1
|
Takaki R, Kohatsu K, Kuwano K, Yazawa M. Hyperkalemia presentation at a clinic during the cold season. CEN Case Rep 2025; 14:34-38. [PMID: 38896354 PMCID: PMC11785838 DOI: 10.1007/s13730-024-00902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Familial pseudohyperkalemia (FP) is an underrecognized cause of pseudohyperkalemia, caused by the leaking of potassium from red blood cells. This extracellular shift of potassium is temperature-dependent and occurs when blood samples are stored below room temperature or for a long time, manifesting as apparent hyperkalemia. We report a suspicious case of FP, which demonstrated an apparent seasonal trajectory of serum-potassium levels at the local clinic. At first, laboratory test results did not show an increase in the serum-potassium levels in our tertiary hospital. However, by replicating the clinic's storage conditions, the patient's serum sample showed hyperkalemia only when it was stored at a temperature of 4 °C or 20 °C for 4-8 h. Hyperkalemia was not observed in the patient's sample when it was stored at 37 °C, or in the healthy control's sample at a temperature of 20 °C or 37 °C. When encountering hyperkalemia without an obvious cause and symptoms, physicians should consider pseudohyperkalemia in the differential diagnosis. In particular, if a seasonal trajectory of serum-potassium levels is observed, FP should be suspected as a potential cause of pseudohyperkalemia. Although a genetic test is needed to properly diagnose FP, confirming it by verifying the sample storage conditions or proving it by replicating the test using different storage conditions is easy and very important, as it can prevent unnecessary treatment.
Collapse
Affiliation(s)
- Ryo Takaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, Kanagawa, 216-8511, Japan
- Department of Nephrology, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki-Shi, Nagasaki, 852-8501, Japan
| | - Kaori Kohatsu
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, Kanagawa, 216-8511, Japan
| | - Katsuhisa Kuwano
- Department of General Medicine, Iizuka Hospital, 3-83 Yoshiomachi, Iizuka City, Fukuoka, 820-8505, Japan
| | - Masahiko Yazawa
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-Ku, Kawasaki, Kanagawa, 216-8511, Japan.
| |
Collapse
|
2
|
Stevens-Hernandez CJ, Gyorffy G, Meli A, New HV, Cardigan R, Bruce LJ. Vesiculation in irradiated and cation-leaky-stored red blood cells. Transfusion 2024; 64:150-161. [PMID: 37952228 DOI: 10.1111/trf.17593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/14/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Extracellular vesicles (EVs) are released by red blood cells (RBCs) throughout their life-span and also during hypothermic storage when they accumulate in the blood bag. We queried whether stored RBCs with increased cation permeability, either from donors with familial pseudohyperkalaemia (FP) or caused by irradiation, vesiculate more readily. STUDY DESIGN AND METHODS Recent technical advances have revealed at least two sub-populations of MVs in RBC storage units: macrovesicles (2-6 μm) and microvesicles (1-2 μm). Using nanoparticle tracking analysis, imaging flow cytometry, and protein quantification methods, we measured and characterized vesicles released by RBCs from control and FP individuals at three different storage time-points (day 4, day 17, and day 29). The RBCs had either been stored untreated or irradiated on either day 1 or day 14 of storage. RESULTS We found no difference in the number or size of vesicles released between cation-leaky FP RBCs and non-FP controls. Similarly, irradiated and non-irradiated RBCs showed very similar patterns of vesicle release to during cold-storage. The only significant difference in vesicle release was the increase in accumulated vesicles with length of storage time which has been reported previously. DISCUSSION EVs in stored blood are potential contributors to adverse transfusion reactions. The number of vesicles released during 35-day hypothermic storage varies between donors and increases with storage duration. However, increased cation permeability and irradiation do not appear to affect vesicle formation during RBC cold-storage.
Collapse
Affiliation(s)
- Christian J Stevens-Hernandez
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | - Gyongyver Gyorffy
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | - Athinoula Meli
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | - Helen V New
- Transfusion Directorate, NHS Blood and Transplant, London, UK
| | - Rebecca Cardigan
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| |
Collapse
|
3
|
Stewart GW, Gibson JS, Rees DC. The cation-leaky hereditary stomatocytosis syndromes: A tale of six proteins. Br J Haematol 2023; 203:509-522. [PMID: 37679660 DOI: 10.1111/bjh.19093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023]
Abstract
This review concerns a series of dominantly inherited haemolytic anaemias in which the membrane of the erythrocyte 'leaks' the univalent cations, compromising the osmotic stability of the cell. The majority of the conditions are explained by mutations in one of six genes, coding for multispanning membrane proteins of different structure and function. These are: RhAG, coding for an ammonium carrier; SLC4A1, coding for the band 3 anion exchanger; PIEZO1, coding for a mechanosensitive cation channel; GLUT1, coding for a glucose transporter; KCNN4, coding for an internal-calcium-activated potassium channel; and ABCB6, coding for a porphyrin transporter. This review describes the five clinical syndromes associated with genetic defects in these genes and their variable genotype/phenotype relationships.
Collapse
Affiliation(s)
- Gordon W Stewart
- Division of Medicine, Faculty of Medical Sciences, University College London, London, UK
| | - John S Gibson
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - David C Rees
- Haematological Medicine, Kings College London, London, UK
| |
Collapse
|
4
|
Lorusso A, Croxon H, Faherty-O'Donnell S, Field S, Fitzpatrick Á, Farrelly A, Hervig T, Waters A. The impact of donor biological variation on the quality and function of cold-stored platelets. Vox Sang 2023; 118:730-737. [PMID: 37439150 DOI: 10.1111/vox.13495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/09/2023] [Accepted: 06/18/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND AND OBJECTIVES Room temperature-stored platelets (RTPs) maximize platelet viability but limit shelf life. The aims of this study were to investigate the impact of donor variability on cold-stored platelets (CSPs) and RTP, to determine whether RTP quality markers are appropriate for CSP. MATERIALS AND METHODS Double platelet donations (n = 10) were collected from consented regular male donors stored in 100% plasma. A full blood count, donor age, weight, height and body mass index (BMI) were collected at the time of donation. Platelet donations were split equally into two bags, and assigned to non-agitated CSP or agitated RTP. The quality and function of platelets were assessed throughout the standard 7 days of storage and at expiry (day 8). Non-parametric statistical analyses were used to analyse results given the small sample size. RESULTS As expected, there were significant differences between CSP and RTP throughout storage including a reduction in CSP concentration as well as a loss of swirling. Furthermore, a significant increase in CSP exhibiting activation and apoptotic markers was observed. Platelet concentrations were further impacted by donor BMI, and donors with the highest BMI (>29) had the lowest platelet concentration and activation response at the end of CSP storage. CONCLUSION Platelet quality and functionality play a vital role in transfusion outcomes; however, blood components are inherently variable. This study demonstrated, for the first time, the specific impact of donor BMI on CSP quality and function and highlights the requirement for novel quality markers for assessing CSPs.
