1
|
Alvarez D, Yang Y, Saito Y, Balakrishna A, Goto K, Gojobori T, Al-Babili S. Characterization of a β-carotene isomerase from the cyanobacterium Cyanobacteria aponinum. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230360. [PMID: 39343012 PMCID: PMC11449226 DOI: 10.1098/rstb.2023.0360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/08/2024] [Accepted: 06/26/2024] [Indexed: 10/01/2024] Open
Abstract
Carotenoids are essential components of the photosynthetic apparatus and precursors of plant hormones, such as strigolactones (SLs). SLs are involved in various aspects of plant development and stress-response processes, including the establishment of root and shoot architecture. SL biosynthesis begins with the reversible isomerization of all-trans-carotene into 9-cis-β-carotene, catalysed by DWARF27 β-carotene isomerase (D27). Sequence comparisons have revealed the presence of D27-related proteins in photosynthetic eukaryotes and cyanobacteria lacking SLs. To gain insight into the evolution of SL biosynthesis, we characterized the activity of a cyanobacterial D27 protein (CaD27) from Cyanobacterim aponinum, using carotenoid-accumulating Escherichia coli cells and in vitro enzymatic assays. Our results demonstrate that CaD27 is an all-trans/cis and cis/cis-β-carotene isomerase, with a cis/cis conversion preference. CaD27 catalysed 13-cis/15-cis-, all-trans/9-cis-β-carotene, and neurosporene isomerization. Compared with plant enzymes, it exhibited a lower 9-cis-/all-trans-β-carotene conversion ratio. A comprehensive genome survey revealed the presence of D27 as a single-copy gene in the genomes of 20 out of 200 cyanobacteria species analysed. Phylogenetic and enzymatic analysis of CaD27 indicated that cyanobacterial D27 genes form a single orthologous group, which is considered an ancestral type of those found in photosynthetic eukaryotes. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Derry Alvarez
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Yu Yang
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Yoshimoto Saito
- Marine Open Innovation (MaOI) Institute, 9-25 Hinodecho, Shimizu-ku, Shizuoka424-0922, Japan
| | - Aparna Balakrishna
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Kosuke Goto
- Marine Open Innovation (MaOI) Institute, 9-25 Hinodecho, Shimizu-ku, Shizuoka424-0922, Japan
| | - Takashi Gojobori
- Marine Open Innovation (MaOI) Institute, 9-25 Hinodecho, Shimizu-ku, Shizuoka424-0922, Japan
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| |
Collapse
|
2
|
Mou L, Zhang L, Qiu Y, Liu M, Wu L, Mo X, Chen J, Liu F, Li R, Liu C, Tian M. Endogenous Hormone Levels and Transcriptomic Analysis Reveal the Mechanisms of Bulbil Initiation in Pinellia ternata. Int J Mol Sci 2024; 25:6149. [PMID: 38892337 PMCID: PMC11173086 DOI: 10.3390/ijms25116149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Pinellia ternata is a medicinal plant that has important pharmacological value, and the bulbils serve as the primary reproductive organ; however, the mechanisms underlying bulbil initiation remain unclear. Here, we characterized bulbil development via histological, transcriptomic, and targeted metabolomic analyses to unearth the intricate relationship between hormones, genes, and bulbil development. The results show that the bulbils initiate growth from the leaf axillary meristem (AM). In this stage, jasmonic acid (JA), abscisic acid (ABA), isopentenyl adenosine (IPA), and salicylic acid (SA) were highly enriched, while indole-3-acetic acid (IAA), zeatin, methyl jasmonate (MeJA), and 5-dexoxystrigol (5-DS) were notably decreased. Through OPLS-DA analysis, SA has emerged as the most crucial factor in initiating and positively regulating bulbil formation. Furthermore, a strong association between IPA and SA was observed during bulbil initiation. The transcriptional changes in IPT (Isopentenyltransferase), CRE1 (Cytokinin Response 1), A-ARR (Type-A Arabidopsis Response Regulator), B-ARR (Type-B Arabidopsis Response Regulator), AUX1 (Auxin Resistant 1), ARF (Auxin Response Factor), AUX/IAA (Auxin/Indole-3-acetic acid), GH3 (Gretchen Hagen 3), SAUR (Small Auxin Up RNA), GA2ox (Gibberellin 2-oxidase), GA20ox (Gibberellin 20-oxidase), AOS (Allene oxide synthase), AOC (Allene oxide cyclase), OPR (Oxophytodienoate Reductase), JMT (JA carboxy l Methyltransferase), COI1 (Coronatine Insensitive 1), JAZ (Jasmonate ZIM-domain), MYC2 (Myelocytomatosis 2), D27 (DWARF27), SMAX (Suppressor of MAX2), PAL (Phenylalanine Ammonia-Lyase), ICS (Isochorismate Synthase), NPR1 (Non-expressor of Pathogenesis-related Genes1), TGA (TGACG Sequence-specific Binding), PR-1 (Pathogenesis-related), MCSU (Molybdenium Cofactor Sulfurase), PP2C (Protein Phosphatase 2C), and SnRK (Sucrose Non-fermenting-related Protein Kinase 2) were highly correlated with hormone concentrations, indicating that bulbil initiation is coordinately controlled by multiple phytohormones. Notably, eight TFs (transcription factors) that regulate AM initiation have been identified as pivotal regulators of bulbil formation. Among these, WUS (WUSCHEL), CLV (CLAVATA), ATH1 (Arabidopsis Thaliana Homeobox Gene 1), and RAX (Regulator of Axillary meristems) have been observed to exhibit elevated expression levels. Conversely, LEAFY demonstrated contrasting expression patterns. The intricate expression profiles of these TFs are closely associated with the upregulated expression of KNOX(KNOTTED-like homeobox), suggesting a intricate regulatory network underlying the complex process of bulbil initiation. This study offers a profound understanding of the bulbil initiation process and could potentially aid in refining molecular breeding techniques specific to P. ternata.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mengliang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (L.M.); (L.Z.); (Y.Q.); (M.L.); (L.W.); (X.M.); (J.C.); (F.L.); (R.L.); (C.L.)
| |
Collapse
|
3
|
McQuinn RP, Waters MT. Apocarotenoid signals in plant development and beyond. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1131-1133. [PMID: 38345556 DOI: 10.1093/jxb/erae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Affiliation(s)
- Ryan P McQuinn
- School of Science, Western Sydney University, Penrith, NSW 2750, Australia
| | - Mark T Waters
- School of Molecular Sciences, University of Western Australia, Perth 6009, Australia
| |
Collapse
|
4
|
Tolnai Z, Sharma H, Soós V. D27-like carotenoid isomerases: at the crossroads of strigolactone and abscisic acid biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1148-1158. [PMID: 38006582 DOI: 10.1093/jxb/erad475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/24/2023] [Indexed: 11/27/2023]
Abstract
Strigolactones and abscisic acid (ABA) are apocarotenoid-derived plant hormones. Their biosynthesis starts with the conversion of trans-carotenes into cis forms, which serve as direct precursors. Iron-containing DWARF27 isomerases were shown to catalyse or contribute to the trans/cis conversions of these precursor molecules. D27 converts trans-β-carotene into 9-cis-β-carotene, which is the first committed step in strigolactone biosynthesis. Recent studies found that its paralogue, D27-LIKE1, also catalyses this conversion. A crucial step in ABA biosynthesis is the oxidative cleavage of 9-cis-violaxanthin and/or 9-cis-neoxanthin, which are formed from their trans isomers by unknown isomerases. Several lines of evidence point out that D27-like proteins directly or indirectly contribute to 9-cis-violaxanthin conversion, and eventually ABA biosynthesis. Apparently, the diversity of D27-like enzymatic activity is essential for the optimization of cis/trans ratios, and hence act to maintain apocarotenoid precursor pools. In this review, we discuss the functional divergence and redundancy of D27 paralogues and their potential direct contribution to ABA precursor biosynthesis. We provide updates on their gene expression regulation and alleged Fe-S cluster binding feature. Finally, we conclude that the functional divergence of these paralogues is not fully understood and we provide an outlook on potential directions in research.
