1
|
Fang J, Zhou L, Chen Q, Wang J, Zhuang Y, Lin S, Yan H, Zhao K, Zhang J, Henry RJ. Integrated multi-omics analysis unravels the floral scent characteristics and regulation in "Hutou" multi-petal jasmine. Commun Biol 2025; 8:256. [PMID: 39966493 PMCID: PMC11836463 DOI: 10.1038/s42003-025-07685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
The multi-petal "Hutou" jasmine (Jasminum sambac var. Trifoliatum) is highly valued for bonsai cultivation and landscape design, however, the aroma profile and mechanisms underlying floral scent formation remain elusive. In this study, we generate a nearly complete telomere-to-telomere (T2T) genome assembly of "Hutou" jasmine (487.45 Mb with contig N50 of 38.93 Mb). Metabolomic profiling unveils that 16 significantly differential volatiles (SDVs) may play a crucial role in the formation of flower aroma. Among them, five scented SDVs, particularly α-farnesene and pentanoic acid 1-ethenyl-1,5-dimethyl-4-hexenyl ester, contribute to the characteristic aroma profile of "Hutou" jasmine flowers. Weighted gene co-expression network analysis (WGCNA) identifies HTWRKY41, HTWRKY53, and HTHSP90 as the hub genes potentially regulating the production of these 16 metabolites. The expression of selected genes and duplication events drive the increased relative content of major sesquiterpenoids in terpenoid biosynthetic pathway. Four structural genes (BEAT3, BSMT1, BPBT2, and BPBT3) are potentially implicated in the emission of downstream key volatile esters (benzyl acetate, methyl benzoate, and benzyl benzoate) in the phenylpropanoids synthesis. Our integrated dataset of genomics, transcriptomics, and metabolomics present here provides a theoretical basis for the practical utilization of fragrance and genetic improvement in horticultural applications of "Hutou" jasmine.
Collapse
Affiliation(s)
- Jingping Fang
- College of Life Science, Fujian Normal University, Fuzhou, China.
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia.
| | - Linwei Zhou
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Qinchang Chen
- College of Life Science, Fujian Normal University, Fuzhou, China.
| | - Jinbin Wang
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Ying Zhuang
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Shaoqing Lin
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Hansong Yan
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Zhao
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Jin X, Du H, Chen M, Zheng X, He Y, Zhu A. A fully phased octoploid strawberry genome reveals the evolutionary dynamism of centromeric satellites. Genome Biol 2025; 26:17. [PMID: 39901151 PMCID: PMC11789339 DOI: 10.1186/s13059-025-03482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
We systematically examine the application of different phasing strategies to decrypt strawberry genome organization and produce a fully phased and accurate reference genome for Fragaria x ananassa cv. "EA78" (2n = 8x = 56). We identify 147 bp canonical centromeric repeats across 50 strawberry chromosomes and uncover the formation of six neocentromeres through centromere turnover. Our findings indicate strawberry genomes have diverged centromeric satellite arrays among chromosomes, particularly across homoeologs, while maintaining high sequence similarity between homologs. We trace the evolutionary dynamics of centromeric repeats and find substantial centromere size expansion in wild and cultivated octoploids compared to the diploid ancestor, F. vesca.
Collapse
Affiliation(s)
- Xin Jin
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyuan Du
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maoxian Chen
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xu Zheng
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiying He
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Andan Zhu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
3
|
Cui J, Wang R, Gu R, Chen M, Wang Z, Li L, Hong J, Cui S. Telomere-to-telomere Phragmites australis reference genome assembly with a B chromosome provides insights into its evolution and polysaccharide biosynthesis. Commun Biol 2025; 8:73. [PMID: 39825185 PMCID: PMC11742667 DOI: 10.1038/s42003-025-07532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/13/2025] [Indexed: 01/20/2025] Open
Abstract
Phragmites australis is a globally distributed grass species (Poaceae) recognized for its vast biomass and exceptional environmental adaptability, making it an ideal model for studying wetland ecosystems and plant stress resilience. However, genomic resources for this species have been limited. In this study, we assembled a chromosome-level reference genome of P. australis containing one B chromosome. An explosion of LTR-RTs, centered on the Copia family, occurred during the late Pleistocene, driving the expansion of P. australis genome size and subgenomic differentiation. Comparative genomic analysis showed that P. australis underwent two whole gene duplication events, was segregated from Cleistogenes songorica at 34.6 Mya, and that 41.26% of the gene families underwent expansion. Based on multi-tissue transcriptomic data, we identified structural genes in the biosynthetic pathway of pharmacologically active Phragmitis rhizoma polysaccharides with essential roles in rhizome development. This study deepens our understanding of Arundinoideae evolution, genome dynamics, and the genetic basis of key traits, providing essential data and a genetic foundation for wetland restoration, bioenergy development, and plant stress.
Collapse
Affiliation(s)
- Jipeng Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Rui Wang
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Ruoqing Gu
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Minghui Chen
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, China
| | - Ziyao Wang
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Li Li
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, China
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jianming Hong
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, China
| | - Suxia Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing, China.
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China.
| |
Collapse
|
4
|
Yu Z, Qi Y, Wei Y, Zhuang G, Li Y, Wang B, Akbar S, Xu Y, Hua X, Xu Q, Deng Z, Zhang J, Huang Y, Yu F, Zhou J. A cost-effective oligo-based barcode system for chromosome identification in longan and lychee. HORTICULTURE RESEARCH 2025; 12:uhae278. [PMID: 39845644 PMCID: PMC11750958 DOI: 10.1093/hr/uhae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/21/2024] [Indexed: 01/24/2025]
Abstract
Oligonucleotide (Oligo)-based fluorescence in situ hybridization (FISH) represents a highly effective methodology for identifying plant chromosomes. Longan is a commercially significant fruit species, yet lacking basic chromosomal markers has hindered its cytogenetic research. In this study, we developed a cost-effective oligo-based system for distinguishing chromosomes of longan (Dimocarpus longan Lour., 2n = 2x = 30). For this system, each synthesized oligo contained two chromosome-specific sequences that spanned a distance of over 200 kb, and a PCR-based flexible amplification method coupled with nested primers was used for probe labeling. The use of these oligo-based barcodes enabled the marking of 36 chromosomal regions, which allowed for the unambiguous distinction of all 15 chromosomes in both longan and lychee (Litchi chinensis Sonn., 2n = 2x = 30) species. Based on the identification of individual chromosomes, we constructed karyotypes and detected genome assembly errors involving the 35S ribosomal RNA gene (35S rDNA) in longan and lychee. Developing oligo-based barcodes offers considerable promise for advancing cytogenetic research in longan, lychee, and their related species. Furthermore, this cost-effective synthesis system can be referred to the development of new oligo libraries among other species.
Collapse
Affiliation(s)
- Zehuai Yu
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Yiying Qi
- College of Agriculture, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Yuxuan Wei
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Gui Zhuang
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Yihan Li
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Baiyu Wang
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Sehrish Akbar
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Yi Xu
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Xiuting Hua
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Qiutao Xu
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Zuhu Deng
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Jisen Zhang
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Yongji Huang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Minhou District, Fuzhou 350108, China
| | - Fan Yu
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Jiannan Zhou
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Mazhang District, Zhanjiang 524091, China
| |
Collapse
|
5
|
Tek AL, Nagaki K, Yıldız Akkamış H, Tanaka K, Kobayashi H. Chromosome-specific barcode system with centromeric repeat in cultivated soybean and wild progenitor. Life Sci Alliance 2024; 7:e202402802. [PMID: 39353738 PMCID: PMC11447526 DOI: 10.26508/lsa.202402802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Wild soybean Glycine soja is the progenitor of cultivated soybean Glycine max Information on soybean functional centromeres is limited despite extensive genome analysis. These species are an ideal model for studying centromere dynamics for domestication and breeding. We performed a detailed chromatin immunoprecipitation analysis using centromere-specific histone H3 protein to delineate two distinct centromeric DNA sequences with unusual repeating units with monomer sizes of 90-92 bp (CentGm-1) and 413-bp (CentGm-4) shorter and longer than standard nucleosomes. These two unrelated DNA sequences with no sequence similarity are part of functional centromeres in both species. Our results provide a comparison of centromere properties between a cultivated and a wild species under the effect of the same kinetochore protein. Possible sequence homogenization specific to each chromosome could highlight the mechanism for evolutionary conservation of centromeric properties independent of domestication and breeding. Moreover, a unique barcode system to track each chromosome is developed using CentGm-4 units. Our results with a unifying centromere composition model using CentGm-1 and CentGm-4 superfamilies could have far-reaching implications for comparative and evolutionary genome research.
