1
|
Wang D, Su P, Gao Y, Chen X, Kan W, Hou J, Wu L. Efficient plant regeneration through direct shoot organogenesis and two-step rooting in Eucommia ulmoides Oliver. FRONTIERS IN PLANT SCIENCE 2024; 15:1444878. [PMID: 39372860 PMCID: PMC11449753 DOI: 10.3389/fpls.2024.1444878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/26/2024] [Indexed: 10/08/2024]
Abstract
Eucommia ulmoides Oliver (E. ulmoides Oliver), a multipurpose woody plant, holds great economic significance due to its expansive medicinal, food and industrial applications. The rapid advancement of E. ulmoides in various fields has resulted in the inadequacy of existing breeding methods to meet its growth and annual production demands. Consequently, there is an urgent need for innovative propagation strategies. This study introduces an optimized micropropagation protocol for E. ulmoides, facilitating direct shoot organogenesis from nodal segments with axillary buds. We systematically examined the impact of basal medium composition, plant growth regulators, photosynthetic photon flux density, and sucrose concentration on bud sprouting. Employing cuttings with axillary buds as propagation material, we achieved a shortened cultivation period of merely 4 weeks for bud elongation and proliferation, marking a substantial enhancement in propagation efficiency. Notably, the Driver Kuniyuki Walnut medium, supplemented with 20.0 g L-1 sucrose and 2.0 mg L-1 trans-zeatin, induced shoots sprouting with a 100% success rate and an average length of 5.18 cm per nodal segment, equating to a great bud propagation rate of approximately 500%. Furthermore, a light source with an intensity of 80 μmol m-2 s-1 was shown the most economical choice. To address the primary challenge of inducing roots in regenerated plants, we employed a refined two-step rooting technique. This method yielded the optimal rooting frequency of 93.02%, producing an average of 5.90 adventitious roots per plantlet, each with an average length of 2.77 cm. The micropropagation program developed in this work will be the cornerstone for the preservation of the germplasm of E. ulmoides and its long-term use in medicinal and industrial applications.
Collapse
Affiliation(s)
- Dacheng Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Pengfei Su
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Yameng Gao
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Xue Chen
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Wenjie Kan
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jinyan Hou
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Lifang Wu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
- Taihe Experimental Station, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Fuyang, Anhui, China
| |
Collapse
|
2
|
Gao X, Liu X, Zhang H, Cheng L, Wang X, Zhen C, Du H, Chen Y, Yu H, Zhu B, Xiao J. Genome-Wide Identification, Expression, and Interaction Analysis of the Auxin Response Factor and AUX/ IAA Gene Families in Vaccinium bracteatum. Int J Mol Sci 2024; 25:8385. [PMID: 39125955 PMCID: PMC11312502 DOI: 10.3390/ijms25158385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Auxin, a plant hormone, plays diverse roles in the modulation of plant growth and development. The transport and signal transduction of auxin are regulated by various factors involved in shaping plant morphology and responding to external environmental conditions. The auxin signal transduction is primarily governed by the following two gene families: the auxin response factor (ARF) and auxin/indole-3-acetic acid (AUX/IAA). However, a comprehensive genomic analysis involving the expression profiles, structures, and functional features of the ARF and AUX/IAA gene families in Vaccinium bracteatum has not been carried out to date. RESULTS Through the acquisition of genomic and expression data, coupled with an analysis using online tools, two gene family members were identified. This groundwork provides a distinguishing characterization of the chosen gene families in terms of expression, interaction, and response in the growth and development of plant fruits. In our genome-wide search of the VaARF and VaIAA genes in Vaccinium bracteatum, we identified 26 VaARF and 17 VaIAA genes. We analyzed the sequence and structural characteristics of these VaARF and VaIAA genes. We found that 26 VaARF and 17 VaIAA genes were divided into six subfamilies. Based on protein interaction predictions, VaIAA1 and VaIAA20 were designated core members of VaIAA gene families. Moreover, an analysis of expression patterns showed that 14 ARF genes and 12 IAA genes exhibited significantly varied expressions during fruit development. CONCLUSION Two key genes, namely, VaIAA1 and VaIAA20, belonging to a gene family, play a potentially crucial role in fruit development through 26 VaARF-IAAs. This study provides a valuable reference for investigating the molecular mechanism of fruit development and lays the foundation for further research on Vaccinium bracteatum.
