1
|
Wijesingha Ahchige M, Fisher J, Sokolowska E, Lyall R, Illing N, Skirycz A, Zamir D, Alseekh S, Fernie AR. The variegated canalized-1 tomato mutant is linked to photosystem assembly. Comput Struct Biotechnol J 2024; 23:3967-3988. [PMID: 39582891 PMCID: PMC11584773 DOI: 10.1016/j.csbj.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/26/2024] Open
Abstract
The recently described canal-1 tomato mutant, which has a variegated leaf phenotype, has been shown to affect canalization of yield. The corresponding protein is orthologous to AtSCO2 -SNOWY COTYLEDON 2, which has suggested roles in thylakoid biogenesis. Here we characterize the canal-1 mutant through a multi-omics approach, by comparing mutant to wild-type tissues. While white canal-1 leaves are devoid of chlorophyll, green leaves of the mutant appear wild-type-like, despite an impaired protein function. Transcriptomic data suggest that green mutant leaves compensate for this impaired protein function by upregulation of transcription of photosystem assembly and photosystem component genes, thereby allowing adequate photosystem establishment, which is reflected in their wild-type-like proteome. White canal-1 leaves, however, likely fail to reach a certain threshold enabling this overcompensation, and plastids get trapped in an undeveloped state, while additionally suffering from high light stress, indicated by the overexpression of ELIP homolog genes. The metabolic profile of white and to a lesser degree also green tissues revealed upregulation of amino acid levels, that was at least partially mediated by transcriptional and proteomic upregulation. These combined changes are indicative of a stress response and suggest that white tissues behave as carbon sinks. In summary, our work demonstrates the relevance of the SCO2 protein in both photosystem assembly and as a consequence in the canalization of yield.
Collapse
Affiliation(s)
- Micha Wijesingha Ahchige
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Josef Fisher
- Plant Sciences and Genetics in Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Herzl 229, 7610001 Rehovot, Israel
| | - Ewelina Sokolowska
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Rafe Lyall
- Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000 Plovdiv, Bulgaria
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701 South Africa
| | - Nicola Illing
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, 7701 South Africa
| | - Aleksandra Skirycz
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Dani Zamir
- Plant Sciences and Genetics in Agriculture, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Herzl 229, 7610001 Rehovot, Israel
| | - Saleh Alseekh
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000 Plovdiv, Bulgaria
| | - Alisdair R. Fernie
- Root Biology and Symbiosis, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Crop Quantitative Genetics, Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000 Plovdiv, Bulgaria
| |
Collapse
|
2
|
García Brizuela J, Scharfenberg C, Scheuner C, Hoedt F, König P, Kranz A, Leidel A, Martini D, Schneider G, Schneider J, Singson LS, von Waldow H, Wehrmeyer N, Usadel B, Lesch S, Specka X, Lange M, Arend D. A roadmap for a middleware as a federation service for integrative data retrieval of agricultural data. J Integr Bioinform 2024; 21:jib-2024-0027. [PMID: 39501626 PMCID: PMC11602230 DOI: 10.1515/jib-2024-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 11/29/2024] Open
Abstract
Agriculture is confronted with several challenges such as climate change, the loss of biodiversity and stagnating productivity. The massive increasing amount of data and new digital technologies promise to overcome them, but they necessitate careful data integration and data management to make them usable. The FAIRagro consortium is part of the National Research Data Infrastructure (NFDI) in Germany and will develop FAIR compliant infrastructure services for the agrosystems science community, which will be integrated in the existing research data infrastructure service landscape. Here we present the initial steps of designing and implementing the FAIRagro middleware infrastructure to connect existing data infrastructures. The middleware will feature services for the seamless data integration across diverse infrastructures. Data and metadata are streamlined for research in agrosystems science by downstream processing in the central FAIRagro Search and Inventory Portal and the data integration and analysis workflow system "SciWIn".