Collapse
Affiliation(s)
- Ahmet L Tek
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye
| | - Kiyotaka Nagaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Hümeyra Yıldız Akkamış
- Department of Agricultural Genetic Engineering, Ayhan Şahenk Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Türkiye
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya, Japan
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya, Japan
| |
Collapse
|
6
|
Ling X, Jiao Q, Lin D, Chen J, Han Y, Meng J, Zhong B, Zhang H, Zhang G, Zhu F, Qin J, Ruan Y, Liu L. Extrachromosomal circular DNA containing DTX1 promotes cell growth in hydroquinone-induced malignantly transformed cells by regulating the transcription of DTX1. BMC Cancer 2024; 24:1448. [PMID: 39587541 PMCID: PMC11587744 DOI: 10.1186/s12885-024-13177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 11/09/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Extrachromosomal circular DNA (eccDNA), a novel class of DNA with a circular topological structure, is present in a variety of cancer cells and tissues and may play broad roles in processes ranging from aging to cancer cell heterogeneity through multiple mechanisms. EccDNA has been characterized by profile, structure and function in several prominent studies but its effect on hydroquinone (HQ)-induced malignantly transformed cells (TK6-HQ) is still elusive. METHODS Circle-seq was applied to determine the eccDNA counts and characteristics of TK6-HQ cells. DNA-fluorescence in situ hybridization was used to measure the abundance of eccDNA_DTX1. Differential gene expression analysis was carried out by RNA-seq. Gene expression was quantified by wertern blot and qPCR. Decircularization of eccDNA_DTX1 was achieved by CRISPR/Cas9. Tumorigenicity was evaluated by xenograft assay in BALB/c nude mice. RESULTS In this study, we characterized the structure of eccDNAs and the function of DTX1-containing eccDNA (eccDNA_DTX1) in TK6-HQ cells. A total of 669,179 eccDNAs were identified, including 901 eccDNAs with different counts. Most of the eccDNAs were < 1000 bp in length and were enriched in four periodic peaks starting at 186 bp with an interval of ~ 180 bp. The genomic distribution of eccDNAs confirmed that eccDNAs could be observed across all chromosomes and had greater enrichment on chromosomes 17, 19, 20, and 22, with abundant Alu repeat elements, introns and CpG islands. By combining the results of the integrated circle-seq analysis of eccDNAs with those from the RNA-seq analysis (differentially expressed genes, 1064 upregulated and 427 downregulated), the authors showed that the transcription of 20 potential coding genes might be driven by eccDNAs. Finally, the knockdown of eccDNA_DTX1 by CRISPR/Cas9 inhibited the growth of TK6-HQ cells in vitro and in vivo by inhibiting the transcription of DTX1 and promoting ferroptosis, and ferroptosis inhibior, Ferrostatin-1, abrogated the proliferation inhibition of eccDNA_DTX1 knockdown. CONCLUSIONS EccDNA_DTX1 promotes cell growth in hydroquinone-induced malignantly transformed cells by regulating the transcription of DTX1 and ferroptosis. This study profiles eccDNA characteristics and defines the role and mechanism of eccDNA_DTX1 for the first time, shedding new light on the relationship between eccDNAs and carcinogenesis.
Collapse
Affiliation(s)
- Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Qunfang Jiao
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Daifan Lin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Jialong Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Yali Han
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Jinxue Meng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Bohuan Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - He Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Gongda Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Fangling Zhu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China
| | - Jiheng Qin
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Meidical University, Dongguan, 523808, P.R. China
| | - Yongdui Ruan
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523722, P.R. China
| | - Linhua Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China.
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, P. R. China.
| |
Collapse
|
7
|
Xie Y, Wang M, Mo B, Liang C. Plant kinetochore complex: composition, function, and regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1467236. [PMID: 39464281 PMCID: PMC11503545 DOI: 10.3389/fpls.2024.1467236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
The kinetochore complex, an important protein assembly situated on the centromere, plays a pivotal role in chromosome segregation during cell division. Like in animals and fungi, the plant kinetochore complex is important for maintaining chromosome stability, regulating microtubule attachment, executing error correction mechanisms, and participating in signaling pathways to ensure accurate chromosome segregation. This review summarizes the composition, function, and regulation of the plant kinetochore complex, emphasizing the interactions of kinetochore proteins with centromeric DNAs (cenDNAs) and RNAs (cenRNAs). Additionally, the applications of the centromeric histone H3 variant (the core kinetochore protein CENH3, first identified as CENP-A in mammals) in the generation of ploidy-variable plants and synthesis of plant artificial chromosomes (PACs) are discussed. The review serves as a comprehensive roadmap for researchers delving into plant kinetochore exploration, highlighting the potential of kinetochore proteins in driving technological innovations in synthetic genomics and plant biotechnology.
Collapse
Affiliation(s)
- Yuqian Xie
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Mingliang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| | - Chao Liang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
8
|
Fang J, Lin A, Yan H, Feng L, Lin S, Mason P, Zhou L, Xu X, Zhao K, Huang Y, Henry RJ. Cytoplasmic genomes of Jasminum sambac reveal divergent sub-mitogenomic conformations and a large nuclear chloroplast-derived insertion. BMC PLANT BIOLOGY 2024; 24:861. [PMID: 39272034 PMCID: PMC11401388 DOI: 10.1186/s12870-024-05557-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Jasminum sambac, a widely recognized ornamental plant prized for its aromatic blossoms, exhibits three flora phenotypes: single-petal ("SP"), double-petal ("DP"), and multi-petal ("MP"). The lack of detailed characterization and comparison of J. sambac mitochondrial genomes (mitogenomes) hinders the exploration of the genetic and structural diversity underlying the varying floral phenotypes in jasmine accessions. RESULTS Here, we de novo assembled three mitogenomes of typical phenotypes of J. sambac, "SP", "DP", and "MP-hutou" ("HT"), with PacBio reads and the "HT" chloroplast (cp) genome with Illumina reads, and verified them with read mapping and fluorescence in situ hybridization (FISH). The three mitogenomes present divergent sub-genomic conformations, with two, two, and four autonomous circular chromosomes ranging in size from 35.7 kb to 405.3 kb. Each mitogenome contained 58 unique genes. Ribosome binding sites with conserved AAGAAx/AxAAAG motifs were detected upstream of uncanonical start codons TTG, CTG and GTG. The three mitogenomes were similar in genomic content but divergent in structure. The structural variations were mainly attributed to recombination mediated by a large (~ 5 kb) forward repeat pair and several short repeats. The three jasmine cp. genomes showed a well-conserved structure, apart from a 19.9 kb inversion in "HT". We identified a 14.3 kb "HT"-specific insertion on Chr7 of the "HT" nuclear genome, consisting of two 7 kb chloroplast-derived fragments with two intact ndhH and rps15 genes, further validated by polymerase chain reaction (PCR). The well-resolved phylogeny suggests faster mitogenome evolution in J. sambac compared to other Oleaceae species and outlines the mitogenome evolutionary trajectories within Lamiales. All evidence supports that "DP" and "HT" evolved from "SP", with "HT" being the most recent derivative of "DP". CONCLUSION The comprehensive characterization of jasmine organelle genomes has added to our knowledge of the structural diversity and evolutionary trajectories behind varying jasmine traits, paving the way for in-depth exploration of mechanisms and targeted genetic research.
Collapse
Affiliation(s)
- Jingping Fang
- College of Life Science, Fujian Normal University, Fuzhou, China.
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia.
| | - Aiting Lin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hansong Yan
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liqing Feng
- College of Life Science, Fujian Normal University, Fuzhou, China
- Marine and Agricultural Biotechnology Laboratory, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Shaoqing Lin
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Patrick Mason
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia
| | - Linwei Zhou
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xiuming Xu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Zhao
- College of Life Science, Fujian Normal University, Fuzhou, China
| | - Yongji Huang
- Marine and Agricultural Biotechnology Laboratory, Fuzhou Institute of Oceanography, College of Geography and Oceanography, Minjiang University, Fuzhou, China.