Collapse
Affiliation(s)
- Xuan Gao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Xiaohui Liu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Hong Zhang
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.Z.); (X.W.); (Y.C.); (H.Y.)
| | - Li Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Xingliang Wang
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.Z.); (X.W.); (Y.C.); (H.Y.)
| | - Cheng Zhen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Haijing Du
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Yufei Chen
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.Z.); (X.W.); (Y.C.); (H.Y.)
| | - Hongmei Yu
- Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (H.Z.); (X.W.); (Y.C.); (H.Y.)
| | - Bo Zhu
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| | - Jiaxin Xiao
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China; (X.G.); (X.L.); (L.C.); (C.Z.); (H.D.)
| |
Collapse
|
3
|
Zhang F, Wang J, Ding T, Lin X, Hu H, Ding Z, Tian H. MYB2 and MYB108 regulate lateral root development by interacting with LBD29 in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1675-1687. [PMID: 38923126 DOI: 10.1111/jipb.13720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
AUXIN RESPONSE FACTOR 7 (ARF7)-mediated auxin signaling plays a key role in lateral root (LR) development by regulating downstream LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factor genes, including LBD16, LBD18, and LBD29. LBD proteins are believed to regulate the transcription of downstream genes as homodimers or heterodimers. However, whether LBD29 forms dimers with other proteins to regulate LR development remains unknown. Here, we determined that the Arabidopsis thaliana (L.) Heynh. MYB transcription factors MYB2 and MYB108 interact with LBD29 and regulate auxin-induced LR development. Both MYB2 and MYB108 were induced by auxin in an ARF7-dependent manner. Disruption of MYB2 by fusion with an SRDX domain severely affected auxin-induced LR formation and the ability of LBD29 to induce LR development. By contrast, overexpression of MYB2 or MYB108 resulted in greater LR numbers, except in the lbd29 mutant background. These findings underscore the interdependence and importance of MYB2, MYB108, and LBD29 in regulating LR development. In addition, MYB2-LBD29 and MYB108-LBD29 complexes promoted the expression of CUTICLE DESTRUCTING FACTOR 1 (CDEF1), a member of the GDSL (Gly-Asp-Ser-Leu) lipase/esterase family involved in LR development. In summary, this study identified MYB2-LBD29 and MYB108-LBD29 regulatory modules that act downstream of ARF7 and intricately control auxin-mediated LR development.
Collapse
Affiliation(s)
- Feng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Tingting Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xuefeng Lin
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Haiying Hu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Huiyu Tian
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
4
|
Lv X, Li Q, Deng X, Ding S, Sun R, Chen S, Yun W, Dai C, Luo B. Fulvic acid application increases rice seedlings performance under low phosphorus stress. BMC PLANT BIOLOGY 2024; 24:703. [PMID: 39054445 PMCID: PMC11271057 DOI: 10.1186/s12870-024-05435-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Fulvic acid enhances plant growth and interacts synergistically with phosphate fertilizer to alleviate the agricultural production problem of low phosphorus fertilizer utilization efficiency. However, the underlying mechanism of its action remains poorly understood. In this study, we investigated the impact of fulvic acid application with varying concentrations (0, 40, 60, 80 and 120 mg/L) on rice performance in plants grown in a hydroponic system subjected to low phosphorus stress. The rice growth phenotypes, biomass, root morphology, phosphorus uptake, and the impact of fulvic acid on the rhizosphere environment of rice, were assessed. RESULTS The findings showed that adding appropriate concentrations of exogenous fulvic acid could promote the growth performance of rice under low phosphorus stress. Particularly at T1 (40 mg/L) and T2 (60 mg/L) over the control effectively increased rice biomass by 25.42% and 24.56%, respectively. Fulvic acid treatments stimulated root morphogenesis, up-regulated phosphate transporter genes, and facilitated phosphorus absorption and accumulation. Especially T1 (20.52%), T2 (18.10%) and T3 (20.48%) treatments significantly increased phosphorus uptake in rice, thereby alleviating low phosphorus stress. Additionally, fulvic acid elevated organic acids concentration in roots and up-regulated plasma membrane H+-ATPase genes, promoting organic acids secretion. This metabolic alteration can also alleviate low phosphorus stress in rice. CONCLUSIONS The effect of exogenous fulvic acid on physiological indicators is concentration-dependent under low phosphorus stress, enhances rice performance and reduces reliance on phosphorus fertilizer. This provides new insights to shed light on the mechanism of alleviating low phosphorus stress in rice through fulvic acid application, an eco-friendly tool.
