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
4
|
Qin Y, Long Y, Zhai J. Genome-wide characterization of nascent RNA processing in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102294. [PMID: 36063636 DOI: 10.1016/j.pbi.2022.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Following transcription initiation, RNA polymerase II (Pol II) elongates through the genic region and terminates after the polyadenylation signal. This process is accompanied by splicing, 3' cleavage, and polyadenylation, to eventually form a mature mRNA. Recent advances in short-read and long-read high-throughput sequencing methods have shed light on the global landscape of these co-transcriptional events at nucleotide resolution. In this mini review, we summarize recent developments in genome-wide approaches that broadened our understanding of nascent RNA processing in plants.
Collapse
Affiliation(s)
- Yuwei Qin
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yanping Long
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Jixian Zhai
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China.
| |
Collapse
|
5
|
Yang Z, Yan H, Wang J, Nie G, Feng G, Xu X, Li D, Huang L, Zhang X. DNA hypermethylation promotes the flowering of orchardgrass during vernalization. PLANT PHYSIOLOGY 2022; 190:1490-1505. [PMID: 35861426 PMCID: PMC9516772 DOI: 10.1093/plphys/kiac335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Vernalization, influenced by environmental factors, is an essential process associated with the productivity of temperate crops, during which epigenetic regulation of gene expression plays an important role. Although DNA methylation is one of the major epigenetic mechanisms associated with the control of gene expression, global changes in DNA methylation in the regulation of gene expression during vernalization-induced flowering of temperate plants remain largely undetermined. To characterize vernalization-associated DNA methylation dynamics, we performed whole-genome bisulfite-treated sequencing and transcriptome sequencing in orchardgrass (Dactylis glomerata) during vernalization. The results revealed that increased levels of genome DNA methylation during the early vernalization of orchardgrass were associated with transcriptional changes in DNA methyltransferase and demethylase genes. Upregulated expression of vernalization-related genes during early vernalization was attributable to an increase in mCHH in the promoter regions of these genes. Application of an exogenous DNA methylation accelerator or overexpression of orchardgrass NUCLEAR POLY(A) POLYMERASE (DgPAPS4) promoted earlier flowering, indicating that DNA hypermethylation plays an important role in vernalization-induced flowering. Collectively, our findings revealed that vernalization-induced hypermethylation is responsible for floral primordium initiation and development. These observations provide a theoretical foundation for further studies on the molecular mechanisms underlying the control of vernalization in temperate grasses.
Collapse
Affiliation(s)
| | | | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, Florida 32611, USA
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xiaoheng Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Dandan Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | | | | |
Collapse
|
6
|
Ali I, Sher H, Ullah Z, Ali A, Iqbal J, Yang W. The poly(A) polymerase PAPS1 mediates pollen maturation by regulating sperm cell differentiation in plants. PLANT DIRECT 2022; 6:e397. [PMID: 35592143 PMCID: PMC9099015 DOI: 10.1002/pld3.397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 05/15/2023]
Abstract
In flowering plants, a haploid microspore undergoes an asymmetric division to produce the male germline that encounters a mitotic division to produce two germ cells. The resulting germ cells undergo a series of specialization events to produce the two sperm cells required for double fertilization. These events include to upregulate male germline-specific while downregulating male germline-nonspecific regulon, but how these specializations events are regulated, are still unresolved. To know how plant sperm cell is specialized, we mutagenized Arabidopsis double homozygous transgenic line (MGH3p-MGH3::eGFP and ACTIN11p-H2B::mRFP) by an ethyl methane sulfonate (EMS) treatment and isolated a mutant with sperms identity loss, resulting in a completely male defective plant. Second-generation sequencing identified a point mutation G/A causing premature stop codon TGG/TGA in the poly(A) polymerase PAPS1 that is linked with phenotype. Further, we found that paps1 mutant fails to upregulate male germline-specific regulon and to downregulate male germline-nonspecific factors required for sperm cell differentiation and attaining pollen maturation. Previously, polyadenylation of pre-mRNAs by PAPS1 has been found crucial for both RNA-based silencing processes and the processing of pre-mRNAs into mature mRNAs ready for translation. This study concludes that PAPS1 mediates sperm cell differentiation through upregulating specific while silencing the nonspecific factors of male germlines.