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Australia.
| |
Collapse
|
9
|
Yang T, Cai Y, Huang T, Yang D, Yang X, Yin X, Zhang C, Yang Y, Yang Y. A telomere-to-telomere gap-free reference genome assembly of avocado provides useful resources for identifying genes related to fatty acid biosynthesis and disease resistance. HORTICULTURE RESEARCH 2024; 11:uhae119. [PMID: 38966866 PMCID: PMC11220182 DOI: 10.1093/hr/uhae119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 04/14/2024] [Indexed: 07/06/2024]
Abstract
Avocado (Persea americana Mill.) is an economically valuable plant because of the high fatty acid content and unique flavor of its fruits. Its fatty acid content, especially the relatively high unsaturated fatty acid content, provides significant health benefits. We herein present a telomere-to-telomere gapless genome assembly (841.6 Mb) of West Indian avocado. The genome contains 40 629 predicted protein-coding genes. Repeat sequences account for 57.9% of the genome. Notably, all telomeres, centromeres, and a nucleolar organizing region are included in this genome. Fragments from these three regions were observed via fluorescence in situ hybridization. We identified 376 potential disease resistance-related nucleotide-binding leucine-rich repeat genes. These genes, which are typically clustered on chromosomes, may be derived from gene duplication events. Five NLR genes (Pa11g0262, Pa02g4855, Pa07g3139, Pa07g0383, and Pa02g3196) were highly expressed in leaves, stems, and fruits, indicating they may be involved in avocado disease responses in multiple tissues. We also identified 128 genes associated with fatty acid biosynthesis and analyzed their expression patterns in leaves, stems, and fruits. Pa02g0113, which encodes one of 11 stearoyl-acyl carrier protein desaturases mediating C18 unsaturated fatty acid synthesis, was more highly expressed in the leaves than in the stems and fruits. These findings provide valuable insights that enhance our understanding of fatty acid biosynthesis in avocado.
Collapse
Affiliation(s)
- Tianyu Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Cai
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tianping Huang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Center of Gardening & Horticulture, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Danni Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xingyu Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Yin
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yunqiang Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yongping Yang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
10
|
Wang B, Jia Y, Dang N, Yu J, Bush SJ, Gao S, He W, Wang S, Guo H, Yang X, Ma W, Ye K. Near telomere-to-telomere genome assemblies of two Chlorella species unveil the composition and evolution of centromeres in green algae. BMC Genomics 2024; 25:356. [PMID: 38600443 PMCID: PMC11005252 DOI: 10.1186/s12864-024-10280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Centromeres play a crucial and conserved role in cell division, although their composition and evolutionary history in green algae, the evolutionary ancestors of land plants, remains largely unknown. RESULTS We constructed near telomere-to-telomere (T2T) assemblies for two Trebouxiophyceae species, Chlorella sorokiniana NS4-2 and Chlorella pyrenoidosa DBH, with chromosome numbers of 12 and 13, and genome sizes of 58.11 Mb and 53.41 Mb, respectively. We identified and validated their centromere sequences using CENH3 ChIP-seq and found that, similar to humans and higher plants, the centromeric CENH3 signals of green algae display a pattern of hypomethylation. Interestingly, the centromeres of both species largely comprised transposable elements, although they differed significantly in their composition. Species within the Chlorella genus display a more diverse centromere composition, with major constituents including members of the LTR/Copia, LINE/L1, and LINE/RTEX families. This is in contrast to green algae including Chlamydomonas reinhardtii, Coccomyxa subellipsoidea, and Chromochloris zofingiensis, in which centromere composition instead has a pronounced single-element composition. Moreover, we observed significant differences in the composition and structure of centromeres among chromosomes with strong collinearity within the Chlorella genus, suggesting that centromeric sequence evolves more rapidly than sequence in non-centromeric regions. CONCLUSIONS This study not only provides high-quality genome data for comparative genomics of green algae but gives insight into the composition and evolutionary history of centromeres in early plants, laying an important foundation for further research on their evolution.
Collapse
Affiliation(s)
- Bo Wang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Yanyan Jia
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Ningxin Dang
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
- Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Yu
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Stephen J Bush
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Shenghan Gao
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Wenxi He
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Sirui Wang
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Hongtao Guo
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Weimin Ma
- College of Life Sciences, Shanghai Normal University, Shanghai, China.
| | - Kai Ye
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, China.
- Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China.
- Faculty of Science, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
11
|
Pei D, Yu X, Fu W, Ma X, Fang J. The evolution and formation of centromeric repeats analysis in Vitis vinifera. PLANTA 2024; 259:99. [PMID: 38522063 DOI: 10.1007/s00425-024-04374-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/03/2024] [Indexed: 03/25/2024]
Abstract
MAIN CONCLUSION Six grape centromere-specific markers for cytogenetics were mined by combining genetic and immunological assays, and the possible evolution mechanism of centromeric repeats was analyzed. Centromeric histone proteins are functionally conserved; however, centromeric repetitive DNA sequences may represent considerable diversity in related species. Therefore, studying the characteristics and structure of grape centromere repeat sequences contributes to a deeper understanding of the evolutionary process of grape plants, including their origin and mechanisms of polyploidization. Plant centromeric regions are mainly composed of repetitive sequences, including SatDNA and transposable elements (TE). In this research, the characterization of centromere sequences in the whole genome of grapevine (Vitis vinifera L.) has been conducted. Five centromeric tandem repeat sequences (Vv1, Vv2, Vv5, Vv6, and Vv8) and one long terminal repeat (LTR) sequence Vv24 were isolated. These sequences had different centromeric distributions, which indicates that grape centromeric sequences may undergo rapid evolution. The existence of extrachromosomal circular DNA (eccDNA) and gene expression in CenH3 subdomain region may provide various potential mechanisms for the generation of new centromeric regions.
Collapse
Affiliation(s)
- Dan Pei
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xue Yu
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weihong Fu
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xuhui Ma
- College of Life Sciences, Zaozhuang University, Zaozhuang, 277000, China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China.
| |
Collapse
|
12
|
Liu J, Lin X, Wang X, Feng L, Zhu S, Tian R, Fang J, Tao A, Fang P, Qi J, Zhang L, Huang Y, Xu J. Genomic and cytogenetic analyses reveal satellite repeat signature in allotetraploid okra (Abelmoschus esculentus). BMC PLANT BIOLOGY 2024; 24:71. [PMID: 38267860 PMCID: PMC10809672 DOI: 10.1186/s12870-024-04739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Satellite repeats are one of the most rapidly evolving components in eukaryotic genomes and play vital roles in genome regulation, genome evolution, and speciation. As a consequence, the composition, abundance and chromosome distribution of satellite repeats often exhibit variability across various species, genome, and even individual chromosomes. However, we know little about the satellite repeat evolution in allopolyploid genomes. RESULTS In this study, we investigated the satellite repeat signature in five okra (Abelmoschus esculentus) accessions using genomic and cytogenetic methods. In each of the five accessions, we identified eight satellite repeats, which exhibited a significant level of intraspecific conservation. Through fluorescence in situ hybridization (FISH) experiments, we observed that the satellite repeats generated multiple signals and exhibited variations in copy number across chromosomes. Intriguingly, we found that five satellite repeats were interspersed with centromeric retrotransposons, signifying their involvement in centromeric satellite repeat identity. We confirmed subgenome-biased amplification patterns of these satellite repeats through existing genome assemblies or dual-color FISH, indicating their distinct dynamic evolution in the allotetraploid okra subgenome. Moreover, we observed the presence of multiple chromosomes harboring the 35 S rDNA loci, alongside another chromosomal pair carrying the 5 S rDNA loci in okra using FISH assay. Remarkably, the intensity of 35 S rDNA hybridization signals varied among chromosomes, with the signals predominantly localized within regions of relatively weak DAPI staining, associated with GC-rich heterochromatin regions. Finally, we observed a similar localization pattern between 35 S rDNA and three satellite repeats with high GC content and confirmed their origin in the intergenic spacer region of the 35 S rDNA. CONCLUSIONS Our findings uncover a unique satellite repeat signature in the allotetraploid okra, contributing to our understanding of the composition, abundance, and chromosomal distribution of satellite repeats in allopolyploid genomes, further enriching our understanding of their evolutionary dynamics in complex allopolyploid genomes.
