1
|
Liu C, Su Y, Guo W, Ma X, Qiao R. The platelet storage lesion, what are we working for? J Clin Lab Anal 2024; 38:e24994. [PMID: 38069592 PMCID: PMC10829691 DOI: 10.1002/jcla.24994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/04/2023] [Accepted: 11/26/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Platelet concentrate (PC) transfusions are crucial in prevention and treatment of bleeding in infection, surgery, leukemia, and thrombocytopenia patients. Although the technology for platelet preparation and storage has evolved over the decades, there are still challenges in the demand for platelets in blood banks because the platelet shelf life is limited to 5 days due to bacterial contamination and platelet storage lesions (PSLs) at 20-24°C under constant horizontal agitation. In addition, the relations between some adverse effects of platelet transfusions and PSLs have also been considered. Therefore, understanding the mechanisms of PSLs is conducive to obtaining high quality platelets and facilitating safe and effective platelet transfusions. OBJECTIVE This review summarizes developments in mechanistic research of PSLs and their relationship with clinical practice, providing insights for future research. METHODS Authors conducted a search on PubMed and Web of Science using the professional terms "PSL" and "platelet transfusion." The obtained literature was then roughly categorized based on their research content. Similar studies were grouped into the same sections, and further searches were conducted based on the keywords of each section. RESULTS Different studies have explored PSLs from various perspectives, including changes in platelet morphology, surface molecules, biological response modifiers (BMRs), metabolism, and proteins and RNA, in an attempt to monitor PSLs and identify intervention targets that could alleviate PSLs. Moreover, novel platelet storage conditions, including platelet additive solutions (PAS) and reconsidered cold storage methods, are explored. There are two approaches to obtaining high-quality platelets. One approach simulates the in vivo environment to maintain platelet activity, while the other keeps platelets at a low activity level in vitro under low temperatures. CONCLUSION Understanding PSLs helps us identify good intervention targets and assess the therapeutic effects of different PSLs stages for different patients.
Collapse
Affiliation(s)
- Cheng Liu
- Peking University Third HospitalBeijingChina
| | - Yang Su
- Peking University Third HospitalBeijingChina
| | - Wanwan Guo
- Peking University Third HospitalBeijingChina
| | - Xiaolong Ma
- Peking University Third HospitalBeijingChina
| | - Rui Qiao
- Peking University Third HospitalBeijingChina
| |
Collapse
|
2
|
Spelmink SE, Jager ST, van de Watering L, van der Meer PF, van Gammeren AJ, Wiersum-Osselton JC, Klei TRL, Kerkhoffs JLH. Efficacy and safety of platelet additive solution-E stored platelet concentrates. Transfusion 2023; 63:2273-2280. [PMID: 37909172 DOI: 10.1111/trf.17583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION In 2018, platelet (PLT) additive solution-E (PAS-E) was introduced. The implementation of PAS-E was expected to diminish the number of allergic reactions in recipients following a PLT transfusion. Here, we evaluated the efficacy and safety of transfusions with PLTs stored in PAS-E. STUDY DESIGN AND METHODS After implementation of PAS-E, data were collected from 2 cohorts of patients with hematological disorders as well as oncology patients, receiving PLTs in PAS-E. A similar patient group in a recent RCT, receiving PLTs in plasma, was used as a historical control group for both cohorts. Endpoints were corrected count increments (CCIs), bleeding scores (only reported in cohort 1), and the incidence of adverse reactions. RESULTS In cohort 1, the mean 1-h CCI was 14.3 ± 6.9, and the 24-h CCI was 8.7 ± 5.6. In cohort 2, the 1-h CCI was 11.6 ± 7.8 and the 24-h CCI was 7.0 ± 6.1. In the control group, the 1-h CCI was 15.4 ± 5.5 and 24-h CCI 8.7 ± 4.8. Bleeding complications of WHO grade ≥2 occurred in 40% of patients in cohort 1 compared to 44% in plasma PCs. The incidence of adverse reactions was 1.2% in the two PAS-E cohorts, compared to 3.0% in plasma PCs. National hemovigilance data showed a significant reduction in allergic reactions with PAS-E PC transfusions as compared to plasma PCs with an odds ratio of 0.46 (CI 95% 0.37-0.58). CONCLUSION The CCIs of PLTs in PAS-E were decreased compared to plasma PCs, but clinically acceptable. Allergic transfusion reactions were decreased in PAS-E PCs compared to plasma PCs.
