1
|
Qiao T, Wang L, Zhao Y, Li Y, Yang G, Zhu B, Pan K. Silaffins as functional biomacromolecules in regulating frustule morphogenesis and biosilica properties. Int J Biol Macromol 2025; 309:143105. [PMID: 40222518 DOI: 10.1016/j.ijbiomac.2025.143105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Diatoms synthesize silica cell walls (frustules) with genetically encoded nano- to micropatterned morphologies that surpass current synthetic chemistry. Silaffins, highly post-translationally modified peptides found in frustules, facilitate biosilica formation and regulate silica architectures in vitro, in coordination with long-chain polyamines. However, the precise roles of silaffins in diatom frustule morphogenesis remain unclear. This study investigates the morphological and functional impacts of TpSil1 and TpSil3 on diatom frustule in the model organism Thalassiosira pseudonana using gene overexpression and CRISPR/Cas9-mediated knockout approaches. The inability to generate biallelic TpSil3 knockout mutants suggests that TpSil3 may be essential, possibly leading to lethality upon complete knockout. In contrast, biallelic TpSil1 knockout mutants also disrupted TpSil2 due to high sequence homology. Morphological analysis revealed distinct roles for these proteins: TpSil3 regulates overall cell size and macropore (fultoportula) density, while TpSil1/2 primarily contributes to macropore morphogenesis; mesopore (cribrum pore) patterns, however, remained consistent across the mutants. Beyond morphology, genetic manipulation of silaffins significantly affected diatom physiology. Overexpression of silaffins increased cellular silicification, while knockouts reduced silica deposition but enhanced cell growth and photosynthetic efficiency. Moreover, these modifications altered the physicochemical and optical properties of bulk frustules, enhancing potential applications in hemostasis, catalysis and photonics. This study elucidates the role of silaffins in frustule morphogenesis, linking frustule-associated proteins to diatom physiology and frustule properties, and provides a framework for engineering nanostructured silica through synthetic biology.
Collapse
Affiliation(s)
- Tengsheng Qiao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Lulu Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Guanpin Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Baohua Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Kehou Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laoshan Laboratory, Qingdao 266237, China.
| |
Collapse
|
2
|
Hu J, Zheng Y, Yang S, Yang L, You Q, Wang Q. Transcriptomic analysis reveals the mechanism underlying salinity-induced morphological changes in Skeletonema subsalsum. Front Microbiol 2024; 15:1476738. [PMID: 39534502 PMCID: PMC11554505 DOI: 10.3389/fmicb.2024.1476738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Diatom cell walls are diverse and unique, providing the basis for species identification and supporting the ecological and economic value of diatoms. However, these important structures sometimes change in response to environmental fluctuations, especially under salt adaptation. Although studies have shown that salinity induces morphological plasticity changes in diatom cell walls, most research has focused on physiological responses rather than molecular mechanisms. In this study, Skeletonema subsalsum was cultured under four salinity conditions (0, 3, 6, 12). Through morphological and physiological methods, we found that salinity increased the cell diameter, protrusion lengths, distance between adjacent cells (DBCs), and nanopore size, while reducing cell height and silicification degree. To further investigate the mechanism underlying morphological changes in S. subsalsum, complementary transcriptome analysis was performed. In total, 20,138 differentially expressed genes (DEGs) were identified among the four treatments. Among them, 231 DEGs were screened and found to be closely associated with morphological changes, of which 107 were downregulated and 124 were upregulated. The findings demonstrated that elevated salinity inhibited silicon transport and deposition via downregulating the expression of DEGs involved in functions including chitin metabolism, putrescine metabolism, and vesicle transport, resulting in reduced silicon content and cell height. Increased salinity promoted the expression of DEGs related to microtubules (MTs), actin, and ubiquitin, which synchronously induced morphological changes. These findings provide a more comprehensive understanding of the salt tolerance of algae and a foundation for future studies on cell wall morphogenesis.