Collapse
Affiliation(s)
- Jiarui Liu
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinyi Lin
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaojie Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liqing Feng
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Shixin Zhu
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Runmeng Tian
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingping Fang
- College of Life Science, Fujian Normal University, Fuzhou, 350117, China
| | - Aifen Tao
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pingping Fang
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianmin Qi
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liwu Zhang
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongji Huang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Fuzhou, 350108, China.
| | - Jiantang Xu
- Scientific Observing and Experimental Station of Southeastern kenaf & jute, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Provincial Key Laboratory of Crop Breeding by Design, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
13
|
Xia F, Li B, Song K, Wang Y, Hou Z, Li H, Zhang X, Li F, Yang L. Polyploid Genome Assembly Provides Insights into Morphological Development and Ascorbic Acid Accumulation of Sauropus androgynus. Int J Mol Sci 2023; 25:300. [PMID: 38203470 PMCID: PMC10778994 DOI: 10.3390/ijms25010300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Sauropus androgynus (S. androgynus) (2n = 4x = 52) is one of the most popular functional leafy vegetables in South and Southeast Asia. With its rich nutritional and pharmaceutical values, it has traditionally had widespread use for dietary and herbal purposes. Here, the genome of S. androgynus was sequenced and assembled, revealing a genome size of 1.55 Gb with 26 pseudo-chromosomes. Phylogenetic analysis traced back the divergence of Sauropus from Phyllanthus to approximately 29.67 million years ago (Mya). Genome analysis revealed that S. androgynus polyploidized around 20.51 Mya and shared a γ event about 132.95 Mya. Gene function analysis suggested that the expansion of pathways related to phloem development, lignin biosynthesis, and photosynthesis tended to result in the morphological differences among species within the Phyllanthaceae family, characterized by varying ploidy levels. The high accumulation of ascorbic acid in S. androgynus was attributed to the high expression of genes associated with the L-galactose pathway and recycling pathway. Moreover, the expanded gene families of S. androgynus exhibited multiple biochemical pathways associated with its comprehensive pharmacological activity, geographic adaptation and distinctive pleasurable flavor. Altogether, our findings represent a crucial genomic asset for S. androgynus, casting light on the intricate ploidy within the Phyllanthaceae family.
Collapse
Affiliation(s)
- Fagang Xia
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.X.); (Y.W.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Li
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Kangkang Song
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Yankun Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.X.); (Y.W.)
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuangwei Hou
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Haozhen Li
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Xiaohua Zhang
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| | - Fangping Li
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China;
| | - Long Yang
- Agricultural Big-Data Research Center, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China; (B.L.); (K.S.); (H.L.); (X.Z.)
| |
Collapse
|
14
|
Wang X, Ma X, Yan G, Hua L, Liu H, Huang W, Liang Z, Chao Q, Hibberd JM, Jiao Y, Zhang M. Gene duplications facilitate C4-CAM compatibility in common purslane. PLANT PHYSIOLOGY 2023; 193:2622-2639. [PMID: 37587696 PMCID: PMC10663116 DOI: 10.1093/plphys/kiad451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/18/2023]
Abstract
Common purslane (Portulaca oleracea) integrates both C4 and crassulacean acid metabolism (CAM) photosynthesis pathways and is a promising model plant to explore C4-CAM plasticity. Here, we report a high-quality chromosome-level genome of nicotinamide adenine dinucleotide (NAD)-malic enzyme (ME) subtype common purslane that provides evidence for 2 rounds of whole-genome duplication (WGD) with an ancient WGD (P-β) in the common ancestor to Portulacaceae and Cactaceae around 66.30 million years ago (Mya) and another (Po-α) specific to common purslane lineage around 7.74 Mya. A larger number of gene copies encoding key enzymes/transporters involved in C4 and CAM pathways were detected in common purslane than in related species. Phylogeny, conserved functional site, and collinearity analyses revealed that the Po-α WGD produced the phosphoenolpyruvate carboxylase-encoded gene copies used for photosynthesis in common purslane, while the P-β WGD event produced 2 ancestral genes of functionally differentiated (C4- and CAM-specific) beta carbonic anhydrases involved in the C4 + CAM pathways. Additionally, cis-element enrichment analysis in the promoters showed that CAM-specific genes have recruited both evening and midnight circadian elements as well as the Abscisic acid (ABA)-independent regulatory module mediated by ethylene-response factor cis-elements. Overall, this study provides insights into the origin and evolutionary process of C4 and CAM pathways in common purslane, as well as potential targets for engineering crops by integrating C4 or CAM metabolism.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Xuxu Ma
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ge Yan
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Han Liu
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Huang
- National Maize Improvement Center, China Agricultural University, Beijing 100193, China
| | - Zhikai Liang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Qing Chao
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Yuannian Jiao
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
| | - Mei Zhang
- Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Botanical Garden, Beijing 100093, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
15
|
Liu Y, Yi C, Fan C, Liu Q, Liu S, Shen L, Zhang K, Huang Y, Liu C, Wang Y, Tian Z, Han F. Pan-centromere reveals widespread centromere repositioning of soybean genomes. Proc Natl Acad Sci U S A 2023; 120:e2310177120. [PMID: 37816061 PMCID: PMC10589659 DOI: 10.1073/pnas.2310177120] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
Centromere repositioning refers to a de novo centromere formation at another chromosomal position without sequence rearrangement. This phenomenon was frequently encountered in both mammalian and plant species and has been implicated in genome evolution and speciation. To understand the dynamic of centromeres on soybean genome, we performed the pan-centromere analysis using CENH3-ChIP-seq data from 27 soybean accessions, including 3 wild soybeans, 9 landraces, and 15 cultivars. Building upon the previous discovery of three centromere satellites in soybean, we have identified two additional centromere satellites that specifically associate with chromosome 1. These satellites reveal significant rearrangements in the centromere structures of chromosome 1 across different accessions, consequently impacting the localization of CENH3. By comparative analysis, we reported a high frequency of centromere repositioning on 14 out of 20 chromosomes. Most newly emerging centromeres formed in close proximity to the native centromeres and some newly emerging centromeres were apparently shared in distantly related accessions, suggesting their emergence is independent. Furthermore, we crossed two accessions with mismatched centromeres to investigate how centromere positions would be influenced in hybrid genetic backgrounds. We found that a significant proportion of centromeres in the S9 generation undergo changes in size and position compared to their parental counterparts. Centromeres preferred to locate at satellites to maintain a stable state, highlighting a significant role of centromere satellites in centromere organization. Taken together, these results revealed extensive centromere repositioning in soybean genome and highlighted how important centromere satellites are in constraining centromere positions and supporting centromere function.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Congyang Yi
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Chaolan Fan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Kaibiao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Yuhong Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Chang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Yingxiang Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou510642, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing100101, China
| |
Collapse
|
16
|
Zheng H, Wang B, Hua X, Gao R, Wang Y, Zhang Z, Zhang Y, Mei J, Huang Y, Huang Y, Lin H, Zhang X, Lin D, Lan S, Liu Z, Lu G, Wang Z, Ming R, Zhang J, Lin Z. A near-complete genome assembly of the allotetrapolyploid Cenchrus fungigraminus (JUJUNCAO) provides insights into its evolution and C4 photosynthesis. PLANT COMMUNICATIONS 2023; 4:100633. [PMID: 37271992 PMCID: PMC10504591 DOI: 10.1016/j.xplc.2023.100633] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/07/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
JUJUNCAO (Cenchrus fungigraminus; 2n = 4x = 28) is a Cenchrus grass with the highest biomass production among cultivated plants, and it can be used for mushroom cultivation, animal feed, and biofuel production. Here, we report a nearly complete genome assembly of JUJUNCAO and reveal that JUJUNCAO is an allopolyploid that originated ∼2.7 million years ago (mya). Its genome consists of two subgenomes, and subgenome A shares high collinear synteny with pearl millet. We also investigated the genome evolution of JUJUNCAO and suggest that the ancestral karyotype of Cenchrus split into the A and B ancestral karyotypes of JUJUNCAO. Comparative transcriptome and DNA methylome analyses revealed functional divergence of homeologous gene pairs between the two subgenomes, which was a further indication of asymmetric DNA methylation. The three types of centromeric repeat in the JUJUNCAO genome (CEN137, CEN148, and CEN156) may have evolved independently within each subgenome, with some introgressions of CEN156 from the B to the A subgenome. We investigated the photosynthetic characteristics of JUJUNCAO, revealing its typical C4 Kranz anatomy and high photosynthetic efficiency. NADP-ME and PEPCK appear to cooperate in the major C4 decarboxylation reaction of JUJUNCAO, which is different from other C4 photosynthetic subtypes and may contribute to its high photosynthetic efficiency and biomass yield. Taken together, our results provide insights into the highly efficient photosynthetic mechanism of JUJUNCAO and provide a valuable reference genome for future genetic and evolutionary studies, as well as genetic improvement of Cenchrus grasses.