Collapse
Affiliation(s)
- Saskia E Spelmink
- Department of Transfusion Medicine, Sanquin Blood Bank, Amsterdam, The Netherlands
| | - Suzanne T Jager
- Department of Hematology, Haga Teaching Hospital, The Hague, The Netherlands
| | - Leo van de Watering
- Department of Transfusion Medicine, Sanquin Blood Bank, Amsterdam, The Netherlands
| | - Pieter F van der Meer
- Department of Hematology, Haga Teaching Hospital, The Hague, The Netherlands
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
| | | | - Johanna C Wiersum-Osselton
- TRIP (Transfusion and Transplantation Reactions in Patients) Hemovigilance and Biovigilance Office, Leiden, The Netherlands
| | - Thomas R L Klei
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
| | - Jean-Louis H Kerkhoffs
- Department of Transfusion Medicine, Sanquin Blood Bank, Amsterdam, The Netherlands
- Department of Hematology, Haga Teaching Hospital, The Hague, The Netherlands
| |
Collapse
|
3
|
Basu D, Basu S, Radhakrishnan VS, Bhattacharya S, Chakraborty S, Sinha S, Chandy M. Comparison of Quality and Efficacy of Apheresis Platelets Stored in Platelet Additive Solution Vis a Vis Plasma. Indian J Hematol Blood Transfus 2021; 37:648-657. [PMID: 34744347 DOI: 10.1007/s12288-021-01408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/09/2021] [Indexed: 11/28/2022] Open
Abstract
PAS, by replacing part of the plasma in the platelet storage bag, reduces post transfusion allergic reactions and DHTR in the recipient. In this study we compared quality and efficacy of PAS and usual plasma stored platelets. Platelet concentration, content, MPV, pH, swirling, LDH and glucose concentration were tested in SDPs after preparation and on the day of transfusion; and compared between control (plasma-stored SDP) and study (PAS-stored SDP) groups. CCI was compared between the two groups. Transfusion reactions were also noted. In both groups quality parameters were similar except glucose [significantly decreased (p < 0.001) in plasma] and LDH [increased significantly (p: -0.005) in PAS]. CCI was similar in both groups. Transfusion reaction rate were 0.012% and 0.049% in both groups respectively. Quality and post-transfusion efficacy in both groups were similar. PAS stored platelets may be transfused in multi-transfused patients with allergic manifestations and in minor ABO incompatible transfusions.
Collapse
Affiliation(s)
- Debapriya Basu
- Department of Transfusion Medicine, Tata Medical Center, 14 Middle Arterial Road (EW), Rajarhat, New Town, Kolkata, 700160 India
| | - Sabita Basu
- Department of Transfusion Medicine, Tata Medical Center, 14 Middle Arterial Road (EW), Rajarhat, New Town, Kolkata, 700160 India
| | - Vivek S Radhakrishnan
- Department of Clinical Haematology, Tata Medical Center, 14 Middle Arterial Road (EW), Rajarhat, New Town, Kolkata, 700160 India
| | - Sanjay Bhattacharya
- Department of Microbiology, Tata Medical Center, 14 Middle Arterial Road (EW), Rajarhat, New Town, Kolkata, 700160 India
| | - Subhosmito Chakraborty
- Department of Biochemistry, Tata Medical Center, 14 Middle Arterial Road (EW), Rajarhat, New Town, Kolkata, 700160 India
| | - Subir Sinha
- Department of Statistics, Tata Medical Center, 14 Middle Arterial Road (EW), Rajarhat, New Town, Kolkata, 700160 India
| | - Mammen Chandy
- Department of Clinical Haematology, Tata Medical Center, 14 Middle Arterial Road (EW), Rajarhat, New Town, Kolkata, 700160 India
| |
Collapse
|
4
|
Brixner V, Bug G, Pohler P, Krämer D, Metzner B, Voss A, Casper J, Ritter U, Klein S, Alakel N, Peceny R, Derigs HG, Stegelmann F, Wolf M, Schrezenmeier H, Thiele T, Seifried E, Kapels HH, Döscher A, Petershofen EK, Müller TH, Seltsam A. Efficacy of UVC-treated, pathogen-reduced platelets versus untreated platelets: a randomized controlled non-inferiority trial. Haematologica 2021; 106:1086-1096. [PMID: 33538149 PMCID: PMC8018132 DOI: 10.3324/haematol.2020.260430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Pathogen reduction (PR) technologies for blood components have been established to reduce the residual risk of known and emerging infectious agents. THERAFLEX UV-Platelets, a novel ultraviolet C (UVC) light-based PR technology for platelet