1
|
Sweetlove LJ, Ratcliffe RG, Fernie AR. Non-canonical plant metabolism. NATURE PLANTS 2025; 11:696-708. [PMID: 40164785 DOI: 10.1038/s41477-025-01965-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/01/2025] [Indexed: 04/02/2025]
Abstract
Metabolism is essential for plant growth and has become a major target for crop improvement by enhancing nutrient use efficiency. Metabolic engineering is also the basis for producing high-value plant products such as pharmaceuticals, biofuels and industrial biochemicals. An inherent problem for such engineering endeavours is the tendency to view metabolism as a series of distinct metabolic pathways-glycolysis, the tricarboxylic acid cycle, the Calvin-Benson cycle and so on. While these canonical pathways may represent a dominant or frequently occurring flux mode, systematic analyses of metabolism via computational modelling have emphasized the inherent flexibility of the metabolic network to carry flux distributions that are distinct from the canonical pathways. Recent experimental estimates of metabolic network fluxes using 13C-labelling approaches have revealed numerous instances in which non-canonical pathways occur under different conditions and in different tissues. In this Review, we bring these non-canonical pathways to the fore, summarizing the evidence for their occurrence and the context in which they operate. We also emphasize the importance of non-canonical pathways for metabolic engineering. We argue that the introduction of a high-flux pathway to a desired metabolic product will, by necessity, require non-canonical supporting fluxes in central metabolism to provide the necessary carbon skeletons, energy and reducing power. We illustrate this using the overproduction of isoprenoids and fatty acids as case studies.
Collapse
Affiliation(s)
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| |
Collapse
|
2
|
Gallart M, Dow L, Nowak V, Belt K, Sabburg R, Gardiner DM, Thatcher LF. Multi-omic investigation identifies key antifungal biochemistry during fermentation of a Streptomyces biological control agent. Microbiol Res 2025; 292:128032. [PMID: 39721340 DOI: 10.1016/j.micres.2024.128032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
The use of multi-omic approaches has significantly advanced the exploration of microbial traits, leading to the discovery of new bioactive compounds and their mechanisms of action. Streptomyces sp. MH71 is known for its antifungal properties with potential for use in crop protection. Using genomic, transcriptomic, and metabolomic analyses, the antifungal metabolic capacity of Streptomyces sp. MH71 was investigated. After 96 hours of liquid fermentation, cell-free spent media showed inhibitory activity against the fungal phytopathogen Verticillium dahliae, with the lowest IC50 value being 0.11 % (v/v) after 144 h. Through whole-genome sequencing, we obtained a near-complete genome of 11 Mb with a G+C content of 71 % for Streptomyces sp. MH71. Genome mining identified 50 putative biosynthetic gene clusters, six of which produced known antimicrobial compounds. To link antifungal activity with candidate biosynthetic pathways, a transcriptomic approach was applied to understand antifungal induction in MH71 cells during the observed increase in antifungal activity. This approach revealed 2774 genes that exhibited differential expression, with significant upregulation of genes involved in biosynthesis of secondary metabolites during the stationary growth phase. Metabolomic analyses using LC-MS and GC-MS of secreted compounds identified a cocktail of potent antifungal metabolites, including volatiles with antifungal activity. By combining genome mining, bioactivity data, transcriptomics, and metabolomics, we describe in detail the gene expression and metabolite products driving antifungal activity during microbial fermentation.
Collapse
Affiliation(s)
- Marta Gallart
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Acton, ACT, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Advanced Engineering Biology Future Science Platform, Acton, ACT, Australia.