Collapse
Affiliation(s)
- Huakun Zheng
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baiyu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, Guangxi, China; Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiuting Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, Guangxi, China
| | - Ruiting Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, Guangxi, China
| | - Yuhao Wang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zixin Zhang
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixing Zhang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Mei
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongji Huang
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yumin Huang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Lin
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingtan Zhang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Lin
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongjian Liu
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guodong Lu
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ray Ming
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, Guangxi, China.
| | - Zhanxi Lin
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
17
|
Ma H, Ding W, Chen Y, Zhou J, Chen W, Lan C, Mao H, Li Q, Yan W, Su H. Centromere Plasticity With Evolutionary Conservation and Divergence Uncovered by Wheat 10+ Genomes. Mol Biol Evol 2023; 40:msad176. [PMID: 37541261 PMCID: PMC10422864 DOI: 10.1093/molbev/msad176] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/26/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023] Open
Abstract
Centromeres (CEN) are the chromosomal regions that play a crucial role in maintaining genomic stability. The underlying highly repetitive DNA sequences can evolve quickly in most eukaryotes, and promote karyotype evolution. Despite their variability, it is not fully understood how these widely variable sequences ensure the homeostasis of centromere function. In this study, we investigated the genetics and epigenetics of CEN in a population of wheat lines from global breeding programs. We captured a high degree of sequences, positioning, and epigenetic variations in the large and complex wheat CEN. We found that most CENH3-associated repeats are Cereba element of retrotransposons and exhibit phylogenetic homogenization across different wheat lines, but the less-associated repeat sequences diverge on their own way in each wheat line, implying specific mechanisms for selecting certain repeat types as functional core CEN. Furthermore, we observed that CENH3 nucleosome structures display looser wrapping of DNA termini on complex centromeric repeats, including the repositioned CEN. We also found that strict CENH3 nucleosome positioning and intrinsic DNA features play a role in determining centromere identity among different lines. Specific non-B form DNAs were substantially associated with CENH3 nucleosomes for the repositioned centromeres. These findings suggest that multiple mechanisms were involved in the adaptation of CENH3 nucleosomes that can stabilize CEN. Ultimately, we proposed a remarkable epigenetic plasticity of centromere chromatin within the diverse genomic context, and the high robustness is crucial for maintaining centromere function and genome stability in wheat 10+ lines as a result of past breeding selections.
Collapse
Affiliation(s)
- Huan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Wentao Ding
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Yiqian Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Jingwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Hailiang Mao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
18
|
Xu L, Wang Y, Dong J, Zhang W, Tang M, Zhang W, Wang K, Chen Y, Zhang X, He Q, Zhang X, Wang K, Wang L, Ma Y, Xia K, Liu L. A chromosome-level genome assembly of radish (Raphanus sativus L.) reveals insights into genome adaptation and differential bolting regulation. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:990-1004. [PMID: 36648398 PMCID: PMC10106849 DOI: 10.1111/pbi.14011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 05/04/2023]
Abstract
High-quality radish (Raphanus sativus) genome represents a valuable resource for agronomical trait improvements and understanding genome evolution among Brassicaceae species. However, existing radish genome assembly remains fragmentary, which greatly hampered functional genomics research and genome-assisted breeding. Here, using a NAU-LB radish inbred line, we generated a reference genome of 476.32 Mb with a scaffold N50 of 56.88 Mb by incorporating Illumina, PacBio and BioNano optical mapping techniques. Utilizing Hi-C data, 448.12 Mb (94.08%) of the assembled sequences were anchored to nine radish chromosomes with 40 306 protein-coding genes annotated. In total, 249.14 Mb (52.31%) comprised the repetitive sequences, among which long terminal repeats (LTRs, 30.31%) were the most abundant class. Beyond confirming the whole-genome triplication (WGT) event in R. sativus lineage, we found several tandem arrayed genes were involved in stress response process, which may account for the distinctive phenotype of high disease resistance in R. sativus. By comparing against the existing Xin-li-mei radish genome, a total of 2 108 573 SNPs, 7740 large insertions, 7757 deletions and 84 inversions were identified. Interestingly, a 647-bp insertion in the promoter of RsVRN1 gene can be directly bound by the DOF transcription repressor RsCDF3, resulting into its low promoter activity and late-bolting phenotype of NAU-LB cultivar. Importantly, introgression of this 647-bp insertion allele, RsVRN1In-536 , into early-bolting genotype could contribute to delayed bolting time, indicating that it is a potential genetic resource for radish late-bolting breeding. Together, this genome resource provides valuable information to facilitate comparative genomic analysis and accelerate genome-guided breeding and improvement in radish.
Collapse
Affiliation(s)
- Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Junhui Dong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Wei Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Mingjia Tang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Weilan Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Kai Wang
- School of Life SciencesNantong UniversityNantongChina
| | - Yinglong Chen
- The UWA Institute of Agriculture, and School of Agriculture and EnvironmentThe University of Western AustraliaPerthWAAustralia
| | - Xiaoli Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Qing He
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Xinyu Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Kai Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Lun Wang
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Yinbo Ma
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| | - Kai Xia
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of HorticultureNanjing Agricultural UniversityNanjingChina
- College of Horticulture and Landscape ArchitectureYangzhou UniversityYangzhouChina
| |
Collapse
|
19
|
Wang T, Wang B, Hua X, Tang H, Zhang Z, Gao R, Qi Y, Zhang Q, Wang G, Yu Z, Huang Y, Zhang Z, Mei J, Wang Y, Zhang Y, Li Y, Meng X, Wang Y, Pan H, Chen S, Li Z, Shi H, Liu X, Deng Z, Chen B, Zhang M, Gu L, Wang J, Ming R, Yao W, Zhang J. A complete gap-free diploid genome in Saccharum complex and the genomic footprints of evolution in the highly polyploid Saccharum genus. NATURE PLANTS 2023; 9:554-571. [PMID: 36997685 DOI: 10.1038/s41477-023-01378-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/21/2023] [Indexed: 06/19/2023]
Abstract
A diploid genome in the Saccharum complex facilitates our understanding of evolution in the highly polyploid Saccharum genus. Here we have generated a complete, gap-free genome assembly of Erianthus rufipilus, a diploid species within the Saccharum complex. The complete assembly revealed that centromere satellite homogenization was accompanied by the insertions of Gypsy retrotransposons, which drove centromere diversification. An overall low rate of gene transcription was observed in the palaeo-duplicated chromosome EruChr05 similar to other grasses, which might be regulated by methylation patterns mediated by homologous 24 nt small RNAs, and potentially mediating the functions of many nucleotide-binding site genes. Sequencing data for 211 accessions in the Saccharum complex indicated that Saccharum probably originated in the trans-Himalayan region from a diploid ancestor (x = 10) around 1.9-2.5 million years ago. Our study provides new insights into the origin and evolution of Saccharum and accelerates translational research in cereal genetics and genomics.
Collapse
Affiliation(s)
- Tianyou Wang
- National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baiyu Wang
- State Key Lab for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Xiuting Hua
- State Key Lab for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Haibao Tang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zeyu Zhang
- Basic Forestry and Proteomics Research Center, College of Forestry, Haixia Institute of Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruiting Gao
- State Key Lab for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Yiying Qi
- National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Yancheng Teachers University, Yancheng, China
| | - Zehuai Yu
- State Key Lab for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Yongji Huang
- Institute of Oceanography, Marine Biotechnology Center, Minjiang University, Fuzhou, China
| | - Zhe Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Mei
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhao Wang
- National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yixing Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yihan Li
- State Key Lab for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Xue Meng
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongjun Wang
- National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haoran Pan
- National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqi Chen
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Li
- National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huihong Shi
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinlong Liu
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, Haixia Institute of Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianping Wang
- Department of Agronomy, University of Florida, Gainesville, FL, USA
| | - Ray Ming
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China.
| | - Jisen Zhang
- State Key Lab for Conservation and Utilization of Subtropical AgroBiological Resources and Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China.
| |
Collapse
|
20
|
Ding W, Zhu Y, Han J, Zhang H, Xu Z, Khurshid H, Liu F, Hasterok R, Shen X, Wang K. Characterization of centromeric DNA of Gossypium anomalum reveals sequence-independent enrichment dynamics of centromeric repeats. Chromosome Res 2023; 31:12. [PMID: 36971835 DOI: 10.1007/s10577-023-09721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/29/2023]
Abstract
Centromeres in eukaryotes are composed of highly repetitive DNAs, which evolve rapidly and are thought to achieve a favorable structure in mature centromeres. However, how the centromeric repeat evolves into an adaptive structure is largely unknown. We characterized the centromeric sequences of Gossypium anomalum through chromatin immunoprecipitation against CENH3 antibodies. We revealed that the G. anomalum centromeres contained only retrotransposon-like repeats but were depleted in long arrays of satellites. These retrotransposon-like centromeric repeats were present in the African-Asian and Australian lineage species, suggesting that they might have arisen in the common ancestor of these diploid species. Intriguingly, we observed a substantial increase and decrease in copy numbers among African-Asian and Australian lineages, respectively, for the retrotransposon-derived centromeric repeats without apparent structure or sequence variation in cotton. This result indicates that the sequence content is not a decisive aspect of the adaptive evolution of centromeric repeats or at least retrotransposon-like centromeric repeats. In addition, two active genes with potential roles in gametogenesis or flowering were identified in CENH3 nucleosome-binding regions. Our results provide new insights into the constitution of centromeric repetitive DNA and the adaptive evolution of centromeric repeats in plants.