Collapse
Affiliation(s)
- Iftikhar Ali
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- Centre for Plant Science and BiodiversityUniversity of SwatCharbaghPakistan
| | - Hassan Sher
- Centre for Plant Science and BiodiversityUniversity of SwatCharbaghPakistan
| | - Zahid Ullah
- Centre for Plant Science and BiodiversityUniversity of SwatCharbaghPakistan
| | - Ahmad Ali
- Centre for Plant Science and BiodiversityUniversity of SwatCharbaghPakistan
| | - Javed Iqbal
- Department of BotanyBacha Khan UniversityCharsaddaPakistan
| | - Wei‐Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- The College of Advanced Agricultural ScienceThe University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
7
|
Gao J, Zhang K, Cheng YJ, Yu S, Shang GD, Wang FX, Wu LY, Xu ZG, Mai YX, Zhao XY, Zhai D, Lian H, Wang JW. A robust mechanism for resetting juvenility during each generation in Arabidopsis. NATURE PLANTS 2022; 8:257-268. [PMID: 35318444 DOI: 10.1038/s41477-022-01110-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/10/2022] [Indexed: 05/02/2023]
Abstract
Multicellular organisms undergo several developmental transitions during their life cycles. In contrast to animals, the plant germline is derived from adult somatic cells. As such, the juvenility of a plant must be reset in each generation. Previous studies have demonstrated that the decline in the levels of miR156/7 with age drives plant maturation. Here we show that the resetting of plant juvenility during each generation is mediated by de novo activation of MIR156/7 in Arabidopsis. Blocking this process leads to a shortened juvenile phase and premature flowering in the offspring. In particular, an Arabidopsis plant devoid of miR156/7 flowers even without formation of rosette leaves in long days. Mechanistically, we find that different MIR156/7 genes are reset at different developmental stages through distinct reprogramming routes. Among these genes, MIR156A, B and C are activated de novo during sexual reproduction and embryogenesis, while MIR157A and C are reset upon seed germination. This redundancy generates a robust reset mechanism that ensures accurate restoration of the juvenile phase in each plant generation.
Collapse
Affiliation(s)
- Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Ke Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying-Juan Cheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Sha Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Fu-Xiang Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Lian-Yu Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xin-Yan Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, China
| | - Dong Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Heng Lian
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
8
|
Min X, Xu H, Huang F, Wei Y, Lin W, Zhang Z. GC-MS-based metabolite profiling of key differential metabolites between superior and inferior spikelets of rice during the grain filling stage. BMC PLANT BIOLOGY 2021; 21:439. [PMID: 34583646 PMCID: PMC8477532 DOI: 10.1186/s12870-021-03219-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND The asynchronous filling between superior spikelets (SS) and inferior spikelets (IS) in rice has become a research hotspot. The stagnant development and poor grain filling of IS limit yields and the formation of good quality rice. A large number of studies on this phenomenon have been carried out from the genome, transcriptome and proteome level, indicating that asynchronous filling of SS and IS filling is a complex, but orderly physiological and biochemical process involving changes of a large number of genes, protein expression and modification. However, the analysis of metabolomics differences between SS and IS is rarely reported currently. RESULTS This study utilized untargeted metabolomics and identified 162 metabolites in rice spikelets. Among them, 17 differential metabolites associated with unsynchronized grain filling between SS and IS, 27 metabolites were related to the stagnant development of IS and 35 metabolites related to the lower maximum grain-filling rate of IS compared with the SS. We found that soluble sugars were an important metabolite during grain filling for SS and IS. Absolute quantification was used to further analyze the dynamic changes of 4 types of soluble sugars (sucrose, fructose, glucose, and trehalose) between SS and IS. The results showed that sucrose and trehalose were closely associated with the dynamic characteristics of grain filling between SS and IS. The application of exogenous sugar showed that trehalose functioned as a key sugar signal during grain filling of IS. Trehalose regulated the expression of genes related to sucrose conversion and starch synthesis, thereby promoting the conversion of sucrose to starch. The difference in the spatiotemporal expression of TPS-2 and TPP-1 between SS and IS was an important reason that led to the asynchronous change in the trehalose content between SS and IS. CONCLUSIONS The results from this study are helpful for understanding the difference in grain filling between SS and IS at the metabolite level. In addition, the present results can also provide a theoretical basis for the next step of using metabolites to regulate the filling of IS.
Collapse
Affiliation(s)
- Xiumei Min
- College of Life Science, Fujian Agricultural and Forestry University, 350002, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hailong Xu
- College of Life Science, Fujian Agricultural and Forestry University, 350002, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fenglian Huang
- College of Life Science, Fujian Agricultural and Forestry University, 350002, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Science, Fuzhou, 350018, China
| | - Wenxiong Lin
- College of Life Science, Fujian Agricultural and Forestry University, 350002, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Zhixing Zhang
- College of Life Science, Fujian Agricultural and Forestry University, 350002, Fuzhou, China.
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
| |
Collapse
|
9
|
Hunt AG. mRNA 3′ end formation in plants: Novel connections to growth, development and environmental responses. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1575. [DOI: 10.1002/wrna.1575] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Arthur G. Hunt
- Department of Plant and Soil Sciences University of Kentucky Lexington Kentucky
| |
Collapse
|