Collapse
Affiliation(s)
- Jingwen Hu
- Laboratory of Algae and Environment, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Ya Zheng
- Laboratory of Algae and Environment, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Shuang Yang
- Laboratory of Algae and Environment, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lin Yang
- Laboratory of Algae and Environment, College of Life Sciences, Shanghai Normal University, Shanghai, China
- Laboratory of Environmental Ecology and Engineering, College of Life Sciences, Hengshui University, Hengshui, China
| | - Qingmin You
- Laboratory of Algae and Environment, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Quanxi Wang
- Laboratory of Algae and Environment, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
3
|
Aram L, de Haan D, Varsano N, Gilchrist JB, Heintze C, Rotkopf R, Rechav K, Elad N, Kröger N, Gal A. Intracellular morphogenesis of diatom silica is guided by local variations in membrane curvature. Nat Commun 2024; 15:7888. [PMID: 39251596 PMCID: PMC11385223 DOI: 10.1038/s41467-024-52211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Silica cell-wall formation in diatoms is a showcase for the ability of organisms to control inorganic mineralization. The process of silicification by these unicellular algae is tightly regulated within a membrane-bound organelle, the silica deposition vesicle (SDV). Two opposing scenarios were proposed to explain the tight regulation of this intracellular process: a template-mediated process that relies on preformed scaffolds, or a template-independent self-assembly process. The present work points to a third scenario, where the SDV membrane is a dynamic mold that shapes the forming silica. We use in-cell cryo-electron tomography to visualize the silicification process in situ, in its native-state, and with a nanometer-scale resolution. This reveals that the plasma membrane interacts with the SDV membrane via physical tethering at membrane contact sites, where the curvature of the tethered side of the SDV membrane mirrors the intricate silica topography. We propose that silica growth and morphogenesis result from the biophysical properties of the SDV and plasma membranes.
Collapse
Affiliation(s)
- Lior Aram
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Diede de Haan
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - James B Gilchrist
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
| | - Christoph Heintze
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Ron Rotkopf
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Nils Kröger
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Assaf Gal
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Li Y, He J, Zhang X, Deng X. The draft genome of Nitzschia closterium f. minutissima and transcriptome analysis reveals novel insights into diatom biosilicification. BMC Genomics 2024; 25:560. [PMID: 38840265 PMCID: PMC11151724 DOI: 10.1186/s12864-024-10479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Nitzschia closterium f. minutissima is a commonly available diatom that plays important roles in marine aquaculture. It was originally classified as Nitzschia (Bacillariaceae, Bacillariophyta) but is currently regarded as a heterotypic synonym of Phaeodactylum tricornutum. The aim of this study was to obtain the draft genome of the marine microalga N. closterium f. minutissima to understand its phylogenetic placement and evolutionary specialization. Given that the ornate hierarchical silicified cell walls (frustules) of diatoms have immense applications in nanotechnology for biomedical fields, biosensors and optoelectric devices, transcriptomic data were generated by using reference genome-based read mapping to identify significantly differentially expressed genes and elucidate the molecular processes involved in diatom biosilicification. RESULTS In this study, we generated 13.81 Gb of pass reads from the PromethION sequencer. The draft genome of N. closterium f. minutissima has a total length of 29.28 Mb, and contains 28 contigs with an N50 value of 1.23 Mb. The GC content was 48.55%, and approximately 18.36% of the genome assembly contained repeat sequences. Gene annotation revealed 9,132 protein-coding genes. The results of comparative genomic analysis showed that N. closterium f. minutissima was clustered as a sister lineage of Phaeodactylum tricornutum and the divergence time between them was estimated to be approximately 17.2 million years ago (Mya). CAFF analysis demonstrated that 220 gene families that significantly changed were unique to N. closterium f. minutissima and that 154 were specific to P. tricornutum, moreover, only 26 gene families overlapped between these two species. A total of 818 DEGs in response to silicon were identified in N. closterium f. minutissima through RNA sequencing, these genes are involved in various molecular processes such as transcription regulator activity. Several genes encoding proteins, including silicon transporters, heat shock factors, methyltransferases, ankyrin repeat domains, cGMP-mediated signaling pathways-related proteins, cytoskeleton-associated proteins, polyamines, glycoproteins and saturated fatty acids may contribute to the formation of frustules in N. closterium f. minutissima. CONCLUSIONS Here, we described a draft genome of N. closterium f. minutissima and compared it with those of eight other diatoms, which provided new insight into its evolutionary features. Transcriptome analysis to identify DEGs in response to silicon will help to elucidate the underlying molecular mechanism of diatom biosilicification in N. closterium f. minutissima.