Collapse
Affiliation(s)
- Jorge García Brizuela
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466Gatersleben, Germany, https://www.ipk-gatersleben.de/
| | - Carsten Scharfenberg
- Leibniz Centre for Agricultural Landscape Research (ZALF), D-15374Müncheberg, Germany, https://www.zalf.de/
| | - Carmen Scheuner
- Senckenberg Museum of Natural History Görlitz, D-02826Görlitz, Germany, https://museumgoerlitz.senckenberg.de/
| | - Florian Hoedt
- Johann Heinrich von Thünen-Institut, D-38116Braunschweig, Germany, https://www.thuenen.de/
| | - Patrick König
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466Gatersleben, Germany, https://www.ipk-gatersleben.de/
| | - Angela Kranz
- Forschungszentrum Jülich GmbH (FZJ), IBG-4, D-52428Jülich, Germany, https://www.fz-juelich.de/en
| | - Antonia Leidel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466Gatersleben, Germany, https://www.ipk-gatersleben.de/
| | - Daniel Martini
- Kuratorium für Technik und Bauwesen in der Landwirtschaft (KTBL), D-64289Darmstadt, Germany, https://www.ktbl.de/
| | - Gabriel Schneider
- ZB MED – Information Centre for Life Sciences, D-50931Cologne, Germany, https://www.zbmed.de/
| | - Julian Schneider
- ZB MED – Information Centre for Life Sciences, D-50931Cologne, Germany, https://www.zbmed.de/
| | - Lea Sophie Singson
- Leibniz-institute for Information Infrastructure (FIZ Karlsruhe), D-76344Karlsruhe, Germany, https://www.fiz-karlsruhe.de/
| | - Harald von Waldow
- Johann Heinrich von Thünen-Institut, D-38116Braunschweig, Germany, https://www.thuenen.de/
| | - Nils Wehrmeyer
- Forschungszentrum Jülich GmbH (FZJ), IBG-4, D-52428Jülich, Germany, https://www.fz-juelich.de/en
| | - Björn Usadel
- Forschungszentrum Jülich GmbH (FZJ), IBG-4, D-52428Jülich, Germany, https://www.fz-juelich.de/en
| | - Stephan Lesch
- Senckenberg Museum of Natural History Görlitz, D-02826Görlitz, Germany, https://museumgoerlitz.senckenberg.de/
| | - Xenia Specka
- Leibniz Centre for Agricultural Landscape Research (ZALF), D-15374Müncheberg, Germany, https://www.zalf.de/
| | - Matthias Lange
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466Gatersleben, Germany, https://www.ipk-gatersleben.de/
| | - Daniel Arend
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466Gatersleben, Germany, https://www.ipk-gatersleben.de/
| |
Collapse
|
3
|
Tariq A, Meng M, Jiang X, Bolger A, Beier S, Buchmann JP, Fernie AR, Wen W, Usadel B. In-depth exploration of the genomic diversity in tea varieties based on a newly constructed pangenome of Camellia sinensis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2096-2115. [PMID: 38872506 DOI: 10.1111/tpj.16874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/15/2024]
Abstract
Tea, one of the most widely consumed beverages globally, exhibits remarkable genomic diversity in its underlying flavour and health-related compounds. In this study, we present the construction and analysis of a tea pangenome comprising a total of 11 genomes, with a focus on three newly sequenced genomes comprising the purple-leaved assamica cultivar "Zijuan", the temperature-sensitive sinensis cultivar "Anjibaicha" and the wild accession "L618" whose assemblies exhibited excellent quality scores as they profited from latest sequencing technologies. Our analysis incorporates a detailed investigation of transposon complement across the tea pangenome, revealing shared patterns of transposon distribution among the studied genomes and improved transposon resolution with long read technologies, as shown by long terminal repeat (LTR) Assembly Index analysis. Furthermore, our study encompasses a gene-centric exploration of the pangenome, exploring the genomic landscape of the catechin pathway with our study, providing insights on copy number alterations and gene-centric variants, especially for Anthocyanidin synthases. We constructed a gene-centric pangenome by structurally and functionally annotating all available genomes using an identical pipeline, which both increased gene completeness and allowed for a high functional annotation rate. This improved and consistently annotated gene set will allow for a better comparison between tea genomes. We used this improved pangenome to capture the core and dispensable gene repertoire, elucidating the functional diversity present within the tea species. This pangenome resource might serve as a valuable resource for understanding the fundamental genetic basis of traits such as flavour, stress tolerance, and disease resistance, with implications for tea breeding programmes.