Collapse
Affiliation(s)
- Wenjie Ding
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Yuanbin Zhu
- School of Life Sciences, Nantong University, Nantong, 226019, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Hui Zhang
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haris Khurshid
- Oilseeds Research Program, National Agricultural Research Centre, Islamabad, 44500, Pakistan
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland.
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, 226019, China.
| |
Collapse
|
21
|
Lukjanová E, Hanulíková A, Řepková J. Investigating the Origin and Evolution of Polyploid Trifolium medium L. Karyotype by Comparative Cytogenomic Methods. PLANTS (BASEL, SWITZERLAND) 2023; 12:235. [PMID: 36678948 PMCID: PMC9866396 DOI: 10.3390/plants12020235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Trifolium medium L. is a wild polyploid relative of the agriculturally important red clover that possesses traits promising for breeding purposes. To date, T. medium also remains the only clover species with which agriculturally important red clover has successfully been hybridized. Even though allopolyploid origin has previously been suggested, little has in fact been known about the T. medium karyotype and its origin. We researched T. medium and related karyotypes using comparative cytogenomic methods, such as fluorescent in situ hybridization (FISH) and RepeatExplorer cluster analysis. The results indicate an exceptional karyotype diversity regarding numbers and mutual positions of 5S and 26S rDNA loci and centromeric repeats in populations of T. medium ecotypes and varieties. The observed variability among T. medium ecotypes and varieties suggests current karyotype instability that can be attributed to ever-ongoing battle between satellite DNA together with genomic changes and rearrangements enhanced by post-hybridization events. Comparative cytogenomic analyses of a T. medium hexaploid variety and diploid relatives revealed stable karyotypes with a possible case of chromosomal rearrangement. Moreover, the results provided evidence of T. medium having autopolyploid origin.
Collapse
|
22
|
Papolu PK, Ramakrishnan M, Mullasseri S, Kalendar R, Wei Q, Zou L, Ahmad Z, Vinod KK, Yang P, Zhou M. Retrotransposons: How the continuous evolutionary front shapes plant genomes for response to heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1064847. [PMID: 36570931 PMCID: PMC9780303 DOI: 10.3389/fpls.2022.1064847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 05/28/2023]
Abstract
Long terminal repeat retrotransposons (LTR retrotransposons) are the most abundant group of mobile genetic elements in eukaryotic genomes and are essential in organizing genomic architecture and phenotypic variations. The diverse families of retrotransposons are related to retroviruses. As retrotransposable elements are dispersed and ubiquitous, their "copy-out and paste-in" life cycle of replicative transposition leads to new genome insertions without the excision of the original element. The overall structure of retrotransposons and the domains responsible for the various phases of their replication is highly conserved in all eukaryotes. The two major superfamilies of LTR retrotransposons, Ty1/Copia and Ty3/Gypsy, are distinguished and dispersed across the chromosomes of higher plants. Members of these superfamilies can increase in copy number and are often activated by various biotic and abiotic stresses due to retrotransposition bursts. LTR retrotransposons are important drivers of species diversity and exhibit great variety in structure, size, and mechanisms of transposition, making them important putative actors in genome evolution. Additionally, LTR retrotransposons influence the gene expression patterns of adjacent genes by modulating potential small interfering RNA (siRNA) and RNA-directed DNA methylation (RdDM) pathways. Furthermore, comparative and evolutionary analysis of the most important crop genome sequences and advanced technologies have elucidated the epigenetics and structural and functional modifications driven by LTR retrotransposon during speciation. However, mechanistic insights into LTR retrotransposons remain obscure in plant development due to a lack of advancement in high throughput technologies. In this review, we focus on the key role of LTR retrotransposons response in plants during heat stress, the role of centromeric LTR retrotransposons, and the role of LTR retrotransposon markers in genome expression and evolution.
Collapse
Affiliation(s)
- Pradeep K. Papolu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert’s College (Autonomous), Kochi, Kerala, India
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Long−Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | | | - Ping Yang
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Peng H, Mirouze M, Bucher E. Extrachromosomal circular DNA: A neglected nucleic acid molecule in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102263. [PMID: 35872391 DOI: 10.1016/j.pbi.2022.102263] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/15/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Throughout the years, most plant genomic studies were focused on nuclear chromosomes. Extrachromosomal circular DNA (eccDNA) has largely been neglected for decades since its discovery in 1965. While initial research showed that eccDNAs can originate from highly repetitive sequences, recent findings show that many regions of the genome can contribute to the eccDNA pool. Currently, the biological functions of eccDNAs, if any, are a mystery but recent studies have indicated that they can be regulated by different genomic loci and contribute to stress response and adaptation. In this review, we outline current relevant technological developments facilitating eccDNA identification and the latest discoveries about eccDNAs in plants. Finally, we explore the probable functions and future research directions that could be undertaken with respect to different eccDNA sources.
Collapse
Affiliation(s)
- Haoran Peng
- Crop Genome Dynamics Group, Agroscope Changins, 1260, Nyon, Switzerland; Department of Botany and Plant Biology, Section of Biology, Faculty of Science, University of Geneva, 1211, Geneva, Switzerland
| | - Marie Mirouze
- Institut de Recherche pour le Développement (IRD), EMR269 MANGO, Université de Perpignan, 66860 Perpignan, France; Laboratory of Plant Genome and Development, Université de Perpignan, 66860, Perpignan, France.
| | - Etienne Bucher
- Crop Genome Dynamics Group, Agroscope Changins, 1260, Nyon, Switzerland.
| |
Collapse
|
24
|
Li R, Wang Y, Li J, Zhou X. Extrachromosomal circular DNA (eccDNA): an emerging star in cancer. Biomark Res 2022; 10:53. [PMID: 35883211 PMCID: PMC9327165 DOI: 10.1186/s40364-022-00399-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/13/2022] [Indexed: 02/08/2023] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is defined as a type of circular DNA that exists widely in nature and is independent of chromosomes. EccDNA has attracted the attention of researchers due to its broad, random distribution, complex biogenesis and tumor-relevant functions. EccDNA can carry complete gene information, especially the oncogenic driver genes that are often carried in tumors, with increased copy number and high transcriptional activity. The high overexpression of oncogenes by eccDNA leads to malignant growth of tumors. Regardless, the exact generation and functional mechanisms of eccDNA in disease progression are not yet clear. There is, however, an emerging body of evidence characterizing that eccDNA can be generated from multiple pathways, including DNA damage repair pathways, breakage-fusion-bridge (BFB) mechanisms, chromothripsis and cell apoptosis, and participates in the regulation of tumor progression with multiplex functions. This up-to-date review summarizes and discusses the origins, biogenesis and functions of eccDNA, including its contribution to the formation of oncogene instability and mutations, the heterogeneity and cellular senescence of tumor cells, and the proinflammatory response of tumors. We highlight the possible cancer-related applications of eccDNA, such as its potential use in the diagnosis, targeted therapy and prognostic assessment of cancer.