Collapse
Affiliation(s)
- Alice Lorusso
- Irish Blood Transfusion Service, National Blood Centre, Dublin, Ireland
| | - Harry Croxon
- Irish Blood Transfusion Service, National Blood Centre, Dublin, Ireland
| | | | - Stephen Field
- Irish Blood Transfusion Service, National Blood Centre, Dublin, Ireland
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Áine Fitzpatrick
- Irish Blood Transfusion Service, National Blood Centre, Dublin, Ireland
| | - Aileen Farrelly
- Irish Blood Transfusion Service, National Blood Centre, Dublin, Ireland
| | - Tor Hervig
- Irish Blood Transfusion Service, National Blood Centre, Dublin, Ireland
| | - Allison Waters
- Irish Blood Transfusion Service, National Blood Centre, Dublin, Ireland
- UCD School of Public Health, Population Science and Physiotherapy, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Meli A, Linger R, Stevens-Hernandez CJ, Gyongyver G, Marks DC, Aung HH, Tan JCG, Cardigan R, Bruce LJ, New HV. The compound effect of irradiation and familial pseudohyperkalemia on potassium leak from red blood cells. Transfusion 2022; 62:2587-2595. [PMID: 36285891 DOI: 10.1111/trf.17159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Familial pseudohyperkalemia (FP) is a rare asymptomatic condition characterized by an increased rate of potassium leak from red blood cells (RBC) on refrigeration. Gamma irradiation compromises RBC membrane integrity and accelerates potassium leakage. Here, we compared the effect of irradiation, applied early or late in storage, on FP versus non-FP RBC. STUDY DESIGN Five FP and 10 non-FP individuals from the National Institute for Health Research Cambridge BioResource, UK, and three FP and six non-FP individuals identified by Australian Red Cross Lifeblood consented to the study. Blood was collected according to standard practice in each center, held overnight at 18-24°C, leucocyte-depleted, and processed into red cell concentrates (RCC) in Saline Adenine Glucose Mannitol. On Day 1, RCC were split equally into six Red Cell Splits (RCS). Two RCS remained non-irradiated, two were irradiated on Day 1 and two were irradiated on Day 14. RBCs were tested over cold storage for quality parameters. RESULTS As expected, non-irradiated FP RCS had significantly higher supernatant potassium levels than controls throughout 28 days of storage (p < .001). When irradiated early, FP RCS released potassium at similar rates to control. When irradiated late, FP RCS supernatants had higher initial post-irradiation potassium concentration than controls but were similar to controls by the end of storage (14 days post-irradiation). No other parameters studied showed a significant difference between FP and control. DISCUSSION FP does not increase the rate of potassium leak from irradiated RBCs. Irradiation may cause a membrane defect similar to that in FP RBCs.
Collapse
Affiliation(s)
- Athinoula Meli
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | - Rachel Linger
- National Institute for Health Research BioResource-Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Christian J Stevens-Hernandez
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK.,Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | - Gyorffy Gyongyver
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK.,Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK
| | - Denese C Marks
- Research and Development, Australian Red Cross Lifeblood, Alexandria, Australia
| | - Htet Htet Aung
- Research and Development, Australian Red Cross Lifeblood, Alexandria, Australia
| | - Joanne C G Tan
- Research and Development, Australian Red Cross Lifeblood, Alexandria, Australia
| | - Rebecca Cardigan
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - Lesley J Bruce
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK.,Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK
| | - Helen V New
- Clinical Directorate, NHS Blood and Transplant, London, UK
| |
Collapse
|
6
|
Castillo Pérez C, Rodríguez Alonso L, Prados Boluda A, Cebrián Ballesteros M, Torrubia Dodero B. Sustained hyperkalemia in an asymptomatic primary care patient. When to suspect familial pseudohyperkalemia. ADVANCES IN LABORATORY MEDICINE 2022; 3:303-312. [PMID: 37362145 PMCID: PMC10197407 DOI: 10.1515/almed-2022-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/28/2022] [Indexed: 06/28/2023]
Abstract
Objectives Study and management of a case with elevated potassium levels without apparent clinical causes in successive follow-up visits. Case presentation We present the case of a primary care female patient who persistently exhibited elevated levels of potassium (5.3-5.9 mmol/L) in successive control laboratory tests, without an apparent clinical cause. The patient was ultimately referred to the Unit of Nephrology, where a potassium-low diet was indicated. Diet did not have any effect on potassium levels. After a thorough study, the cause of hyperkalemia could not be determined. Conclusions The inconsistency between elevated potassium levels and the reason of consultation, and exclusion of other pre-analytical or pathological causes raised suspicion of familial pseudohyperkalemia. The sample was incubated at different times and temperatures to demonstrate their influence on levels of potassium in blood. Familial pseudohyperkalemia was established as the most probable diagnosis. Finally, the patient was discharged from the Unit of Nephrology and instructed to follow a normal diet.
Collapse
Affiliation(s)
- Carlos Castillo Pérez
- Médico adjunto de Análisis Clínicos. Departamento de bioquímica general, hormonas y marcadores tumorales, Servicio de Bioquímica Clínica. Hospital Universitario Fundación Jiménez-Díaz, Madrid, Spain
| | - Laura Rodríguez Alonso
- Química adjunta de Análisis Clínicos. Departamento de bioquímica general, hormonas y marcadores tumorales, Servicio de Bioquímica Clínica. Hospital Universitario Fundación Jiménez-Díaz, Madrid, Spain
| | - Adrián Prados Boluda
- Médico residente de segundo año. Departamento de bioquímica general, hormonas y marcadores tumorales, Servicio de Bioquímica Clínica. Hospital Universitario Fundación Jiménez-Díaz, Madrid, Spain
| | - Marta Cebrián Ballesteros
- Farmacéutica adjunta de Análisis Clínicos. Departamento de bioquímica general, hormonas y marcadores tumorales, Servicio de Bioquímica Clínica. Hospital Universitario Fundación Jiménez-Díaz, Madrid, Spain
| | - Blanca Torrubia Dodero
- Farmacéutica adjunta de Análisis Clínicos. Departamento de bioquímica general, hormonas y marcadores tumorales, Servicio de Bioquímica Clínica. Hospital Universitario Fundación Jiménez-Díaz, Madrid, Spain
| |
Collapse
|
7
|
Saleh-Anaraki K, Jain A, Wilcox CS, Pourafshar N. Pseudohyperkalemia: Three Cases and a Review of Literature. Am J Med 2022; 135:e150-e154. [PMID: 35398330 DOI: 10.1016/j.amjmed.2022.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 11/26/2022]
Abstract
Hyperkalemia is a potentially fatal complication requiring prompt diagnosis and management. However, pseudohyperkalemia, defined as an artificial rise in serum potassium (Sk), is also an important diagnosis because management differs. Pseudohyperkalemia can result from multiple factors, including excessive potassium leakage from cells of the forearm during blood collection due to release from exercising the muscle during fist clenching, while washout is prevented by tourniquet application, hemolysis, problems with sample transport, preanalysis or contamination, cell damage and metabolic changes, familial conditions that permit excessive potassium ion (K+) leak from erythrocytes after blood sampling, and leukocytosis or thrombocytosis. In this review, we will discuss the major causes of pseudohyperkalemia, how to avoid certain diagnostic pitfalls, and comment on the clinical importance of recognizing these false readings. We will review three clinical cases seen in our nephrology and hypertension clinic that illustrate some of these problems.