Collapse
Affiliation(s)
- Arslan Tariq
- HHU Düsseldorf, Faculty of Mathematics and Natural Sciences, CEPLAS, Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
| | - Minghui Meng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohui Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Anthony Bolger
- Institute of Bio- and Geosciences, IBG-4: Bioinformatics, CEPLAS, Forschungszentrum Jülich, Leo Brandt-Straße, Jülich, 52425, Germany
| | - Sebastian Beier
- Institute of Bio- and Geosciences, IBG-4: Bioinformatics, CEPLAS, Forschungszentrum Jülich, Leo Brandt-Straße, Jülich, 52425, Germany
| | - Jan P Buchmann
- HHU Düsseldorf, Faculty of Mathematics and Natural Sciences, CEPLAS, Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam-Golm, 14476, Germany
| | - Weiwei Wen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Björn Usadel
- HHU Düsseldorf, Faculty of Mathematics and Natural Sciences, CEPLAS, Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
- Institute of Bio- and Geosciences, IBG-4: Bioinformatics, CEPLAS, Forschungszentrum Jülich, Leo Brandt-Straße, Jülich, 52425, Germany
| |
Collapse
|
4
|
Dumschott K, Dörpholz H, Laporte MA, Brilhaus D, Schrader A, Usadel B, Neumann S, Arnaud E, Kranz A. Ontologies for increasing the FAIRness of plant research data. FRONTIERS IN PLANT SCIENCE 2023; 14:1279694. [PMID: 38098789 PMCID: PMC10720748 DOI: 10.3389/fpls.2023.1279694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
The importance of improving the FAIRness (findability, accessibility, interoperability, reusability) of research data is undeniable, especially in the face of large, complex datasets currently being produced by omics technologies. Facilitating the integration of a dataset with other types of data increases the likelihood of reuse, and the potential of answering novel research questions. Ontologies are a useful tool for semantically tagging datasets as adding relevant metadata increases the understanding of how data was produced and increases its interoperability. Ontologies provide concepts for a particular domain as well as the relationships between concepts. By tagging data with ontology terms, data becomes both human- and machine- interpretable, allowing for increased reuse and interoperability. However, the task of identifying ontologies relevant to a particular research domain or technology is challenging, especially within the diverse realm of fundamental plant research. In this review, we outline the ontologies most relevant to the fundamental plant sciences and how they can be used to annotate data related to plant-specific experiments within metadata frameworks, such as Investigation-Study-Assay (ISA). We also outline repositories and platforms most useful for identifying applicable ontologies or finding ontology terms.
Collapse
Affiliation(s)
- Kathryn Dumschott
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics) & Bioeconomy Science Center (BioSC), CEPLAS, Forschungszentrum Jülich, Jülich, Germany
| | - Hannah Dörpholz
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics) & Bioeconomy Science Center (BioSC), CEPLAS, Forschungszentrum Jülich, Jülich, Germany
| | - Marie-Angélique Laporte
- Digital Solutions Team, Digital Inclusion Lever, Bioversity International, Montpellier Office, Montpellier, France
| | - Dominik Brilhaus
- Data Science and Management & Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andrea Schrader
- Data Science and Management & Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Björn Usadel
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics) & Bioeconomy Science Center (BioSC), CEPLAS, Forschungszentrum Jülich, Jülich, Germany
- Institute for Biological Data Science & Cluster of Excellence on Plant Sciences (CEPLAS), Faculty of Mathematics and Life Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Steffen Neumann
- Program Center MetaCom, Leibniz Institute of Plant Biochemistry, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany
| | - Elizabeth Arnaud
- Digital Solutions Team, Digital Inclusion Lever, Bioversity International, Montpellier Office, Montpellier, France
| | - Angela Kranz
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics) & Bioeconomy Science Center (BioSC), CEPLAS, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
5
|
Fernie AR, Yan J, Aharoni A, Ma J. Editorial: The past, present and future of The Plant Journal Resource Articles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:967-973. [PMID: 37943112 DOI: 10.1111/tpj.16515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetics, Huazhong Agricultural District, Wuhan, China
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jianxian Ma
- Purdue University, 915 S. University St, West Lafayette, IN, USA
| |
Collapse
|