Collapse
Affiliation(s)
- Ruomeng Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
25
|
Zhang Q, Qi Y, Pan H, Tang H, Wang G, Hua X, Wang Y, Lin L, Li Z, Li Y, Yu F, Yu Z, Huang Y, Wang T, Ma P, Dou M, Sun Z, Wang Y, Wang H, Zhang X, Yao W, Wang Y, Liu X, Wang M, Wang J, Deng Z, Xu J, Yang Q, Liu Z, Chen B, Zhang M, Ming R, Zhang J. Genomic insights into the recent chromosome reduction of autopolyploid sugarcane Saccharum spontaneum. Nat Genet 2022; 54:885-896. [PMID: 35654976 DOI: 10.1038/s41588-022-01084-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 04/26/2022] [Indexed: 01/30/2023]
Abstract
Saccharum spontaneum is a founding Saccharum species and exhibits wide variation in ploidy levels. We have assembled a high-quality autopolyploid genome of S. spontaneum Np-X (2n = 4x = 40) into 40 pseudochromosomes across 10 homologous groups, that better elucidates recent chromosome reduction and polyploidization that occurred circa 1.5 million years ago (Mya). One paleo-duplicated chromosomal pair in Saccharum, NpChr5 and NpChr8, underwent fission followed by fusion accompanied by centromeric split around 0.80 Mya. We inferred that Np-X, with x = 10, most likely represents the ancestral karyotype, from which x = 9 and x = 8 evolved. Resequencing of 102 S. spontaneum accessions revealed that S. spontaneum originated in northern India from an x = 10 ancestor, which then radiated into four major groups across the Indian subcontinent, China, and Southeast Asia. Our study suggests new directions for accelerating sugarcane improvement and expands our knowledge of the evolution of autopolyploids.
Collapse
Affiliation(s)
- Qing Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiying Qi
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haoran Pan
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haibao Tang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gang Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiuting Hua
- Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Yongjun Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianyu Lin
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Li
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yihan Li
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fan Yu
- Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Zehuai Yu
- Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Yongji Huang
- Institute of Oceanography, Marine Biotechnology Center, Minjiang University, Fuzhou, China
| | - Tianyou Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Panpan Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meijie Dou
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Yibin Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hengbo Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Yao
- Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Yuntong Wang
- Biomarker Technologies Corporation, Beijing, China
| | - Xinlong Liu
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jianping Wang
- Department of Agronomy, University of Florida, Gainesville, FL, USA
| | - Zuhu Deng
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jingsheng Xu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinghui Yang
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming, China
| | - ZhongJian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baoshan Chen
- Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Muqing Zhang
- Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China
| | - Ray Ming
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Sugarcane Biology and Genetic Breeding, National Engineering Research Center for Sugarcane, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
26
|
Choi IS, Wojciechowski MF, Steele KP, Hunter SG, Ruhlman TA, Jansen RK. Born in the mitochondrion and raised in the nucleus: evolution of a novel tandem repeat family in Medicago polymorpha (Fabaceae). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:389-406. [PMID: 35061308 DOI: 10.1111/tpj.15676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Plant nuclear genomes harbor sequence elements derived from the organelles (mitochondrion and plastid) through intracellular gene transfer (IGT). Nuclear genomes also show a dramatic range of repeat content, suggesting that any sequence can be readily amplified. These two aspects of plant nuclear genomes are well recognized but have rarely been linked. Through investigation of 31 Medicago taxa we detected exceptionally high post-IGT amplification of mitochondrial (mt) DNA sequences containing rps10 in the nuclear genome of Medicago polymorpha and closely related species. The amplified sequences were characterized as tandem arrays of five distinct repeat motifs (2157, 1064, 987, 971, and 587 bp) that have diverged from the mt genome (mitogenome) in the M. polymorpha nuclear genome. The mt rps10-like arrays were identified in seven loci (six intergenic and one telomeric) of the nuclear chromosome assemblies and were the most abundant tandem repeat family, representing 1.6-3.0% of total genomic DNA, a value approximately three-fold greater than the entire mitogenome in M. polymorpha. Compared to a typical mt gene, the mt rps10-like sequence coverage level was 691.5-7198-fold higher in M. polymorpha and closely related species. In addition to the post-IGT amplification, our analysis identified the canonical telomeric repeat and the species-specific satellite arrays that are likely attributable to an ancestral chromosomal fusion in M. polymorpha. A possible relationship between chromosomal instability and the mt rps10-like tandem repeat family in the M. polymorpha clade is discussed.
Collapse
Affiliation(s)
- In-Su Choi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | | | - Kelly P Steele
- Division of Science and Mathematics, Arizona State University, Mesa, AZ, 85212, USA
| | - Sarah G Hunter
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, 78712, USA
- Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
27
|
A comprehensive molecular cytogenetic analysis of the genome architecture in modern sugarcane cultivars. Chromosome Res 2022; 30:29-41. [PMID: 34988746 DOI: 10.1007/s10577-021-09680-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 11/28/2021] [Indexed: 01/09/2023]
Abstract
Modern sugarcane cultivars are derived from the hybridization of Saccharum officinarum (2n = 80) and S. spontaneum (2n = 40-128), leading to a variety of complex genomes with highly polyploid and varied chromosome structures. These complex genomes have hindered deciphering the genome structure and marker-assisted selection in sugarcane breeding. Ten cultivars were analyzed by fluorescence in situ hybridization adopting chromosome painting and S. spontaneum-specific probes. The results showed six types of chromosomes in the studied cultivars, including S. spontaneum or S. officinarum chromosomes, interspecific recombinations from homoeologous or nonhomoeologous chromosomes, and translocations of S. spontaneum or S. officinarum chromosomes. The results showed unexpectedly high proportions of interspecific recombinations in these cultivars (11.9-40.9%), which renew our knowledge that less than 13% of chromosomes result from interspecific exchanges. Also, the results showed a high frequency of translocations (an average of 2.15 translocations per chromosome) between S. officinarum chromosomes. The diverse types of chromosomes in cultivars imply that hybrid gametes of S. spontaneum and S. officinarum may form unusual chromosome pairs, including homoeologous or nonhomoeologous chromosomes either between or within S. spontaneum and S. officinarum. Moreover, we consistently observed 11 or 12 copies for the four studied chromosomes, i.e., chromosomes 1, 2, 7, and 8, suggesting steady transmission during the breeding program. By comparison, we found a relatively fewer copies of S. spontaneum chromosome 1 than those of S. spontaneum chromosomes 2, 7, and 8. These results provide deep insights into the structure of cultivars and may facilitate chromosome-assisted selection in sugarcane breeding.
Collapse
|
28
|
Xue T, Chen D, Zhang T, Chen Y, Fan H, Huang Y, Zhong Q, Li B. Chromosome-scale assembly and population diversity analyses provide insights into the evolution of Sapindus mukorossi. HORTICULTURE RESEARCH 2022; 9:6529164. [PMID: 35178562 PMCID: PMC8854635 DOI: 10.1093/hr/uhac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/03/2021] [Indexed: 05/25/2023]
Abstract
Sapindus mukorossi is an environmentally friendly plant and renewable energy source whose fruit has been widely used for biomedicine, biodiesel, and biological chemicals due to its richness in saponin and oil contents. Here, we report the first chromosome-scale genome assembly of S. mukorossi (covering ~391 Mb with a scaffold N50 of 24.66 Mb) and characterize its genetic architecture and evolution by resequencing 104 S. mukorossi accessions. Population genetic analyses showed that genetic diversity in the southwestern distribution area was relatively higher than that in the northeastern distribution area. Gene flow events indicated that southwest species may be the donor population for the distribution areas in China. Genome-wide selective sweep analysis showed that a large number of genes are involved in defense responses, growth and development, including SmRPS2, SmRPS4, SmRPS7, SmNAC2, SmNAC23, SmNAC102, SmWRKY6, SmWRKY26, and SmWRKY33. We also identified several candidate genes controlling six agronomic traits by genome-wide association studies, including SmPCBP2, SmbHLH1, SmCSLD1, SmPP2C, SmLRR-RKs, and SmAHP. Our study not only provides a rich genomic resource for further basic research on Sapindaceae woody trees but also identifies several economically significant genes for genomics-enabled improvements in molecular breeding.