Collapse
Affiliation(s)
- Yajun Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS) & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Haikou, 571101, China.
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, China.
| | - Jinman He
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS) & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Haikou, 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, China
| | - Xiuxia Zhang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS) & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Haikou, 571101, China
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, China
| | - Xiaodong Deng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences (CATAS) & Key Laboratory of Biology and Genetic Resources of Tropical Crops of Hainan Province, Haikou, 571101, China.
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bioresources, Haikou, 571101, China.
| |
Collapse
|
5
|
Babenko I, Kröger N, Friedrich BM. Mechanism of branching morphogenesis inspired by diatom silica formation. Proc Natl Acad Sci U S A 2024; 121:e2309518121. [PMID: 38422023 PMCID: PMC10927588 DOI: 10.1073/pnas.2309518121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/07/2024] [Indexed: 03/02/2024] Open
Abstract
The silica-based cell walls of diatoms are prime examples of genetically controlled, species-specific mineral architectures. The physical principles underlying morphogenesis of their hierarchically structured silica patterns are not understood, yet such insight could indicate novel routes toward synthesizing functional inorganic materials. Recent advances in imaging nascent diatom silica allow rationalizing possible mechanisms of their pattern formation. Here, we combine theory and experiments on the model diatom Thalassiosira pseudonana to put forward a minimal model of branched rib patterns-a fundamental feature of the silica cell wall. We quantitatively recapitulate the time course of rib pattern morphogenesis by accounting for silica biochemistry with autocatalytic formation of diffusible silica precursors followed by conversion into solid silica. We propose that silica deposition releases an inhibitor that slows down up-stream precursor conversion, thereby implementing a self-replicating reaction-diffusion system different from a classical Turing mechanism. The proposed mechanism highlights the role of geometrical cues for guided self-organization, rationalizing the instructive role for the single initial pattern seed known as the primary silicification site. The mechanism of branching morphogenesis that we characterize here is possibly generic and may apply also in other biological systems.
Collapse
Affiliation(s)
- Iaroslav Babenko
- CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
- Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden 01307, Germany
| | - Nils Kröger
- CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
- Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden 01307, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Benjamin M Friedrich
- Cluster of Excellence 'Physics of Life', Technische Universität Dresden, Dresden 01307, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden 01069, Germany
| |
Collapse
|
6
|
Whitworth P, Aldred N, Finlay JA, Reynolds KJ, Plummer J, Clare AS. UV-C LED-induced cyclobutane pyrimidine dimer formation, lesion repair and mutagenesis in the biofilm-forming diatom, Navicula incerta. BIOFOULING 2024; 40:76-87. [PMID: 38384189 DOI: 10.1080/08927014.2024.2319178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/10/2024] [Indexed: 02/23/2024]
Abstract
The use of ultraviolet-C (UV-C) irradiation in marine biofouling control is a relatively new and potentially disruptive technology. This study examined effects of UV-C exposure on the biofilm-forming diatom, Navicula incerta. UV-C-induced mutations were identified via Illumina HiSeq. A de novo genome was assembled from control sequences and reads from UV-C-exposed treatments were mapped to this genome, with a quantitative estimate of mutagenesis then derived from the frequency of single nucleotide polymorphisms. UV-C exposure increased cyclobutane pyrimidine dimer (CPD) abundance with a direct correlation between lesion formation and fluency. Cellular repair mechanisms gradually reduced CPDs over time, with the highest UV-C fluence treatments having the fastest repair rates. Mutation abundances were, however, negatively correlated with CPD abundance suggesting that UV-C exposure may influence lesion repair. The threshold fluence for CPD formation exceeding CPD repair was >1.27 J cm-2. Fluences >2.54 J cm-2 were predicted to inhibit repair mechanisms. While UV-C holds considerable promise for marine antifouling, diatoms are just one, albeit an important, component of marine biofouling communities. Determining fluence thresholds for other representative taxa, highlighting the most resistant, would allow UV-C treatments to be specifically tuned to target biofouling organisms, whilst limiting environmental effects and the power requirement.