Collapse
Affiliation(s)
- Zoltán Tolnai
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2462 Martonvásár, Brunszvik u. 2, Hungary
| | - Himani Sharma
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2462 Martonvásár, Brunszvik u. 2, Hungary
| | - Vilmos Soós
- Agricultural Institute, Centre for Agricultural Research, ELKH, 2462 Martonvásár, Brunszvik u. 2, Hungary
| |
Collapse
|
5
|
Cseh A, Lenykó-Thegze A, Makai D, Szabados F, Hamow KÁ, Gulyás Z, Kiss T, Karsai I, Moncsek B, Mihók E, Sepsi A. Meiotic instability and irregular chromosome pairing underpin heat-induced infertility in bread wheat carrying the Rht-B1b or Rht-D1b Green Revolution genes. THE NEW PHYTOLOGIST 2024; 241:180-196. [PMID: 37691304 DOI: 10.1111/nph.19256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/12/2023] [Indexed: 09/12/2023]
Abstract
Mutations in the Rht-B1a and Rht-D1a genes of wheat (Triticum aestivum; resulting in Rht-B1b and Rht-D1b alleles) cause gibberellin-insensitive dwarfism and are one of the most important elements of increased yield introduced during the 'Green Revolution'. We measured the effects of a short period of heat imposed during the early reproductive stage on near-isogenic lines carrying Rht-B1b or Rht-D1b alleles, with respect to the wild-type (WT). The temperature shift caused a significant fertility loss within the ears of Rht-B1b and Rht-D1b wheats, greater than that observed for the WT. Defects in chromosome synapsis, reduced homologous recombination and a high frequency of chromosome mis-segregation were associated with reduced fertility. The transcription of TaGA3ox gene involved in the final stage of gibberellic acid (GA) biosynthesis was activated and ultra-performance liquid chromatography-tandem mass spectrometry identified GA1 as the dominant bioactive GA in developing ears, but levels were unaffected by the elevated temperature. Rht-B1b and Rht-D1b mutants were inclined to meiotic errors under optimal temperatures and showed a higher susceptibility to heat than their tall counterparts. Identification and introduction of new dwarfing alleles into modern breeding programmes is invaluable in the development of climate-resilient wheat varieties.
Collapse
Affiliation(s)
- András Cseh
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Andrea Lenykó-Thegze
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Egyetem tér 1-3, Budapest, 1053, Hungary
| | - Diána Makai
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Fanni Szabados
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Kamirán Áron Hamow
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Zsolt Gulyás
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Tibor Kiss
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, Eszterházy tér 1, Eger, 3300, Hungary
| | - Ildikó Karsai
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Blanka Moncsek
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Edit Mihók
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| | - Adél Sepsi
- HUN-REN, Centre for Agricultural Research, 2462, Martonvásár, Brunszvik u. 2, Hungary
| |
Collapse
|
6
|
Korek M, Marzec M. Strigolactones and abscisic acid interactions affect plant development and response to abiotic stresses. BMC PLANT BIOLOGY 2023; 23:314. [PMID: 37308831 DOI: 10.1186/s12870-023-04332-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Strigolactones (SL) are the youngest group of plant hormones responsible for shaping plant architecture, especially the branching of shoots. However, recent studies provided new insights into the functioning of SL, confirming their participation in regulating the plant response to various types of abiotic stresses, including water deficit, soil salinity and osmotic stress. On the other hand, abscisic acid (ABA), commonly referred as a stress hormone, is the molecule that crucially controls the plant response to adverse environmental conditions. Since the SL and ABA share a common precursor in their biosynthetic pathways, the interaction between both phytohormones has been largely studied in the literature. Under optimal growth conditions, the balance between ABA and SL content is maintained to ensure proper plant development. At the same time, the water deficit tends to inhibit SL accumulation in the roots, which serves as a sensing mechanism for drought, and empowers the ABA production, which is necessary for plant defense responses. The SL-ABA cross-talk at the signaling level, especially regarding the closing of the stomata under drought conditions, still remains poorly understood. Enhanced SL content in shoots is likely to stimulate the plant sensitivity to ABA, thus reducing the stomatal conductance and improving the plant survival rate. Besides, it was proposed that SL might promote the closing of stomata in an ABA-independent way. Here, we summarize the current knowledge regarding the SL and ABA interactions by providing new insights into the function, perception and regulation of both phytohormones during abiotic stress response of plants, as well as revealing the gaps in the current knowledge of SL-ABA cross-talk.