Collapse
Affiliation(s)
- Xiaomeng Lv
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Qingchao Li
- Bijie Academy of Agricultural Sciences, Bijie, 551700, China
| | - Xuan Deng
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Shitao Ding
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Ruibo Sun
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Shunquan Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Wenjing Yun
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Changrong Dai
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng, 224007, China.
| | - Bingbing Luo
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, P. R. China.
| |
Collapse
|
5
|
Liu Y, Song P, Yan M, Luo J, Wang Y, Fan F. Integrated Transcriptome and Proteome Analysis Reveals the Regulatory Mechanism of Root Growth by Protein Disulfide Isomerase in Arabidopsis. Int J Mol Sci 2024; 25:3596. [PMID: 38612408 PMCID: PMC11011405 DOI: 10.3390/ijms25073596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Protein disulfide isomerase (PDI, EC 5.3.4.1) is a thiol-disulfide oxidoreductase that plays a crucial role in catalyzing the oxidation and rearrangement of disulfides in substrate proteins. In plants, PDI is primarily involved in regulating seed germination and development, facilitating the oxidative folding of storage proteins in the endosperm, and also contributing to the formation of pollen. However, the role of PDI in root growth has not been previously studied. This research investigated the impact of PDI gene deficiency in plants by using 16F16 [2-(2-Chloroacetyl)-2,3,4,9-tetrahydro-1-methyl-1H-pyrido[3,4-b]indole-1-carboxylic acid methyl ester], a small-molecule inhibitor of PDI, to remove functional redundancy. The results showed that the growth of Arabidopsis roots was significantly inhibited when treated with 16F16. To further investigate the effects of 16F16 treatment, we conducted expression profiling of treated roots using RNA sequencing and a Tandem Mass Tag (TMT)-based quantitative proteomics approach at both the transcriptomic and proteomic levels. Our analysis revealed 994 differentially expressed genes (DEGs) at the transcript level, which were predominantly enriched in pathways associated with "phenylpropane biosynthesis", "plant hormone signal transduction", "plant-pathogen interaction" and "starch and sucrose metabolism" pathways. Additionally, we identified 120 differentially expressed proteins (DEPs) at the protein level. These proteins were mainly enriched in pathways such as "phenylpropanoid biosynthesis", "photosynthesis", "biosynthesis of various plant secondary metabolites", and "biosynthesis of secondary metabolites" pathways. The comprehensive transcriptome and proteome analyses revealed a regulatory network for root shortening in Arabidopsis seedlings under 16F16 treatment, mainly involving phenylpropane biosynthesis and plant hormone signal transduction pathways. This study enhances our understanding of the significant role of PDIs in Arabidopsis root growth and provides insights into the regulatory mechanisms of root shortening following 16F16 treatment.
Collapse
Affiliation(s)
| | | | | | | | - Yingjuan Wang
- State Key Laboratory of Biotechnology of Shannxi Province, College of Life Science, Northwest University, Xi’an 710069, China; (Y.L.); (P.S.); (M.Y.); (J.L.)
| | - Fenggui Fan
- State Key Laboratory of Biotechnology of Shannxi Province, College of Life Science, Northwest University, Xi’an 710069, China; (Y.L.); (P.S.); (M.Y.); (J.L.)