Collapse
Affiliation(s)
- Paul Whitworth
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nick Aldred
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kevin J Reynolds
- Technology & Innovation Delivery, Marine, Protective and Yacht, AkzoNobel/International Paint Ltd, Felling, Gateshead, United Kingdom
| | - Joseph Plummer
- Physical Sciences Group, Platform Systems Division, Defence Science and Technology Laboratory (DSTL), Porton Down, Salisbury, United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
7
|
Poulsen N, Kröger N. Thalassiosira pseudonana (Cyclotella nana) (Hustedt) Hasle et Heimdal (Bacillariophyceae): A genetically tractable model organism for studying diatom biology, including biological silica formation. JOURNAL OF PHYCOLOGY 2023; 59:809-817. [PMID: 37424141 DOI: 10.1111/jpy.13362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
In 2004, Thalassiosira pseudonana was the first eukaryotic marine alga to have its genome sequenced. Since then, this species has quickly emerged as a valuable model species for investigating the molecular underpinnings of essentially all aspects of diatom life, particularly bio-morphogenesis of the cell wall. An important prerequisite for the model status of T. pseudonana is the ongoing development of increasingly precise tools to study the function of gene networks and their encoded proteins in vivo. Here, we briefly review the current toolbox for genetic manipulation, highlight specific examples of its application in studying diatom metabolism, and provide a peek into the role of diatoms in the emerging field of silica biotechnology.
Collapse
Affiliation(s)
- Nicole Poulsen
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Nils Kröger
- B CUBE - Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Wang L, Sun Y, Zhang R, Pan K, Li Y, Wang R, Zhang L, Zhou C, Li J, Li Y, Zhu B, Han J. Enhancement of hemostatic properties of Cyclotella cryptica frustule through genetic manipulation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:136. [PMID: 37710352 PMCID: PMC10503012 DOI: 10.1186/s13068-023-02389-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The silicified cell wall of diatoms, also known as frustule, shows huge potential as an outstanding bio-nanomaterial for hemostatic applications due to its high hemostatic efficiency, good biocompatibility, and ready availability. As the architectural features of the frustule determine its hemostatic performance, it is of great interest to develop an effective method to modify the frustule morphology into desired patterns to further improve hemostatic efficiency. RESULTS In this study, the gene encoding Silicalemma Associated Protein 2 (a silicalemma-spanning protein) of Cyclotella cryptica (CcSAP2) was identified as a key gene in frustule morphogenesis. Thus, it was overexpressed and knocked down, respectively. The frustule of the overexpress lines showed no obvious alteration in morphology compared to the wild type (WT), while the size, specific surface area (BET), pore volume, and pore diameter of the knockdown strains changed greatly. Particularly, the knockdown frustules achieved a more pronounced coagulation effect and in vivo hemostatic performance than the WT strains. Such observations suggested that silicalemma proteins are ideal genetic encoding targets for manipulating frustule morphology associated hemostatic properties. Furthermore, the Mantel test was adopted to identify the key morphologies associated with C. cryptica bleeding control. Finally, based on our results and recent advances, the mechanism of frustule morphogenesis was discussed. CONCLUSION This study explores a new strategy for enhancing the hemostatic efficiency of the frustule based on genetic morphology modification and may provide insights into a better understanding of the frustule morphogenesis mechanism.