Collapse
Affiliation(s)
- Kimia Saleh-Anaraki
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md
| | - Anjuli Jain
- Division of Nephrology and Hypertension, Georgetown University, Washington, DC
| | | | - Negiin Pourafshar
- Division of Nephrology and Hypertension, Georgetown University, Washington, DC.
| |
Collapse
|
8
|
Xiong W, Song J, Yue Z, Pei L, Liu Y, Chen J, Chen H. Case Report: Familial Pseudohyperkalemia Due to Red Blood Cell Membrane Leak in a Chinese Patient. Front Med (Lausanne) 2022; 9:825174. [PMID: 35372423 PMCID: PMC8969824 DOI: 10.3389/fmed.2022.825174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/22/2022] [Indexed: 12/02/2022] Open
Abstract
Hyperkalemia is a critical condition requiring careful evaluation and timely intervention. Many conditions could manifest as pseudohyperkalemia and it's important to differentiate them as inappropriate potassium-lowering therapy might lead to detrimental outcomes. A 56-year-old female was admitted for hyperkalemia (5.62–8.55 mmol/L). She had no symptoms or signs of hyperkalemia. A comprehensive work-up of hyperkalemia retrieved no valuable findings. Her blood samples underwent incubation tests at different temperatures and revealed temperature-dependent potassium leaks from red blood cells. Based on all test results, a diagnosis of hyperkalemia caused by red blood cell membrane defects was suspected. Whole-genome sequencing revealed a heterozygous c.1123C>T (p. R375W) mutation in the ABCB6 gene and confirmed the diagnosis of familial pseudohyperkalemia (FP). FP is an inherited benign condition in which red blood cells have increased cold-induced permeability to potassium. The patient was discharged with no additional treatment and she was suggested avoiding blood donation.
Collapse
Affiliation(s)
- Weijue Xiong
- Department of Cardiology, Peking University People's Hospital, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Beijing, China
| | - Junxian Song
- Department of Cardiology, Peking University People's Hospital, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Beijing, China
| | - Zhihong Yue
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Lin Pei
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yang Liu
- Department of Hematology, Peking University People's Hospital, Beijing, China
| | - Jiangtian Chen
- Department of Cardiology, Peking University People's Hospital, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Beijing, China
| | - Hong Chen
- Department of Cardiology, Peking University People's Hospital, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Beijing, China
- *Correspondence: Hong Chen
| |
Collapse
|
9
|
|
10
|
Abstract
ABCB6 plays a crucial role in energy-dependent porphyrin transport, drug resistance, toxic metal resistance, porphyrin biosynthesis, protection against stress, and encoding a blood group system Langereis antigen. However, the mechanism underlying porphyrin transport is still unclear. Here, we determined the cryo-electron microscopy (cryo-EM) structures of nanodisc-reconstituted human ABCB6 trapped in an apo-state and an ATP-bound state at resolutions of 3.6 and 3.5 Å, respectively. Our structures reveal a unique loop in the transmembrane domain (TMD) of ABCB6, which divides the TMD into two cavities. It restrains the access of substrates in the inward-facing state and is removed by ATP-driven conformational change. No ligand cavities were observed in the nucleotide-bound state, indicating a state following substrate release but prior to ATP hydrolysis. Structural analyses and functional characterizations suggest an "ATP-switch" model and further reveal the conformational changes of the substrate-binding pockets triggered by the ATP-driven regulation.
Collapse
|
11
|
Meli A, McAndrew M, Frary A, Rehnstrom K, Stevens-Hernandez CJ, Flatt JF, Griffiths A, Stefanucci L, Astle W, Anand R, New HV, Bruce LJ, Cardigan R. Familial pseudohyperkalemia induces significantly higher levels of extracellular potassium in early storage of red cell concentrates without affecting other standard measures of quality: A case control and allele frequency study. Transfusion 2021; 61:2439-2449. [PMID: 33960432 DOI: 10.1111/trf.16440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/15/2021] [Accepted: 04/03/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Familial pseudohyperkalemia (FP) is characterized by an increased rate of potassium leakage in refrigerated red cells and is associated with the minor allele of the single nucleotide polymorphism rs148211042 (R723Q) in the ABCB6 gene. The study aims were to obtain the minor allele frequencies of ABCB6 variants and to measure supernatant potassium accumulation, and other red cell storage parameters, in red cell concentrates (RCC) from carriers of variant rs148211042 under standard blood bank conditions. STUDY DESIGN Whole blood units were collected from 6 FP individuals and 11 controls and processed into RCC in additive solution. RCC were sampled and tested over cold storage for full blood count, extracellular potassium, glucose, lactate, microvesicle release, deformability, hemolysis, pH, adenosine triphosphate, and 2,3-diphosphoglycerate. RESULTS Screening of genotyped cohorts identified that variant rs148211042 is present in 1 in 394 British citizens of European ancestry. FP RCC had significantly higher supernatant potassium at all time points from day 3 onwards (p < .001) and higher mean cell volume (p = .032) than controls. The initial rate of potassium release was higher in FP RCC; supernatant potassium reached 46.0 (23.8-57.6) mmol/L (mean [range]) by day 5, increasing to 68.9 (58.8-73.7) mmol/L by day 35. Other quality parameters were not significantly different between FP RCC and controls. CONCLUSION These data suggest that if a blood donor has FP, reducing the RCC shelf-life to 5 days may be insufficient to reduce the risk of hyperkalemia in clinical scenarios such as neonatal large volume transfusion.