Collapse
Affiliation(s)
- Magdalena Korek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, Katowice, 40-032, Poland.
| | - Marek Marzec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, Katowice, 40-032, Poland
| |
Collapse
|
7
|
Yang Y, Abuauf H, Song S, Wang JY, Alagoz Y, Moreno JC, Mi J, Ablazov A, Jamil M, Ali S, Zheng X, Balakrishna A, Blilou I, Al-Babili S. The Arabidopsis D27-LIKE1 is a cis/cis/trans-β-carotene isomerase that contributes to Strigolactone biosynthesis and negatively impacts ABA level. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:986-1003. [PMID: 36602437 DOI: 10.1111/tpj.16095] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The enzyme DWARF27 (D27) catalyzes the reversible isomerization of all-trans- into 9-cis-β-carotene, initiating strigolactone (SL) biosynthesis. Genomes of higher plants encode two D27-homologs, D27-like1 and -like2, with unknown functions. Here, we investigated the enzymatic activity and biological function of the Arabidopsis D27-like1. In vitro enzymatic assays and expression in Synechocystis sp. PCC6803 revealed an unreported 13-cis/15-cis/9-cis- and a 9-cis/all-trans-β-carotene isomerization. Although disruption of AtD27-like1 did not cause SL deficiency phenotypes, overexpression of AtD27-like1 in the d27 mutant restored the more-branching phenotype, indicating a contribution of AtD27-like1 to SL biosynthesis. Accordingly, generated d27 d27like1 double mutants showed a more pronounced branching phenotype compared to d27. The contribution of AtD27-like1 to SL biosynthesis is likely a result of its formation of 9-cis-β-carotene that was present at higher levels in AtD27-like1 overexpressing lines. By contrast, AtD27-like1 expression correlated negatively with the content of 9-cis-violaxanthin, a precursor of ABA, in shoots. Consistently, ABA levels were higher in shoots and also in dry seeds of the d27like1 and d27 d27like1 mutants. Transgenic lines expressing GUS driven by the AtD27LIKE1 promoter and transcript analysis of hormone-treated Arabidopsis seedlings revealed that AtD27LIKE1 is expressed in different tissues and affects ABA and auxin. Taken together, our work reports a cis/cis-β-carotene isomerase that affects the content of both cis-carotenoid-derived plant hormones, ABA and SLs.
Collapse
Affiliation(s)
- Yu Yang
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, 23955, Saudi Arabia
| | - Haneen Abuauf
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955, Saudi Arabia
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, 8XH2+XVP, Mecca, 24382, Saudi Arabia
| | - Shanshan Song
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955, Saudi Arabia
| | - Jian You Wang
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955, Saudi Arabia
| | - Yagiz Alagoz
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955, Saudi Arabia
| | - Juan C Moreno
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955, Saudi Arabia
| | - Jianing Mi
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955, Saudi Arabia
| | - Abdugaffor Ablazov
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, 23955, Saudi Arabia
| | - Muhammad Jamil
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955, Saudi Arabia
| | - Shawkat Ali
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955, Saudi Arabia
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, NS, B4N 1J5, Canada
| | - Xiongjie Zheng
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955, Saudi Arabia
| | - Aparna Balakrishna
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955, Saudi Arabia
| | - Ikram Blilou
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, 23955, Saudi Arabia
- The Laboratory of Plant Cell and Developmental Biology, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955, Saudi Arabia
| | - Salim Al-Babili
- The BioActives Lab, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955, Saudi Arabia
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, 23955, Saudi Arabia
| |
Collapse
|