| |
Collapse
|
6
|
Lasok H, Nziengui H, Kochersperger P, Ditengou FA. Arabidopsis Root Development Regulation by the Endogenous Folate Precursor, Para-Aminobenzoic Acid, via Modulation of the Root Cell Cycle. PLANTS (BASEL, SWITZERLAND) 2023; 12:4076. [PMID: 38140403 PMCID: PMC10748309 DOI: 10.3390/plants12244076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
The continuous growth of roots depends on their ability to maintain a balanced ratio between cell production and cell differentiation at the tip. This process is regulated by the hormonal balance of cytokinin and auxin. However, other important regulators, such as plant folates, also play a regulatory role. In this study, we investigated the impact of the folate precursor para-aminobenzoic acid (PABA) on root development. Using pharmacological, genetic, and imaging approaches, we show that the growth of Arabidopsis thaliana roots is repressed by either supplementing the growth medium with PABA or overexpressing the PABA synthesis gene GAT-ADCS. This is associated with a smaller root meristem consisting of fewer cells. Conversely, reducing the levels of free root endogenous PABA results in longer roots with extended meristems. We provide evidence that PABA represses Arabidopsis root growth in a folate-independent manner and likely acts through two mechanisms: (i) the G2/M transition of cell division in the root apical meristem and (ii) promoting premature cell differentiation in the transition zone. These data collectively suggest that PABA plays a role in Arabidopsis root growth at the intersection between cell division and cell differentiation.
Collapse
Affiliation(s)
- Hanna Lasok
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Kraków, Poland;
- Faculty of Biology, Institute of Biology II, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Hugues Nziengui
- Department of Biology, Faculty of Sciences, Science and Technology University of Masuku, Franceville P.O. Box 913, Gabon;
| | - Philip Kochersperger
- Faculty of Biology, Institute of Biology II, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany
| | - Franck Anicet Ditengou
- Faculty of Biology, Institute of Biology II, Albert Ludwigs University Freiburg, 79104 Freiburg, Germany
- Lighthouse Core Facility, Medical Center University of Freiburg, Albert Ludwigs University Freiburg, 79106 Freiburg, Germany
- Bio Imaging Core Light Microscopy (BiMiC), Institute for Disease Modelling and Targeted Medicine (IMITATE), Medical Center University of Freiburg, Albert Ludwigs University Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
7
|
Jiang L, Li R, Yang J, Yao Z, Cao S. Ethylene response factor ERF022 is involved in regulating Arabidopsis root growth. PLANT MOLECULAR BIOLOGY 2023; 113:1-17. [PMID: 37553544 DOI: 10.1007/s11103-023-01373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023]
Abstract
Ethylene response factors (ERFs) are involved in the regulation of plant development processes and stress responses. In this study, we provide evidence for the role of ERF022, a member of the ERF transcription factor group III, in regulating Arabidopsis root growth. We found that ERF022-loss-of-function mutants exhibited increased primary root length and lateral root numbers, and also morphological growth advantages compared to wild-type. Further studies showed that mutants had enhanced cell size in length in the root elongation zones. These results were accompanied by significant increase in the expression of cell elongation and cell wall expansion related genes SAUR10, GASA14, LRX2, XTH19 in mutants. Moreover, ERF022-mediated root growth was associated with the enhanced endogenous auxin and gibberellins levels. Our results suggest that loss-of-function of ERF022 up-regulated the expression of cell elongation and cell wall related genes through auxin and gibberellins signal in the regulation of root growth. Unexpectedly, ERF022 overexpression lines also showed longer primary roots and more lateral roots compared to wild-type, and had longer root apical meristematic zone with increased cell numbers. Overexpression of ERF022 significantly up-regulated cell proliferation, organ growth and auxin biosynthesis genes EXO, HB2, GALK2, LBD26, YUC5, which contribute to enhanced root growth. Altogether, our results provide genetic evidence that ERF022 plays an important role in regulating root growth in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Li Jiang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Ruyin Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Juan Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhicheng Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shuqing Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
8
|
Zhao P, Zhang J, Chen S, Zhang Z, Wan G, Mao J, Wang Z, Tan S, Xiang C. ERF1 inhibits lateral root emergence by promoting local auxin accumulation and repressing ARF7 expression. Cell Rep 2023; 42:112565. [PMID: 37224012 DOI: 10.1016/j.celrep.2023.112565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Lateral roots (LRs) are crucial for plants to sense environmental signals in addition to water and nutrient absorption. Auxin is key for LR formation, but the underlying mechanisms are not fully understood. Here, we report that Arabidopsis ERF1 inhibits LR emergence by promoting local auxin accumulation with altered distribution and regulating auxin signaling. Loss of ERF1 increases LR density compared with the wild type, whereas ERF1 overexpression causes the opposite phenotype. ERF1 enhances auxin transport by upregulating PIN1 and AUX1, resulting in excessive auxin accumulation in the endodermal, cortical, and epidermal cells surrounding LR primordia. Furthermore, ERF1 represses ARF7 transcription, thereby downregulating the expression of cell-wall remodeling genes that facilitate LR emergence. Together, our study reveals that ERF1 integrates environmental signals to promote local auxin accumulation with altered distribution and repress ARF7, consequently inhibiting LR emergence in adaptation to fluctuating environments.