Collapse
Affiliation(s)
- Athinoula Meli
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | - Margaret McAndrew
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK
| | - Amy Frary
- Department of Haematology, University of Cambridge, Cambridge, UK.,National Institute for Health Research BioResource-Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Karola Rehnstrom
- Department of Haematology, University of Cambridge, Cambridge, UK.,National Institute for Health Research BioResource-Rare Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Christian J Stevens-Hernandez
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK.,Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | - Joanna F Flatt
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK
| | | | - Luca Stefanucci
- Department of Haematology, University of Cambridge, Cambridge, UK.,British Heart Foundation Centre of Excellence, Cambridge, UK
| | - William Astle
- Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, Cambridge, UK.,MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Rekha Anand
- Clinical Directorate, NHS Blood and Transplant, Birmingham, UK
| | - Helen V New
- Clinical Directorate, NHS Blood and Transplant, London, UK.,Centre for Haematology, Imperial College London, London, UK
| | - Lesley J Bruce
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK.,Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK
| | - Rebecca Cardigan
- Component Development Laboratory, NHS Blood and Transplant, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Current Understanding of the Relationship between Blood Donor Variability and Blood Component Quality. Int J Mol Sci 2021; 22:ijms22083943. [PMID: 33920459 PMCID: PMC8069744 DOI: 10.3390/ijms22083943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
While differences among donors has long challenged meeting quality standards for the production of blood components for transfusion, only recently has the molecular basis for many of these differences become understood. This review article will examine our current understanding of the molecular differences that impact the quality of red blood cells (RBC), platelets, and plasma components. Factors affecting RBC quality include cytoskeletal elements and membrane proteins associated with the oxidative response as well as known enzyme polymorphisms and hemoglobin variants. Donor age and health status may also be important. Platelet quality is impacted by variables that are less well understood, but that include platelet storage sensitive metabolic parameters, responsiveness to agonists accumulating in storage containers and factors affecting the maintenance of pH. An increased understanding of these variables can be used to improve the quality of blood components for transfusion by using donor management algorithms based on a donors individual molecular and genetic profile.
Collapse
|
13
|
Li JQ, Qian BH. [Pathogenesis and diagnosis of hereditary stomatocytosis]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 41:521-524. [PMID: 32654471 PMCID: PMC7378278 DOI: 10.3760/cma.j.issn.0253-2727.2020.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J Q Li
- Department of Transfusion Medicine, Changhai Hospital Naval Military Medical University, PLA Research & Innovation Base of Pediatric Hemolytic Anemia, Shanghai 200433, China
| | - B H Qian
- Department of Transfusion Medicine, Changhai Hospital Naval Military Medical University, PLA Research & Innovation Base of Pediatric Hemolytic Anemia, Shanghai 200433, China
| |
Collapse
|
14
|
Vos MJ, Bouwhuis JW, Dikkeschei LD. A Brother and Sister with Fluctuating Potassium Concentrations. Clin Chem 2019; 65:378-380. [PMID: 30819789 DOI: 10.1373/clinchem.2018.290775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/24/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Michel J Vos
- Department of Clinical Chemistry, Isala Hospital, Zwolle, the Netherlands; .,Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jolande W Bouwhuis
- Department of Internal Medicine, Isala Hospital, Zwolle, the Netherlands
| | | |
Collapse
|
15
|
Iolascon A, Andolfo I, Russo R. Advances in understanding the pathogenesis of red cell membrane disorders. Br J Haematol 2019; 187:13-24. [PMID: 31364155 DOI: 10.1111/bjh.16126] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hereditary erythrocyte membrane disorders are caused by mutations in genes encoding various transmembrane or cytoskeletal proteins of red blood cells. The main consequences of these genetic alterations are decreased cell deformability and shortened erythrocyte survival. Red blood cell membrane defects encompass a heterogeneous group of haemolytic anaemias caused by either (i) altered membrane structural organisation (hereditary spherocytosis, hereditary elliptocytosis, hereditary pyropoikilocytosis and Southeast Asian ovalocytosis) or (ii) altered membrane transport function (overhydrated hereditary stomatocytosis, dehydrated hereditary stomatocytosis or xerocytosis, familial pseudohyperkalaemia and cryohydrocytosis). Herein we provide a comprehensive review of the recent literature on the molecular genetics of erythrocyte membrane defects and their reported clinical consequences. We also describe the effect of low-expression genetic variants on the high inter- and intra-familial phenotype variability of erythrocyte structural defects.
Collapse
Affiliation(s)
- Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies, Federico II" University of Naples, Naples, Italy.,CEINGE - Biotecnologie Avanzate, Naples, Italy
| | - Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II" University of Naples, Naples, Italy.,CEINGE - Biotecnologie Avanzate, Naples, Italy
| | - Roberta Russo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II" University of Naples, Naples, Italy.,CEINGE - Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
16
|
New HV. Transfusion in neonates and older children: Principles and updates. Transfus Clin Biol 2019; 26:195-196. [PMID: 31375331 DOI: 10.1016/j.tracli.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/09/2023]
Affiliation(s)
- H V New
- NHS Blood and Transplant, Charcot Road, London NW9 5BG, United Kingdom.
| |
Collapse
|
17
|
Stevens-Hernandez CJ, Bradbury WH, Oakes R, Bruce LJ. Commentary. Clin Chem 2019; 65:381-382. [DOI: 10.1373/clinchem.2018.297325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Christian J Stevens-Hernandez
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Wayne H Bradbury
- Blood Sciences, North Cumbria University Hospitals NHS Trust, Cumberland Infirmary, Carlisle, UK
| | - Roderick Oakes
- Blood Sciences, North Cumbria University Hospitals NHS Trust, Cumberland Infirmary, Carlisle, UK
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, UK
| |
Collapse
|
18
|
Schoeman EM, Roulis EV, Perry MA, Flower RL, Hyland CA. Comprehensive blood group antigen profile predictions for Western Desert Indigenous Australians from whole exome sequence data. Transfusion 2019; 59:768-778. [PMID: 30520525 DOI: 10.1111/trf.15047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND The distribution of RBC antigens, which define blood group types, differs among populations. In contrast to many world populations, blood group profiles for Indigenous Australians have not been well studied. As it is now possible to predict comprehensive blood group antigen profiles from genomic data sets, we aimed to apply this for Indigenous Australians and to provide a comparison to other major world populations. STUDY DESIGN AND METHODS Whole exome sequence data for 72 Western Desert Indigenous Australians was provided by the Telethon Kids Institute. Variants (against hg19) were annotated using computer software (ANNOVAR, Qiagen Bioinformatics) and filtered to include only variants in genes for 36 blood group systems, and the transcription factors KLF1 and GATA1. The RHCE*C allele and RHD zygosity were identified by copy number variant analysis of sequence alignments. The impact of missense variants was investigated in silico using a meta-predictor of disease-causing variants (Meta-SNP). RESULTS For 21 blood group systems the predicted blood group antigen frequencies were comparable to those for other major world populations. For 13 systems, interesting points of contrast were identified. Furthermore, we identified 12 novel variants, one novel D allele, and four rare variants with potential clinical significance. CONCLUSION This is the first systematic assessment of genomic data to elucidate blood group antigen profiles for Indigenous Australians who are linguistically and culturally diverse. Our study paves the way to understanding the geographic distribution of blood group variants in different Indigenous groups and the associated RBC phenotypes. This in turn is expected to guide transfusion practice for Indigenous individuals.