| | - Lachlan Dow
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Acton, ACT, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia
| | - Vincent Nowak
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Acton, ACT, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Advanced Engineering Biology Future Science Platform, Acton, ACT, Australia
| | - Katharina Belt
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Acton, ACT, Australia
| | - Rosalie Sabburg
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Acton, ACT, Australia
| | - Donald M Gardiner
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Acton, ACT, Australia
| | - Louise F Thatcher
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Agriculture and Food, Acton, ACT, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Advanced Engineering Biology Future Science Platform, Acton, ACT, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Microbiomes for One Systems Health Future Science Platform, Acton, ACT, Australia
| |
Collapse
|
3
|
Wang J, Wang R, Liu L, Zhang W, Yin Z, Guo R, Wang D, Guo C. Integrated Physiological, Transcriptomic and Metabolomic Analyses of the Response of Rice to Aniline Toxicity. Int J Mol Sci 2025; 26:582. [PMID: 39859297 PMCID: PMC11765360 DOI: 10.3390/ijms26020582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The accumulation of aniline in the natural environment poses a potential threat to crops, and thus, investigating the effects of aniline on plants holds practical implications for agricultural engineering and its affiliated industries. This study combined physiological, transcriptomic, and metabolomic methods to investigate the growth status and molecular-level response mechanisms of rice under stress from varying concentrations of aniline. At a concentration of 1 mg/L, aniline exhibited a slight growth-promoting effect on rice. However, higher concentrations of aniline significantly inhibited rice growth and even caused notable damage to the rice seedlings. Physiological data indicated that under aniline stress, the membrane of rice underwent oxidative damage. Furthermore, when the concentration of aniline was excessively high, the cells suffered severe damage, resulting in the inhibition of antioxidant enzyme synthesis and activity. Transcriptomic and metabolomic analyses indicated that the phenylpropanoid biosynthesis pathway became quite active under aniline stress, with alterations in various enzymes and metabolites related to lignin synthesis. In addition to the phenylpropanoid biosynthesis pathway, amino acid metabolism, lipid metabolism, and purine metabolism were also critical pathways related to rice's response to aniline stress. Significant changes occurred in the expression levels of multiple genes (e.g., PRX, C4H, GST, and ilvH, among others) associated with functions such as antioxidant activity, membrane remodeling, signal transduction, and nitrogen supply. Similarly, notable alterations were observed in the accumulation of various metabolites (for instance, glutamic acid, phosphatidic acid, phosphatidylglycerol, and asparagine, etc.) related to these functions. Our research findings have unveiled the potential of compounds such as phenylpropanoids and amino acids in assisting rice to cope with aniline stress. A more in-depth and detailed exploration of the specific mechanisms by which these substances function in the process of plant resistance to aniline stress (for instance, utilizing carbon-14 isotope tracing to monitor the metabolic pathway of aniline within plants) will facilitate the cultivation of plant varieties that are resistant to aniline. This will undoubtedly benefit activities such as ensuring food production and quality in aniline-contaminated environments, as well as utilizing plants for the remediation of aniline-polluted environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, No. 1, Shida Road, Limin Economic and Technological Development Zone, Harbin 150025, China; (J.W.); (R.W.); (L.L.); (W.Z.); (Z.Y.); (R.G.); (D.W.)
| |
Collapse
|
4
|
Kuntz M, Dimnet L, Pullara S, Moyet L, Rolland N. The Main Functions of Plastids. Methods Mol Biol 2024; 2776:89-106. [PMID: 38502499 DOI: 10.1007/978-1-0716-3726-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Plastids are semi-autonomous organelles like mitochondria and derive from a cyanobacterial ancestor that was engulfed by a host cell. During evolution, they have recruited proteins originating from the nuclear genome, and only parts of their ancestral metabolic properties were conserved and optimized to limit functional redundancy with other cell compartments. Furthermore, large disparities in metabolic functions exist among various types of plastids, and the characterization of their various metabolic properties is far from being accomplished. In this review, we provide an overview of the main functions, known to be achieved by plastids or shared by plastids and other compartments of the cell. In short, plastids appear at the heart of all main plant functions.
Collapse
Affiliation(s)
- Marcel Kuntz
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France.
| | - Laura Dimnet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Sara Pullara
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Lucas Moyet
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| | - Norbert Rolland
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, CEA, INRAE, Univ. Grenoble Alpes, IRIG, CEA Grenoble, Grenoble, France
| |
Collapse
|
5
|
Singh DP, Maurya S, Yerasu SR, Bisen MS, Farag MA, Prabha R, Shukla R, Chaturvedi KK, Farooqi MS, Srivastava S, Rai A, Sarma BK, Rai N, Behera TK. Metabolomics of early blight (Alternaria solani) susceptible tomato (Solanum lycopersicum) unfolds key biomarker metabolites and involved metabolic pathways. Sci Rep 2023; 13:21023. [PMID: 38030710 PMCID: PMC10687106 DOI: 10.1038/s41598-023-48269-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
Tomato (Solanum lycopersicum) is among the most important commercial horticultural crops worldwide. The crop quality and production is largely hampered due to the fungal pathogen Alternaria solani causing necrotrophic foliage early blight disease. Crop plants usually respond to the biotic challenges with altered metabolic composition and physiological perturbations. We have deciphered altered metabolite composition, modulated metabolic pathways and identified metabolite biomarkers in A. solani-challenged susceptible tomato variety Kashi Aman using Liquid Chromatography-Mass Spectrometry (LC-MS) based metabolomics. Alteration in the metabolite feature composition of pathogen-challenged (m/z 9405) and non-challenged (m/z 9667) plant leaves including 8487 infection-exclusive and 8742 non-infection exclusive features was observed. Functional annotation revealed putatively annotated metabolites and pathway mapping indicated their enrichment in metabolic pathways, biosynthesis of secondary metabolites, ubiquinone and terpenoid-quinones, brassinosteroids, steroids, terpenoids, phenylpropanoids, carotenoids, oxy/sphingolipids and metabolism of biotin and porphyrin. PCA, multivariate PLS-DA and OPLS-DA analysis showed sample discrimination. Significantly up regulated 481 and down regulated 548 metabolite features were identified based on the fold change (threshold ≥ 2.0). OPLS-DA model based on variable importance in projection (VIP scores) and FC threshold (> 2.0) revealed 41 up regulated discriminant metabolite features annotated as sphingosine, fecosterol, melatonin, serotonin, glucose 6-phosphate, zeatin, dihydrozeatin and zeatin-β-D-glucoside. Similarly, 23 down regulated discriminant metabolites included histidinol, 4-aminobutyraldehyde, propanoate, tyramine and linalool. Melatonin and serotonin in the leaves were the two indoleamines being reported for the first time in tomato in response to the early blight pathogen. Receiver operating characteristic (ROC)-based biomarker analysis identified apigenin-7-glucoside, uridine, adenosyl-homocysteine, cGMP, tyrosine, pantothenic acid, riboflavin (as up regulated) and adenosine, homocyctine and azmaline (as down regulated) biomarkers. These results could aid in the development of metabolite-quantitative trait loci (mQTL). Furthermore, stress-induced biosynthetic pathways may be the potential targets for modifications through breeding programs or genetic engineering for improving crop performance in the fields.