Collapse
Affiliation(s)
- Pingxia Zhao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Jing Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Siyan Chen
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zisheng Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Guangyu Wan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jieli Mao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zhen Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Shutang Tan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Chengbin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
9
|
Wang J, Zhao S, Li Z, Chai J, Feng J, Han R. Phytotoxicity and the molecular response in yttrium oxide nanoparticle-treated Arabidopsis thaliana seedlings. PROTOPLASMA 2023; 260:955-966. [PMID: 36445485 DOI: 10.1007/s00709-022-01826-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Due to the widespread application of rare earth oxide nanoparticles in various fields, their release into the environment is inevitable, and their potential toxicity and ecological impact have become a concern. Yttrium oxide nanoparticles are important rare earth oxide nanoparticles; however, their impact on plants and the molecular mechanism underlying their influence on plant growth and development are unclear. In this study, we found that yttrium oxide nanoparticles at concentrations exceeding 2 mM significantly inhibited the growth of Arabidopsis seedlings. Using Arabidopsis marker lines for auxin signaling, we found that the application of yttrium oxide nanoparticles resulted in disordered auxin signaling in root cells. Auxin signaling in the cells of the quiescent center and columella stem cells decreased, while auxin signaling in the cells of the stele was enhanced. In addition, trypan blue staining showed that yttrium oxide nanoparticles induced root cell death. Transcriptome analysis showed that the nanoparticles specifically inhibited the expression of lignin synthesis-related genes, activated the MAPK signaling pathway, and enhanced the ethylene and abscisic acid signaling pathways in plants. This study demonstrates the phytotoxicity of yttrium oxide nanoparticles at the molecular level in Arabidopsis, and it provides a new perspective on how plants respond to rare earth oxide stress.
Collapse
Affiliation(s)
- Jin Wang
- Higher Education Key Laboratory of Plant Molecular and Environment Stress Response, Shanxi Normal University, Taiyuan, 030000, Shanxi, China
| | - Shifeng Zhao
- Higher Education Key Laboratory of Plant Molecular and Environment Stress Response, Shanxi Normal University, Taiyuan, 030000, Shanxi, China
- College of Life Sciences, Shanxi Normal University, Taiyuan, 030000, Shanxi, China
| | - Zhuoxuan Li
- Higher Education Key Laboratory of Plant Molecular and Environment Stress Response, Shanxi Normal University, Taiyuan, 030000, Shanxi, China
- College of Life Sciences, Shanxi Normal University, Taiyuan, 030000, Shanxi, China
| | - Jianxiang Chai
- Higher Education Key Laboratory of Plant Molecular and Environment Stress Response, Shanxi Normal University, Taiyuan, 030000, Shanxi, China
- College of Life Sciences, Shanxi Normal University, Taiyuan, 030000, Shanxi, China
| | - Jinlin Feng
- Higher Education Key Laboratory of Plant Molecular and Environment Stress Response, Shanxi Normal University, Taiyuan, 030000, Shanxi, China.
- College of Life Sciences, Shanxi Normal University, Taiyuan, 030000, Shanxi, China.
| | - Rong Han
- Higher Education Key Laboratory of Plant Molecular and Environment Stress Response, Shanxi Normal University, Taiyuan, 030000, Shanxi, China.
- College of Life Sciences, Shanxi Normal University, Taiyuan, 030000, Shanxi, China.