Collapse
Affiliation(s)
- Elizna M Schoeman
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Queensland, Australia
| | - Eileen V Roulis
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Queensland, Australia
| | - Maree A Perry
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Queensland, Australia
| | - Robert L Flower
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Queensland, Australia
| | - Catherine A Hyland
- Clinical Services and Research, Australian Red Cross Blood Service, Kelvin Grove, Queensland, Australia
| |
Collapse
|
19
|
Keir AK, New H, Robitaille N, Crighton GL, Wood EM, Stanworth SJ. Approaches to understanding and interpreting the risks of red blood cell transfusion in neonates. Transfus Med 2019; 29:231-238. [DOI: 10.1111/tme.12575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 02/01/2023]
Affiliation(s)
- A. K. Keir
- Healthy Mothers, Babies and ChildrenThe South Australian Medical and Research Institute North Adelaide South Australia Australia
- Robinson Research Institute and the Adelaide Medical SchoolThe University of Adelaide Adelaide South Australia Australia
| | - H. New
- NHS Blood and Transplant London UK
- Imperial College London London UK
| | - N. Robitaille
- Division of Hematology–Oncology, Department of PediatricsCHU Sainte‐Justine Montréal Quebec Canada
| | - G. L. Crighton
- Department of HaematologyRoyal Children's Hospital Melbourne Victoria Australia
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive MedicineMonash University Melbourne Victoria Australia
| | - E. M. Wood
- Transfusion Research Unit, Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive MedicineMonash University Melbourne Victoria Australia
| | - S. J. Stanworth
- NHS Blood and Transplant and Department of HaematologyOxford University Hospitals NHS Foundation Trust Oxford UK
- Radcliffe Department of MedicineUniversity of Oxford Oxford UK
| |
Collapse
|
20
|
Andolfo I, Russo R, Rosato BE, Manna F, Gambale A, Brugnara C, Iolascon A. Genotype-phenotype correlation and risk stratification in a cohort of 123 hereditary stomatocytosis patients. Am J Hematol 2018; 93:1509-1517. [PMID: 30187933 DOI: 10.1002/ajh.25276] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 01/06/2023]
Abstract
Hereditary stomatocytoses (HSts) are a wide spectrum of hemolytic anemias in which the erythrocyte membrane cation permeability is increased. Dehydrated hereditary stomatocytosis is the most frequent among HSts. It is caused by missense mutations in PIEZO1 and KCNN4 genes. We described 123 patients enrolled in our Genetic Unit from 2013 to 2017. Overall HSt subjects exhibit macrocytic mild anemia. We found that PIEZO1 is the most frequent mutated gene within our families (47% of pedigrees). In 59.1% of cases the mutations localized in the nonpore protein domain, while in 40.9% of patients they localized in the central pore region. The genotype-phenotype correlation analysis on 29 PIEZO1-patients demonstrated that most of severely affected patients carried mutations in the pore domain, suggesting that the severity of this condition is related to the pore properties and intracellular domain that could be responsible of interactions with intracellular components. This is the first cohort study on a large set of hereditary stomatocytosis patients, stratified according to their causative gene useful for diagnosis, prognosis, and management of these patients.
Collapse
Affiliation(s)
- Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Barbara Eleni Rosato
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Francesco Manna
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Antonella Gambale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
21
|
Koch CG, Duncan AI, Figueroa P, Dai L, Sessler DI, Frank SM, Ness PM, Mihaljevic T, Blackstone EH. Real Age: Red Blood Cell Aging During Storage. Ann Thorac Surg 2018; 107:973-980. [PMID: 30342044 DOI: 10.1016/j.athoracsur.2018.08.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/10/2018] [Accepted: 08/20/2018] [Indexed: 01/28/2023]
Abstract
BACKGROUND During cold storage, some red blood cell (RBC) units age more rapidly than others. Yet, the Food and Drug Administration has set a uniform storage limit of 42 days. Objectives of this review are to present evidence for an RBC storage lesion and suggest that functional measures of stored RBC quality-which we call real age-may be more appropriate than calendar age. METHODS During RBC storage, biochemical substances and byproducts accumulate and RBC shape alters. Factors that influence the rate of degradation include donor characteristics, bio-preservation conditions, and vesiculation. Better understanding of markers of RBC quality may lead to standardized, quantifiable, and operationally practical measures to improve donor selection, assess quality of an RBC unit, improve storage conditions, and test efficacy of the transfused product. RESULTS The conundrum is that clinical trials of younger versus older RBC units have not aligned with in vitro aging data; that is, the units transfused were not old enough. In vitro changes are considerable beyond 28 to 35 days, and average storage age for older transfused units was 14 to 21 days. CONCLUSIONS RBC product real age varies by donor characteristics, storage conditions, and biological changes during storage. Metrics to measure temporal changes in quality of the stored RBC product may be more appropriate than the 42-day expiration date. Randomized trials and observational studies are focused on average effect, but, in the evolving age of precision medicine, we must acknowledge that vulnerable populations and individuals may be harmed by aging blood.
Collapse
Affiliation(s)
- Colleen G Koch
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medicine, Baltimore, Maryland.
