1
|
Berti F, Tamburello EM, Forzato C. p-Coumaroyl Amides from the Plant Kingdom: A Comprehensive Review of Natural Sources, Biosynthesis, and Biological Activities. Molecules 2025; 30:1259. [PMID: 40142036 PMCID: PMC11944718 DOI: 10.3390/molecules30061259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/26/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Hydroxycinnamic acids are widely distributed in the plant kingdom, both as free compounds and as conjugates with other molecules, such as amino acids, carbohydrates, alcohols or amines, and polyamines, forming different derivatives, such as amides, esters, thioesters, or ethers. Among the different hydroxycinnamic acids, p-coumaric acid has a high bioavailability and its amide derivatives, also known as phenolamides (PAs) and hydroxycinnamic acid amides (HCAAs), play specific roles in plant development and defense. They are also involved in several biological activities that affect human health. The present review collected data and described secondary and tertiary amides of p-coumaric acids found in plants, from their natural sources to their biosynthesis. The review also described the acyl-transferase mechanisms involved in their formation, their roles in plants, as well as studies of their biological activities in humans.
Collapse
Affiliation(s)
| | | | - Cristina Forzato
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy; (F.B.); (E.M.T.)
| |
Collapse
|
2
|
Li C, Qiu X, Hou X, Li D, Jiang M, Cui X, Pan X, Shao F, Li Q, Xie DY, Chiang VL, Lu S. Polymerization of proanthocyanidins under the catalysis of miR397a-regulated laccases in Salvia miltiorrhiza and Populus trichocarpa. Nat Commun 2025; 16:1513. [PMID: 39929881 PMCID: PMC11811200 DOI: 10.1038/s41467-025-56864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Proanthocyanidins (PAs) play significant roles in plants and are bioactive compounds with health benefits. The polymerization mechanism has been debated for decades. Here we show that laccases (LACs) are involved in PA polymerization and miR397a is a negative regulator of PA biosynthesis in Salvia miltiorrhiza and Populus trichocarpa. Elevation of miR397a level causes significant downregulation of LACs, severe reduction of polymerized PAs, and significant increase of flavan-3-ol monomers in transgenic S. miltiorrhiza and P. trichocarpa plants. Enzyme activity analysis shows that miR397a-regulated SmLAC1 catalyzes the polymerization of flavan-3-ols and the conversion of B-type PAs to A-type. Both catechin and epicatechin can serve as the starter unit and the extension unit during PA polymerization. Overexpression of SmLAC1 results in significant increase of PA accumulation, accompanied by the decrease of catechin and epicatechin contents. Consistently, CRISPR/Cas9-mediated SmLAC1 knockout shows the opposite results. Based on these results, a scheme for LAC-catalyzed PA polymerization is proposed. The work provides insights into PA polymerization mechanism.
Collapse
Affiliation(s)
- Caili Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoxiao Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xuemin Hou
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongqiao Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Maochang Jiang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinyun Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xian Pan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fenjuan Shao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
| | - Quanzi Li
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Vincent L Chiang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - Shanfa Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
van Zadelhoff A, Vincken JP, de Bruijn WJC. Exploring the formation of heterodimers of barley hydroxycinnamoylagmatines by oxidative enzymes. Food Chem 2024; 446:138898. [PMID: 38447386 DOI: 10.1016/j.foodchem.2024.138898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Dimers of hydroxycinnamoylagmatines are phenolic compounds found in barley and beer. Although they are bioactive and sensory-active compounds, systematic reports on their structure-property relationships are missing. This is partly due to lack of protocols to obtain a diverse set of hydroxycinnamoylagmatine homo- and heterodimers. To better understand dimer formation in complex systems, combinations of the monomers coumaroylagmatine (CouAgm), feruloylagmatine (FerAgm), and sinapoylagmatine (SinAgm) were incubated with horseradish peroxidase. For all combinations, the main oxidative coupling products were homodimers. Additionally, minor amounts of heterodimers were formed, except for the combination of FerAgm and CouAgm. Oxidative coupling was also performed with laccases from Agaricus bisporus and Trametes versicolor, resulting in formation of the same coupling products and no formation of CouAgm-FerAgm heterodimers. Our protocol for oxidative coupling combinations of hydroxycinnamoylagmatines yielded a structurally diverse set of coupling products, facilitating production of dimers for future research on their structure-property relationships.
Collapse
Affiliation(s)
- Annemiek van Zadelhoff
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| | - Jean-Paul Vincken
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| | - Wouter J C de Bruijn
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands.
| |
Collapse
|
4
|
Ushimaru R. Functions and mechanisms of enzymes assembling lignans and norlignans. Curr Opin Chem Biol 2024; 80:102462. [PMID: 38692182 DOI: 10.1016/j.cbpa.2024.102462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Lignans and norlignans are distributed throughout the plant kingdom and exhibit diverse chemical structures and biological properties that offer potential for therapeutic use. Originating from the phenylpropanoid biosynthesis pathway, their characteristic carbon architectures are formed through unique enzyme catalysis, featuring regio- and stereoselective C-C bond forming processes. Despite extensive research on these plant natural products, their biosynthetic pathways, and enzyme mechanisms remain enigmatic. This review highlights recent advancements in elucidating the functions and mechanisms of the biosynthetic enzymes responsible for constructing the distinct carbon frameworks of lignans and norlignans.
Collapse
Affiliation(s)
- Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|