| |
Collapse
|
10
|
The Identification and Expression Analysis of the Nitraria sibirica Pall. Auxin-Response Factor (ARF) Gene Family. Int J Mol Sci 2022; 23:ijms231911122. [PMID: 36232423 PMCID: PMC9570472 DOI: 10.3390/ijms231911122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
Nitraria sibirica is a shrub that can survive in extreme drought environments. The auxin-response factors (ARFs) are a class of transcription factors that are widely involved in plant growth and development, as well as in the regulation of stress resistance. However, the genome-wide identification of the ARF gene family and its responses to environmental stresses, especially drought stress, in N. sibirica has not yet been reported. Here, we identified a total of 12 ARF genes in the genome of N. sibirica, which were distributed over 10 chromosomes and divided into three clades. Intragenome synteny analysis revealed one collinear gene pair in the ARF gene family, i.e., NsARF9a and NsARF9b. Cis-acting element analysis showed that multiple hormones and stress-responsive cis-acting elements were found in the promoters of NsARFs, suggesting that NsARFs may be involved in multiple biological processes. Quantitative real-time PCR (qRT-PCR) showed that many NsARFs had tissue-specific expression patterns, with the highest expression of NsARF16 in the seedlings of N. sibirica. In addition, most of the NsARFs that were upregulated under drought were independent of endogenous ABA biosynthesis, whereas the response of NsARF5 and NsARF7a to drought was disrupted by the ABA-biosynthesis inhibitor fluridone. These studies provide a basis for further research into how NsARFs in N. sibirica respond to hormonal signaling and environmental stresses.
Collapse
|
11
|
Tang Y, Wang L, Qu Z, Huang C, Zhao T, Li Y, Zhang C. BSISTER transcription factors directly binds to the promoter of IAA19 and IAA29 genes to up-regulate gene expression and promote the root development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111324. [PMID: 35696924 DOI: 10.1016/j.plantsci.2022.111324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Roots play an important role in the growth and development of plants and auxin participates in regulating plant root development. Some studies have shown that BS (BSISTER) gene (the closest gene of class B gene) is involved in plant root development, but whether BS regulates root development via auxin signaling still not clear. To explore VviBS1 and VviBS2 roles in root development, VviBS1 and VviBS2 were overexpressedin Arabidopsis tt16 mutant and we found that they could restore the phenotype of shorter PR (primary roots) and high density of LR (lateral root) of tt16 compared with the wild type Ws Arabidopsis seedlings. However, the addition of exogenous NAA (naphthalene acetic acid) could not significantly promote the PR length of tt16 Arabidopsis, and the auxin signal transduction of tt16 may be blocked. The expression levels of auxin signal transduction pathway genes in Ws, tt16, p35s:VviBS1 in tt16 and p35s:VviBS2 in tt16 seedlings were detected. It was found that the expression of AtARF2, AtARF12, AtARF14, AtARF15, AtARF20, AtGH3, AtGH3-2 and AtSAUR51 genes in tt16 seedlings was higher than that in Ws, while the expression of AtIAA19 and AtIAA29 in Ws seedlings was higher than that of tt16. More importantly, BS may up regulate AtIAA19 and AtIAA29 expression directly by binding to their promoter. In addition, VviBS1 and VviBS2 also affect seed germination and may regulate leaf yellowing by regulating ethylene synthase. Therefore, our findings reveal a molecular mechanism that BS may modulate root system development via Aux/IAA-based auxin signaling, and provide insight into the BS function in regulation of leaf yellowing.
Collapse
Affiliation(s)
- Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Ziyang Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Congbo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Ting Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
12
|
Genome-Wide Identification of Auxin Response Factors in Peanut ( Arachis hypogaea L.) and Functional Analysis in Root Morphology. Int J Mol Sci 2022; 23:ijms23105309. [PMID: 35628135 PMCID: PMC9141974 DOI: 10.3390/ijms23105309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022] Open
Abstract
Auxin response factors (ARFs) play important roles in plant growth and development; however, research in peanut (Arachis hypogaea L.) is still lacking. Here, 63, 30, and 30 AhARF genes were identified from an allotetraploid peanut cultivar and two diploid ancestors (A. duranensis and A. ipaensis). Phylogenetic tree and gene structure analysis showed that most AhARFs were highly similar to those in the ancestors. By scanning the whole-genome for ARF-recognized cis-elements, we obtained a potential target gene pool of AhARFs, and the further cluster analysis and comparative analysis showed that numerous members were closely related to root development. Furthermore, we comprehensively analyzed the relationship between the root morphology and the expression levels of AhARFs in 11 peanut varieties. The results showed that the expression levels of AhARF14/26/45 were positively correlated with root length, root surface area, and root tip number, suggesting an important regulatory role of these genes in root architecture and potential application values in peanut breeding.
Collapse
|