| | - Andra I Duncan
- Department of Cardiothoracic Anesthesiology, Cleveland Clinic, Cleveland, Ohio
| | | | - Lu Dai
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, Ohio
| | - Daniel I Sessler
- Department of Outcomes Research, Cleveland Clinic, Cleveland, Ohio
| | - Steven M Frank
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medicine, Baltimore, Maryland
| | - Paul M Ness
- Department of Transfusion Medicine, Johns Hopkins Medicine, Baltimore, Maryland
| | - Tomislav Mihaljevic
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio
| | - Eugene H Blackstone
- Department of Thoracic and Cardiovascular Surgery, Cleveland Clinic, Cleveland, Ohio; Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
22
|
Flatt JF, Bruce LJ. The Molecular Basis for Altered Cation Permeability in Hereditary Stomatocytic Human Red Blood Cells. Front Physiol 2018; 9:367. [PMID: 29713289 PMCID: PMC5911802 DOI: 10.3389/fphys.2018.00367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/27/2018] [Indexed: 11/20/2022] Open
Abstract
Normal human RBCs have a very low basal permeability (leak) to cations, which is continuously corrected by the Na,K-ATPase. The leak is temperature-dependent, and this temperature dependence has been evaluated in the presence of inhibitors to exclude the activity of the Na,K-ATPase and NaK2Cl transporter. The severity of the RBC cation leak is altered in various conditions, most notably the hereditary stomatocytosis group of conditions. Pedigrees within this group have been classified into distinct phenotypes according to various factors, including the severity and temperature-dependence of the cation leak. As recent breakthroughs have provided more information regarding the molecular basis of hereditary stomatocytosis, it has become clear that these phenotypes elegantly segregate with distinct genetic backgrounds. The cryohydrocytosis phenotype, including South-east Asian Ovalocytosis, results from mutations in SLC4A1, and the very rare condition, stomatin-deficient cryohydrocytosis, is caused by mutations in SLC2A1. Mutations in RHAG cause the very leaky condition over-hydrated stomatocytosis, and mutations in ABCB6 result in familial pseudohyperkalemia. All of the above are large multi-spanning membrane proteins and the mutations may either modify the structure of these proteins, resulting in formation of a cation pore, or otherwise disrupt the membrane to allow unregulated cation movement across the membrane. More recently mutations have been found in two RBC cation channels, PIEZO1 and KCNN4, which result in dehydrated stomatocytosis. These mutations alter the activation and deactivation kinetics of these channels, leading to increased opening and allowing greater cation fluxes than in wild type.
Collapse
Affiliation(s)
- Joanna F Flatt
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant, Bristol, United Kingdom
| |
Collapse
|
23
|
Andolfo I, Russo R, Gambale A, Iolascon A. Hereditary stomatocytosis: An underdiagnosed condition. Am J Hematol 2018; 93:107-121. [PMID: 28971506 DOI: 10.1002/ajh.24929] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/26/2017] [Accepted: 09/27/2017] [Indexed: 12/11/2022]
Abstract
Hereditary stomatocytoses are a wide class of hemolytic anemias characterized by alterations of ionic flux with increased cation permeability that results in inappropriate shrinkage or swelling of the erythrocytes, and water lost or gained osmotically. The last few years have been crucial for new acquisitions in this field in terms of identifying new causative genes and of studying their pathogenetic mechanisms. This review summarizes the main features of erythrocyte membrane transport diseases, dividing them into forms with either isolated erythroid phenotype (nonsyndromic) or extra-hematological manifestations (syndromic), and focusing particularly on the most recent advances regarding dehydrated forms of hereditary stomatocytosis and familial pseudohyperkalemia.
Collapse
Affiliation(s)
- Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Antonella Gambale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II; Napoli Italy
- CEINGE Biotecnologie Avanzate; Napoli Italy
| |
Collapse
|
24
|
Abstract
The erythrocyte contains a network of pathways that regulate salt and water content in the face of extracellular and intracellular osmotic perturbations. This allows the erythrocyte to maintain a narrow range of cell hemoglobin concentration, a process critical for normal red blood cell function and survival. Primary disorders that perturb volume homeostasis jeopardize the erythrocyte and may lead to its premature destruction. These disorders are marked by clinical, laboratory, and physiologic heterogeneity. Recent studies have revealed that these disorders are also marked by genetic heterogeneity. They have implicated roles for several proteins, PIEZO1, a mammalian mechanosensory protein; GLUT1, the glucose transporter; SLC4A1, the anion transporter; RhAG, the Rh-associated glycoprotein; KCNN4, the Gardos channel; and ABCB6, an adenosine triphosphate-binding cassette family member, in the maintenance of erythrocyte volume homeostasis. Secondary disorders of erythrocyte hydration include sickle cell disease, thalassemia, hemoglobin CC, and hereditary spherocytosis, where cellular dehydration may be a significant contributor to disease pathology and clinical complications. Understanding the pathways regulating erythrocyte water and solute content may reveal innovative strategies to maintain normal volume in disorders associated with primary or secondary cellular dehydration. These mechanisms will serve as a paradigm for other cells and may reveal new therapeutic targets for disease prevention and treatment beyond the erythrocyte.
Collapse
|
25
|
Unraveling the Gordian knot: red blood cell storage lesion and transfusion outcomes. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:126-130. [PMID: 28263169 DOI: 10.2450/2017.0313-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/23/2016] [Indexed: 01/28/2023]
Abstract
What is following the impressive progress that has been made? During the last couple of years several tremors have shaken the field of Transfusion Medicine. The epicentres of those tremors were located on novel insights into the RBC storage lesion, on emerging connections between storage lesion and post-transfusion performance and effects, and on acknowledging that storage time is only one (rather than the most prominent) of the parameters which contribute to the progression of storage lesion in any given unit of blood. The optimisation of bio-preservation conditions emerged at the same time with all-new scientific knowledge gained by advances in research tools, implementation of technological innovations, and application of elegant in vitro and in vivo models of transfusion. Simultaneously, one after another, all the reported randomised clinical trials concluded, with spectacular consensus, that there is no significant difference in the rate of adverse clinical events (including death) among patients who underwent transfusion with fresh (and presumably good) or standard of care (and presumably bad) blood. The comparative analysis and comprehension of the aforementioned data would set the context for the next generation of research in blood transfusion science, since the need for safer and more efficient transfusions remains.
Collapse
|
26
|
Abstract
Mutations in the genes encoding the mechanosensitive cation channels PIEZO1 and PIEZO2 are responsible for multiple hereditary human diseases. Loss-of-function mutations in the human PIEZO1 gene cause autosomal recessive congenital lymphatic dysplasia. Gain-of-function mutations in the human PIEZO1 gene cause the autosomal dominant hemolytic anemia, hereditary xerocytosis (also known as dehydrated stomatocytosis). Loss-of-function mutations in the human PIEZO2 gene cause an autosomal recessive syndrome of muscular atrophy with perinatal respiratory distress, arthrogryposis, and scoliosis. Gain-of-function mutations in the human PIEZO2 gene cause three clinical types of autosomal dominant distal arthrogryposis. This chapter will review the hereditary diseases caused by mutations in the PIEZO genes and will discuss additional physiological systems in which PIEZO channel dysfunction may contribute to human disease pathophysiology.