Collapse
Affiliation(s)
| | - Sudarshan Maurya
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | | | - Mansi Singh Bisen
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Ratna Prabha
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
| | - Renu Shukla
- Indian Council of Agricultural Research, New Delhi, 110012, India
| | | | - Md Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, New Delhi, India
- Indian Council of Agricultural Research, New Delhi, 110012, India
| | - Birinchi Kumar Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Nagendra Rai
- ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | | |
Collapse
|
6
|
Caldana C, Carrari F, Fernie AR, Sampathkumar A. How metabolism and development are intertwined in space and time. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:347-359. [PMID: 37433681 DOI: 10.1111/tpj.16391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/13/2023]
Abstract
Developmental transitions, occurring throughout the life cycle of plants, require precise regulation of metabolic processes to generate the energy and resources necessary for the committed growth processes. In parallel, the establishment of new cells, tissues, and even organs, alongside their differentiation provoke profound changes in metabolism. It is increasingly being recognized that there is a certain degree of feedback regulation between the components and products of metabolic pathways and developmental regulators. The generation of large-scale metabolomics datasets during developmental transitions, in combination with molecular genetic approaches has helped to further our knowledge on the functional importance of metabolic regulation of development. In this perspective article, we provide insights into studies that elucidate interactions between metabolism and development at the temporal and spatial scales. We additionally discuss how this influences cell growth-related processes. We also highlight how metabolic intermediates function as signaling molecules to direct plant development in response to changing internal and external conditions.
Collapse
Affiliation(s)
- Camila Caldana
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Fernando Carrari
- Facultad de Agronomía, Cátedra de Genética, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Arun Sampathkumar
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
7
|
Reja A, Pal S, Mahato K, Saha B, Delle Piane M, Pavan GM, Das D. Emergence of Photomodulated Protometabolism by Short Peptide-Based Assemblies. J Am Chem Soc 2023; 145:21114-21121. [PMID: 37708200 DOI: 10.1021/jacs.3c08158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
In the early Earth, rudimentary enzymes must have utilized the available light energy source to modulate protometabolic processes. Herein, we report the light-responsive C-C bond manipulation via short peptide-based assemblies bound to the photosensitive molecular cofactor (azo-based photoswitch) where the energy of the light source regulated the binding sites which subsequently modulated the retro-aldolase activity. In the presence of a continual source of high-energy photons, temporal realization of a catalytically more proficient state could be achieved under nonequilibrium conditions. Further, the hydrophobic surface of peptide assemblies facilitated the binding of an orthogonal molecular catalyst that showed augmented activity (promiscuous hydrolytic activity) upon binding. This latent activity was utilized for the in situ generation of light-sensitive cofactor that subsequently modulated the retro-aldolase activity, thus creating a reaction network.
Collapse
Affiliation(s)
- Antara Reja
- Department of Chemical Sciences and CAFM, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Sumit Pal
- Department of Chemical Sciences and CAFM, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Kishalay Mahato
- Department of Chemical Sciences and CAFM, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Baishakhi Saha
- Department of Chemical Sciences and CAFM, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Massimo Delle Piane
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Giovanni M Pavan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Polo Universitario Lugano, Campus Est, Via la Santa 1, 6962 Lugano-Viganello, Switzerland
| | - Dibyendu Das
- Department of Chemical Sciences and CAFM, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| |
Collapse
|