Collapse
Affiliation(s)
- Ting Xue
- Fujian Provincial Key Laboratory for Plant Eco-physiology, State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Duo Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Tianyu Zhang
- Shunchang County Forestry Science and Technology Center of Fujian Province, Forestry Bureau of Shunchang, Shunchang 353200, China
| | - Youqiang Chen
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Huihua Fan
- Research Institute of Forestry, Fujian Research Institute of Forestry, Fuzhou 350000, China
| | - Yunpeng Huang
- Research Institute of Forestry, Fujian Research Institute of Forestry, Fuzhou 350000, China
| | - Quanlin Zhong
- Fujian Provincial Key Laboratory for Plant Eco-physiology, State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | | |
Collapse
|
29
|
Complete Genome Sequences and Genome-Wide Characterization of Trichoderma Biocontrol Agents Provide New Insights into their Evolution and Variation in Genome Organization, Sexual Development, and Fungal-Plant Interactions. Microbiol Spectr 2021; 9:e0066321. [PMID: 34908505 PMCID: PMC8672877 DOI: 10.1128/spectrum.00663-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Trichoderma spp. represent one of the most important fungal genera to mankind and in natural environments. The genus harbors prolific producers of wood-decaying enzymes, biocontrol agents against plant pathogens, plant-growth-promoting biofertilizers, as well as model organisms for studying fungal-plant-plant pathogen interactions. Pursuing highly accurate, contiguous, and chromosome-level reference genomes has become a primary goal of fungal research communities. Here, we report the chromosome-level genomic sequences and whole-genome annotation data sets of four strains used as biocontrol agents or biofertilizers (Trichoderma virens Gv29-8, Trichoderma virens FT-333, Trichoderma asperellum FT-101, and Trichoderma atroviride P1). Our results provide comprehensive categorization, correct positioning, and evolutionary detail of both nuclear and mitochondrial genomes, including telomeres, AT-rich blocks, centromeres, transposons, mating-type loci, nuclear-encoded mitochondrial sequences, as well as many new secondary metabolic and carbohydrate-active enzyme gene clusters. We have also identified evolutionarily conserved core genes contributing to plant-fungal interactions, as well as variations potentially linked to key behavioral traits such as sex, genome defense, secondary metabolism, and mycoparasitism. The genomic resources we provide herein significantly extend our knowledge not only of this economically important fungal genus, but also fungal evolution and basic biology in general. IMPORTANCE Telomere-to-telomere and gapless reference genome assemblies are necessary to ensure that all genomic variants are studied and discovered, including centromeres, telomeres, AT-rich blocks, mating type loci, biosynthetic, and metabolic gene clusters. Here, we applied long-range sequencing technologies to determine the near-completed genome sequences of four widely used biocontrol agents or biofertilizers: Trichoderma virens Gv29-8 and FT-333, Trichoderma asperellum FT-101, and Trichoderma atroviride P1. Like those of three Trichoderma reesei wild isolates [QM6a, CBS999.97(MAT1-1) and CBS999.97(MAT1-2)] we reported previously, these four biocontrol agent genomes each contain seven nuclear chromosomes and a circular mitochondrial genome. Substantial intraspecies and intragenus diversities are also discovered, including single nucleotide polymorphisms, chromosome shuffling, as well as genomic relics derived from historical transposition events and repeat-induced point (RIP) mutations.
Collapse
|
30
|
Ling X, Han Y, Meng J, Zhong B, Chen J, Zhang H, Qin J, Pang J, Liu L. Small extrachromosomal circular DNA (eccDNA): major functions in evolution and cancer. Mol Cancer 2021; 20:113. [PMID: 34479546 PMCID: PMC8414719 DOI: 10.1186/s12943-021-01413-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) refers to a type of circular DNA that originate from but are likely independent of chromosomes. Due to technological advancements, eccDNAs have recently emerged as multifunctional molecules with numerous characteristics. The unique topological structure and genetic characteristics of eccDNAs shed new light on the monitoring, early diagnosis, treatment, and prediction of cancer. EccDNAs are commonly observed in both normal and cancer cells and function via different mechanisms in the stress response to exogenous and endogenous stimuli, aging, and carcinogenesis and in drug resistance during cancer treatment. The structural diversity of eccDNAs contributes to the function and numerical diversity of eccDNAs and thereby endows eccDNAs with powerful roles in evolution and in cancer initiation and progression by driving genetic plasticity and heterogeneity from extrachromosomal sites, which has been an ignored function in evolution in recent decades. EccDNAs show great potential in cancer, and we summarize the features, biogenesis, evaluated functions, functional mechanisms, related methods, and clinical utility of eccDNAs with a focus on their role in evolution and cancer.
Collapse
Affiliation(s)
- Xiaoxuan Ling
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Yali Han
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Jinxue Meng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Bohuan Zhong
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Jialong Chen
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - He Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Jiheng Qin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Jing Pang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| | - Linhua Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
- Department of Preventive Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808 P.R. China
| |
Collapse
|
31
|
Yu F, Chai J, Li X, Yu Z, Yang R, Ding X, Wang Q, Wu J, Yang X, Deng Z. Chromosomal Characterization of Tripidium arundinaceum Revealed by Oligo-FISH. Int J Mol Sci 2021; 22:ijms22168539. [PMID: 34445245 PMCID: PMC8395171 DOI: 10.3390/ijms22168539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/29/2022] Open
Abstract
Sugarcane is of important economic value for producing sugar and bioethanol. Tripidium arundinaceum (old name: Erianthus arundinaceum) is an intergeneric wild species of sugarcane that has desirable resistance traits for improving sugarcane varieties. However, the scarcity of chromosome markers has hindered the cytogenetic study of T. arundinaceum. Here we applied maize chromosome painting probes (MCPs) to identify chromosomes in sorghum and T. arundinaceum using a repeated fluorescence in situ hybridization (FISH) system. Sequential FISH revealed that these MCPs can be used as reliable chromosome markers for T. arundinaceum, even though T. arundinaceum has diverged from maize over 18 MYs (million years). Using these MCPs, we identified T. arundinaceum chromosomes based on their sequence similarity compared to sorghum and labeled them 1 through 10. Then, the karyotype of T. arundinaceum was established by multiple oligo-FISH. Furthermore, FISH results revealed that 5S rDNA and 35S rDNA are localized on chromosomes 5 and 6, respectively, in T. arundinaceum. Altogether, these results represent an essential step for further cytogenetic research of T. arundinaceum in sugarcane breeding.
Collapse
Affiliation(s)
- Fan Yu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jin Chai
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xueting Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zehuai Yu
- State Key Laboratory for Protection and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China; (Z.Y.); (X.Y.)
| | - Ruiting Yang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xueer Ding
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiusong Wang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiayun Wu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China
- Correspondence: (J.W.); (Z.D.)
| | - Xiping Yang
- State Key Laboratory for Protection and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China; (Z.Y.); (X.Y.)
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.Y.); (J.C.); (X.L.); (R.Y.); (X.D.); (Q.W.)
- Key Lab of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- State Key Laboratory for Protection and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China; (Z.Y.); (X.Y.)
- Correspondence: (J.W.); (Z.D.)
| |
Collapse
|
32
|
Kadluczka D, Grzebelus E. Using carrot centromeric repeats to study karyotype relationships in the genus Daucus (Apiaceae). BMC Genomics 2021; 22:508. [PMID: 34225677 PMCID: PMC8259371 DOI: 10.1186/s12864-021-07853-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Background In the course of evolution, chromosomes undergo evolutionary changes; thus, karyotypes may differ considerably among groups of organisms, even within closely related taxa. The genus Daucus seems to be a promising model for exploring the dynamics of karyotype evolution. It comprises some 40 wild species and the cultivated carrot, a crop of great economic significance. However, Daucus species are very diverse morphologically and genetically, and despite extensive research, the taxonomic and phylogenetic relationships between them have still not been fully resolved. Although several molecular cytogenetic studies have been conducted to investigate the chromosomal structure and karyotype evolution of carrot and other Daucus species, detailed karyomorphological research has been limited to carrot and only a few wild species. Therefore, to better understand the karyotype relationships within Daucus, we (1) explored the chromosomal distribution of carrot centromeric repeats (CentDc) in 34 accessions of Daucus and related species by means of fluorescence in situ hybridization (FISH) and (2) performed detailed karyomorphological analysis in 16 of them. Results We determined the genomic organization of CentDc in 26 accessions of Daucus (belonging to both Daucus I and II subclades) and one accession of closely related species. The CentDc repeats were present in the centromeric regions of all chromosomes of 20 accessions (representing 11 taxa). In the other Daucus taxa, the number of chromosome pairs with CentDc signals varied depending on the species, yet their centromeric localization was conserved. In addition, precise chromosome measurements performed in 16 accessions showed the inter- and intraspecific karyological relationships among them. Conclusions The presence of the CentDc repeats in the genomes of taxa belonging to both Daucus subclades and one outgroup species indicated the ancestral status of the repeat. The results of our study provide useful information for further evolutionary, cytotaxonomic, and phylogenetic research on the genus Daucus and may contribute to a better understanding of the dynamic evolution of centromeric satellites in plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07853-2.
Collapse
Affiliation(s)
- Dariusz Kadluczka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425, Krakow, Poland.
| | - Ewa Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. 29 Listopada 54, 31-425, Krakow, Poland.
| |
Collapse
|