Collapse
Affiliation(s)
- S L Alper
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
27
|
New HV, Berryman J, Bolton-Maggs PHB, Cantwell C, Chalmers EA, Davies T, Gottstein R, Kelleher A, Kumar S, Morley SL, Stanworth SJ. Guidelines on transfusion for fetuses, neonates and older children. Br J Haematol 2016; 175:784-828. [DOI: 10.1111/bjh.14233] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Helen V. New
- NHS Blood and Transplant; London UK
- Imperial College Healthcare NHS Trust; London UK
| | | | | | | | | | | | - Ruth Gottstein
- St. Mary's Hospital; Manchester/University of Manchester; Manchester UK
| | | | - Sailesh Kumar
- Mater Research Institute; University of Queensland; Brisbane Australia
| | - Sarah L. Morley
- Addenbrookes Hospital/NHS Blood and Transplant; Cambridge UK
| | - Simon J. Stanworth
- Oxford University Hospitals NHS Trust/NHS Blood and Transplant; Oxford UK
| | | |
Collapse
|
28
|
Andolfo I, Russo R, Gambale A, Iolascon A. New insights on hereditary erythrocyte membrane defects. Haematologica 2016; 101:1284-1294. [PMID: 27756835 PMCID: PMC5394881 DOI: 10.3324/haematol.2016.142463] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/16/2016] [Indexed: 01/02/2023] Open
Abstract
After the first proposed model of the red blood cell membrane skeleton 36 years ago, several additional proteins have been discovered during the intervening years, and their relationship with the pathogenesis of the related disorders have been somewhat defined. The knowledge of erythrocyte membrane structure is important because it represents the model for spectrin-based membrane skeletons in all cells and because defects in its structure underlie multiple hemolytic anemias. This review summarizes the main features of erythrocyte membrane disorders, dividing them into structural and altered permeability defects, focusing particularly on the most recent advances. New proteins involved in alterations of the red blood cell membrane permeability were recently described. The mechanoreceptor PIEZO1 is the largest ion channel identified to date, the fundamental regulator of erythrocyte volume homeostasis. Missense, gain-of-function mutations in the PIEZO1 gene have been identified in several families as causative of dehydrated hereditary stomatocytosis or xerocytosis. Similarly, the KCNN4 gene, codifying the so called Gardos channel, has been recently identified as a second causative gene of hereditary xerocytosis. Finally, ABCB6 missense mutations were identified in different pedigrees of familial pseudohyperkalemia. New genomic technologies have improved the quality and reduced the time of diagnosis of these diseases. Moreover, they are essential for the identification of the new causative genes. However, many questions remain to solve, and are currently objects of intensive studies.
Collapse
Affiliation(s)
- Immacolata Andolfo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Italy
- CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Roberta Russo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Italy
- CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Antonella Gambale
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Italy
- CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Italy
- CEINGE Biotecnologie Avanzate, Napoli, Italy
| |
Collapse
|
29
|
Antonelou MH, Seghatchian J. Insights into red blood cell storage lesion: Toward a new appreciation. Transfus Apher Sci 2016; 55:292-301. [PMID: 27839967 DOI: 10.1016/j.transci.2016.10.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Red blood cell storage lesion (RSL) is a multifaceted biological phenomenon. It refers to deterioration in RBC quality that is characterized by lethal and sub-lethal, reversible and irreversible defects. RSL is influenced by prestorage variables and it might be associated with variable clinical outcomes. Optimal biopreservation conditions are expected to offer maximum levels of RBC survival and acceptable functionality and bioreactivity in-bag and in vivo; consequently, full appraisal of RSL requires understanding of how RSL changes interact with each other and with the recipient. Recent technological innovation in MS-based omics, imaging, cytometry, small particle and systems biology has offered better understanding of RSL contributing factors and effects. A number of elegant in vivo and in vitro studies have paved the way for the identification of quality control biomarkers useful to predict RSL profile and posttransfusion performance. Moreover, screening tools for the early detection of good or poor "storers" and donors have been developed. In the light of new perspectives, storage time is not the touchstone to rule on the quality of a packed RBC unit. At least by a biochemical standpoint, the metabolic aging pattern during storage may not correspond to the currently fresh/old distinction of stored RBCs. Finally, although each unit of RBCs is probably unique, a metabolic signature of RSL across storage variables might exist. Moving forward from traditional hematologic measures to integrated information on structure, composition, biochemistry and interactions collected in bag and in vivo will allow identification of points for intervention in a transfusion meaningful context.
Collapse
Affiliation(s)
- Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| | - Jerard Seghatchian
- International Consultancy in Blood Component Quality/Safety Improvement, Audit/Inspection and DDR Strategy, London, UK.
| |
Collapse
|
30
|
Badens C, Guizouarn H. Advances in understanding the pathogenesis of the red cell volume disorders. Br J Haematol 2016; 174:674-85. [PMID: 27353637 DOI: 10.1111/bjh.14197] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genetic defects of erythrocyte transport proteins cause disorders of red blood cell volume that are characterized by abnormal permeability to the cations Na(+) and K(+) and, consequently, by changes in red cell hydration. Clinically, these disorders are associated with chronic haemolytic anaemia of variable severity and significant co-morbidities, such as iron overload. This review provides an overview of recent insights into the molecular basis of this group of rare anaemias involving cation channels and transporters dysfunction. To date, a total of 5 different membrane proteins have been reported to be responsible for volume homeostasis alteration when mutated, 3 of them leading to overhydrated cells (AE1 [also termed SLC4A1], RHAG and GLUT1 [also termed SCL2A1) and 2 others to dehydrated cells (PIEZO1 and the Gardos Channel). These findings are not only of basic scientific interest, but also of direct clinical significance for improving diagnostic procedures and identify potential approaches for novel therapeutic strategies.
