1
|
Kong D, Xu M, Liu S, Liu T, Liu B, Wang X, Dong Z, Ma X, Zhao J, Lei X. Genome-Wide Identification and Expression Profiling of the SPL Transcription Factor Family in Response to Abiotic Stress in Centipedegrass. PLANTS (BASEL, SWITZERLAND) 2024; 14:62. [PMID: 39795323 PMCID: PMC11723030 DOI: 10.3390/plants14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
SQUAMOSA promoter-binding protein-like (SPL) transcription factors play a critical role in the regulation of gene expression and are indispensable in orchestrating plant growth and development while also improving resistance to environmental stressors. Although it has been identified across a wide array of plant species, there have been no comprehensive studies on the SPL gene family in centipedegrass [Eremochloa ophiuroides (Munro) Hack.], which is an important warm-season perennial C4 turfgrass. In this study, 19 potential EoSPL genes in centipedegrass were identified and assigned the names EoSPL1-EoSPL19. Gene structure and motif analysis demonstrated that there was relative consistency among the branches of the phylogenetic tree. Five pairs of segmental duplication events were detected within centipedegrass. Ten EoSPL genes were predicted to be targeted by miR156. Additionally, the EoSPL genes were found to be predominantly expressed in leaves and demonstrated diverse responses to abiotic stress (salt, drought, glufosinate ammonium, aluminum, and cold). This study offers a comprehensive insight into the SPL gene family in centipedegrass, creating a foundation for elucidating the functions of EoSPL genes and investigating their involvement in abiotic stress responses.
Collapse
Affiliation(s)
- Dandan Kong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Maotao Xu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyu Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianqi Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Boyang Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyun Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhixiao Dong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu 611731, China
| |
Collapse
|
2
|
Li W, Liu J, Li Z, Ye R, Chen W, Huang Y, Yuan Y, Zhang Y, Hu H, Zheng P, Fang Z, Tao Z, Song S, Pan R, Zhang J, Tu J, Sheen J, Du H. Mitigating growth-stress tradeoffs via elevated TOR signaling in rice. MOLECULAR PLANT 2024; 17:240-257. [PMID: 38053337 PMCID: PMC11271712 DOI: 10.1016/j.molp.2023.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
Rice production accounts for approximately half of the freshwater resources utilized in agriculture, resulting in greenhouse gas emissions such as methane (CH4) from flooded paddy fields. To address this challenge, environmentally friendly and cost-effective water-saving techniques have become widely adopted in rice cultivation. However, the implementation of water-saving treatments (WSTs) in paddy-field rice has been associated with a substantial yield loss of up to 50% as well as a reduction in nitrogen use efficiency (NUE). In this study, we discovered that the target of rapamycin (TOR) signaling pathway is compromised in rice under WST. Polysome profiling-coupled transcriptome sequencing (polysome-seq) analysis unveiled a substantial reduction in global translation in response to WST associated with the downregulation of TOR activity. Molecular, biochemical, and genetic analyses revealed new insights into the impact of the positive TOR-S6K-RPS6 and negative TOR-MAF1 modules on translation repression under WST. Intriguingly, ammonium exhibited a greater ability to alleviate growth constraints under WST by enhancing TOR signaling, which simultaneously promoted uptake and utilization of ammonium and nitrogen allocation. We further demonstrated that TOR modulates the ammonium transporter AMT1;1 as well as the amino acid permease APP1 and dipeptide transporter NPF7.3 at the translational level through the 5' untranslated region. Collectively, these findings reveal that enhancing TOR signaling could mitigate rice yield penalty due to WST by regulating the processes involved in protein synthesis and NUE. Our study will contribute to the breeding of new rice varieties with increased water and fertilizer utilization efficiency.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jiaqi Liu
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Zeqi Li
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Ruiqiang Ye
- National Key Laboratory of Plant Molecular Genetics, CAS, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenzhen Chen
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Yuqing Huang
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Yue Yuan
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Yi Zhang
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Huayi Hu
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Peng Zheng
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Zhongming Fang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Agricultural Sciences, Guizhou University, Guiyang 550025, China
| | - Zeng Tao
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Shiyong Song
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Ronghui Pan
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Jumim Tu
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Hao Du
- State Key Laboratory of Rice Biology, College of Agriculture and Biotechnology, Zhejiang University, Yu-Hang-Tang Road No. 866, Hangzhou 310058, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| |
Collapse
|