Collapse
Affiliation(s)
- Lulu Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yan Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315200, China
| | - Ruihao Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Kehou Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Laoshan Laboratory, Qingdao, 266237, China
| | - Yuhang Li
- Department of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Lin Zhang
- Key Laboratory of Applied Marine Biotechnology, School of Marine Sciences, Ningbo University, Ningbo, 315200, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315200, China
| | - Jian Li
- School of Biological and Chemical Engineering, Panzhihua University, Panzhihua, 617000, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Baohua Zhu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315200, China.
| |
Collapse
|
9
|
Skeffington A, Fischer A, Sviben S, Brzezinka M, Górka M, Bertinetti L, Woehle C, Huettel B, Graf A, Scheffel A. A joint proteomic and genomic investigation provides insights into the mechanism of calcification in coccolithophores. Nat Commun 2023; 14:3749. [PMID: 37353496 PMCID: PMC10290126 DOI: 10.1038/s41467-023-39336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 06/05/2023] [Indexed: 06/25/2023] Open
Abstract
Coccolithophores are globally abundant, calcifying microalgae that have profound effects on marine biogeochemical cycles, the climate, and life in the oceans. They are characterized by a cell wall of CaCO3 scales called coccoliths, which may contribute to their ecological success. The intricate morphologies of coccoliths are of interest for biomimetic materials synthesis. Despite the global impact of coccolithophore calcification, we know little about the molecular machinery underpinning coccolithophore biology. Working on the model Emiliania huxleyi, a globally distributed bloom-former, we deploy a range of proteomic strategies to identify coccolithogenesis-related proteins. These analyses are supported by a new genome, with gene models derived from long-read transcriptome sequencing, which revealed many novel proteins specific to the calcifying haptophytes. Our experiments provide insights into proteins involved in various aspects of coccolithogenesis. Our improved genome, complemented with transcriptomic and proteomic data, constitutes a new resource for investigating fundamental aspects of coccolithophore biology.
Collapse
Affiliation(s)
- Alastair Skeffington
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Axel Fischer
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Sanja Sviben
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Magdalena Brzezinka
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Michał Górka
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Luca Bertinetti
- Max Planck Institute of Colloids and Interfaces, Potsdam-Golm, 14476, Germany
| | - Christian Woehle
- Max Planck Institute for Plant Breeding Research, Max Planck-Genome-Centre Cologne, Cologne, 50829, Germany
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, Max Planck-Genome-Centre Cologne, Cologne, 50829, Germany
| | - Alexander Graf
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - André Scheffel
- Technische Universität Dresden, Faculty of Biology, 01307, Dresden, Germany.
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany.
| |
Collapse
|
10
|
Knight MJ, Hardy BJ, Wheeler GL, Curnow P. Computational modelling of diatom silicic acid transporters predicts a conserved fold with implications for their function and evolution. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184056. [PMID: 36191629 DOI: 10.1016/j.bbamem.2022.184056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/27/2022]
Abstract
Diatoms are an important group of algae that can produce intricate silicified cell walls (frustules). The complex process of silicification involves a set of enigmatic integral membrane proteins that are thought to actively transport the soluble precursor of biosilica, dissolved silicic acid. Full-length silicic acid transporters are found widely across the diatoms while homologous shorter proteins have now been identified in a range of other organisms. It has been suggested that modern silicic acid transporters arose from the union of such partial sequences. Here, we present a computational study of the silicic acid transporters and related transporter-like sequences to help understand the structure, function and evolution of this class of membrane protein. The AlphaFold software predicts that all of the protein sequences studied here share a common fold in the membrane domain which is entirely different from the predicted folds of non-homologous silicic acid transporters from plants. Substrate docking reveals how conserved polar residues could interact with silicic acid at a central solvent-accessible binding site, consistent with an alternating access mechanism of transport. The structural conservation between these proteins supports a model where modern silicon transporters evolved from smaller ancestral proteins by gene fusion.
Collapse
Affiliation(s)
| | | | | | - Paul Curnow
- School of Biochemistry, University of Bristol, UK.
| |
Collapse
|