Collapse
Affiliation(s)
- Catherine Badens
- APHM Department of Medical Genetics, Hôpital de la Timone, Aix Marseille Univ, INSERM, GMGF, Marseille, France
| | - Hélène Guizouarn
- Univ. Nice Sophia Antipolis, CNRS, Inserm, iBV, 06100 Nice, France
| |
Collapse
|
31
|
Tzounakas VL, Kriebardis AG, Papassideri IS, Antonelou MH. Donor-variation effect on red blood cell storage lesion: A close relationship emerges. Proteomics Clin Appl 2016; 10:791-804. [PMID: 27095294 DOI: 10.1002/prca.201500128] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 12/20/2022]
Abstract
Although the molecular pathways leading to the progressive deterioration of stored red blood cells (RBC storage lesion) and the clinical relevance of storage-induced changes remain uncertain, substantial donor-specific variability in RBC performance during storage, and posttransfusion has been established ("donor-variation effect"). In-bag hemolysis and numerous properties of the RBC units that may affect transfusion efficacy have proved to be strongly donor-specific. Donor-variation effect may lead to the production of highly unequal blood labile products even when similar storage strategy and duration are applied. Genetic, undiagnosed/subclinical medical conditions and lifestyle factors that affect RBC characteristics at baseline, including RBC lifespan, energy metabolism, and sensitivity to oxidative stress, are all likely to influence the storage capacity of individual donors' cells, although not evident by the donor's health or hematological status at blood donation. Consequently, baseline characteristics of the donors, such as membrane peroxiredoxin-2 and serum uric acid concentration, have been proposed as candidate biomarkers of storage quality. This review article focuses on specific factors that might contribute to the donor-variation effect and emphasizes the emerging need for using omics-based technologies in association with in vitro and in vivo transfusion models and clinical trials to discover biomarkers of storage quality and posttransfusion recovery in donor blood.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Cell Biology and Biophysics, Faculty of Biology, NKUA, Athens, Greece
| | - Anastasios G Kriebardis
- Department of Medical Laboratories, Faculty of Health and Caring Professions, Technological and Educational Institute of Athens, Greece
| | | | - Marianna H Antonelou
- Department of Cell Biology and Biophysics, Faculty of Biology, NKUA, Athens, Greece
| |
Collapse
|
32
|
Andolfo I, Russo R, Manna F, De Rosa G, Gambale A, Zouwail S, Detta N, Pardo CL, Alper SL, Brugnara C, Sharma AK, De Franceschi L, Iolascon A. Functional characterization of novel ABCB6 mutations and their clinical implications in familial pseudohyperkalemia. Haematologica 2016; 101:909-17. [PMID: 27151991 DOI: 10.3324/haematol.2016.142372] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/29/2016] [Indexed: 11/09/2022] Open
Abstract
Isolated familial pseudohyperkalemia is a dominant red cell trait characterized by cold-induced 'passive leak' of red cell potassium ions into plasma. The causative gene of this condition is ABCB6, which encodes an erythrocyte membrane ABC transporter protein bearing the Langereis blood group antigen system. In this study analyzing three new families, we report the first functional characterization of ABCB6 mutants, including the homozygous mutation V454A, heterozygous mutation R276W, and compound heterozygous mutations R276W and R723Q (in trans). All these mutations are annotated in public databases, suggesting that familial pseudohyperkalemia could be common in the general population. Indeed, we identified variant R276W in one of 327 random blood donors (0.3%). Four weeks' storage of heterozygous R276W blood cells resulted in massive loss of potassium compared to that from healthy control red blood cells. Moreover, measurement of cation flux demonstrated greater loss of potassium or rubidium ions from HEK-293 cells expressing ABCB6 mutants than from cells expressing wild-type ABCB6. The R276W/R723Q mutations elicited greater cellular potassium ion efflux than did the other mutants tested. In conclusion, ABCB6 missense mutations in red blood cells from subjects with familial pseudohyperkalemia show elevated potassium ion efflux. The prevalence of such individuals in the blood donor population is moderate. The fact that storage of blood from these subjects leads to significantly increased levels of potassium in the plasma could have serious clinical implications for neonates and infants receiving large-volume transfusions of whole blood. Genetic tests for familial pseudohyperkalemia could be added to blood donor pre-screening. Further study of ABCB6 function and trafficking could be informative for the study of other pathologies of red blood cell hydration.
Collapse
Affiliation(s)
- Immacolata Andolfo
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University of Naples, Italy CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Roberta Russo
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University of Naples, Italy CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Francesco Manna
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University of Naples, Italy CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Gianluca De Rosa
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University of Naples, Italy CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Antonella Gambale
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University of Naples, Italy CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - Soha Zouwail
- Department of Biochemistry and Immunology, Cardiff and Vale University Health Board, University Hospital of Wales, Cardiff, UK and Department of Medical Biochemistry, School of Medicine, Alexandria University, Egypt
| | | | - Catia Lo Pardo
- Servizio Immunotrasfusionale, "A. Cardarelli" Hospital, Naples, Italy
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Alok K Sharma
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies, "Federico II" University of Naples, Italy CEINGE, Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
33
|
Morrison A, McMillan L, Campbell JDM, Petrik J. Evaluation of a potassium removal filter on irradiated red cells stored in SAGM. Transfus Med 2015; 25:320-5. [DOI: 10.1111/tme.12227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/29/2015] [Accepted: 06/24/2015] [Indexed: 12/01/2022]
Affiliation(s)
- A. Morrison
- National Science Laboratory, Microbiology & Components Research, Development & Innovation Group; Scottish National Blood Transfusion Service; Edinburgh UK
| | - L. McMillan
- National Science Laboratory, Microbiology & Components Research, Development & Innovation Group; Scottish National Blood Transfusion Service; Edinburgh UK
| | - J. D. M. Campbell
- National Science Laboratory, Microbiology & Components Research, Development & Innovation Group; Scottish National Blood Transfusion Service; Edinburgh UK
| | - J. Petrik
- National Science Laboratory, Microbiology & Components Research, Development & Innovation Group; Scottish National Blood Transfusion Service; Edinburgh UK
| |
Collapse
|
34
|
|
35
|
Flatt JF, Bawazir WM, Bruce LJ. The involvement of cation leaks in the storage lesion of red blood cells. Front Physiol 2014; 5:214. [PMID: 24987374 PMCID: PMC4060409 DOI: 10.3389/fphys.2014.00214] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/19/2014] [Indexed: 12/12/2022] Open
Abstract
Stored blood components are a critical life-saving tool provided to patients by health services worldwide. Red cells may be stored for up to 42 days, allowing for efficient blood bank inventory management, but with prolonged storage comes an unwanted side-effect known as the "storage lesion", which has been implicated in poorer patient outcomes. This lesion is comprised of a number of processes that are inter-dependent. Metabolic changes include a reduction in glycolysis and ATP production after the first week of storage. This leads to an accumulation of lactate and drop in pH. Longer term damage may be done by the consequent reduction in anti-oxidant enzymes, which contributes to protein and lipid oxidation via reactive oxygen species. The oxidative damage to the cytoskeleton and membrane is involved in increased vesiculation and loss of cation gradients across the membrane. The irreversible damage caused by extensive membrane loss via vesiculation alongside dehydration is likely to result in immediate splenic sequestration of these dense, spherocytic cells. Although often overlooked in the literature, the loss of the cation gradient in stored cells will be considered in more depth in this review as well as the possible effects it may have on other elements of the storage lesion. It has now become clear that blood donors can exhibit quite large variations in the properties of their red cells, including microvesicle production and the rate of cation leak. The implications for the quality of stored red cells from such donors is discussed.
Collapse
Affiliation(s)
- Joanna F Flatt
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant Bristol, UK
| | - Waleed M Bawazir
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant Bristol, UK ; School of Biochemistry, University of Bristol Bristol, UK
| | - Lesley J Bruce
- Bristol Institute for Transfusion Sciences, NHS Blood and Transplant Bristol, UK
| |
Collapse
|