concentrates, works without photoactive substances. This randomized, controlled, double-blind, multicenter, non-inferiority trial was designed to compare the efficacy and safety of UVC-treated platelets to that of untreated platelets in thrombocytopenic patients with hematologic-oncologic diseases. The primary objective was to determine non-inferiority of UVC-treated platelets, assessed by the 1-hour corrected count increment (CCI) in up to eight per-protocol platelet transfusion episodes. Analysis of the 171 eligible patients showed that the defined non-inferiority margin of 30% of UVC-treated platelets was narrowly missed as the mean differences in 1-hour CCI between standard platelets versus UVC-treated platelets for intention-to-treat and per-protocol analyses were 18.2% (95% Confidence Interval [CI]: 6.4-30.1) and 18.7% (95% CI: 6.3-31.1), respectively. In comparison to the control, the UVC group had a 19.2% lower mean 24-hour CCI and was treated with an about 25% higher number of platelet units, but the average number of days to the next platelet transfusion did not differ significantly between both treatment groups. The frequency of low-grade adverse events was slightly higher in the UVC group and the frequencies of refractoriness to platelet transfusion, platelet alloimmunization, severe bleeding events, and red blood cell transfusions were comparable between groups. Our study suggests that transfusion of pathogen-reduced platelets produced with the UVC technology is safe but non-inferiority was not demonstrated. (clinicaltrials gov. Identifier: DRKS00011156).
Collapse
Affiliation(s)
- Veronika Brixner
- German Red Cross Blood Transfusion Service and Goethe University Clinics, Frankfurt/Main
| | - Gesine Bug
- Department of Hematology and Oncology, University Hospital Frankfurt, Goethe University, Frankfurt/Main
| | | | - Doris Krämer
- Department of Oncology and Hematology, University Hospital, Oldenburg
| | - Bernd Metzner
- Department of Oncology and Hematology, University Hospital, Oldenburg
| | - Andreas Voss
- Department of Oncology and Hematology, University Hospital, Oldenburg
| | - Jochen Casper
- Department of Oncology and Hematology, University Hospital, Oldenburg
| | - Ulrich Ritter
- Department of Hematology and Oncology, Municipal Hospital Bremen, Bremen
| | - Stefan Klein
- Department of Hematology and Oncology, University Hospital, Mannheim
| | - Nael Alakel
- Medical Clinic I, Department of Hematology and Oncology, University Hospital, Carl Gustav Carus Faculty of Medicine, Dresden
| | - Rudolf Peceny
- Department of Hematology and Oncology, Municipal Hospital, Osnabrück
| | - Hans G Derigs
- Department of Hematology and Oncology, Municipal Hospital Frankfurt-Hoechst, Frankfurt/Main
| | | | - Martin Wolf
- Department of Hematology and Oncology, Municipal Hospital, Kassel
| | - Hubert Schrezenmeier
- Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany; and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg - Hessia, Ulm
| | - Thomas Thiele
- Institute for Immunology and Transfusion Medicine, University Medicine, Greifswald
| | - Erhard Seifried
- German Red Cross Blood Transfusion Service and Goethe University Clinics, Frankfurt/Main
| | | | | | | | | | - Axel Seltsam
- German Red Cross Blood Service NSTOB, Springe, Germany; Bavarian Red Cross Blood Service, Nuremberg.
| |
Collapse
|
5
|
McCullough J. Pathogen Reduced Blood Products. Transfus Med 2021. [DOI: 10.1002/9781119599586.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Mikaelsdottir M, Vidarsson B, Runarsson G, Bjarnadottir U, Onundarson PT, Sigurjonsson OE, Halldorsdottir AM. A comparison of platelet quality between platelets from healthy donors and hereditary hemochromatosis donors over seven-day storage. Transfusion 2020; 61:202-211. [PMID: 33166431 DOI: 10.1111/trf.16176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Therapeutic phlebotomy is the standard treatment of hereditary hemochromatosis (HH), the most common genetic disease in people of Northern European descent. Red cell concentrates from HH donors have been reported safe for transfusion, but little data is available on the storage properties of platelet concentrates from HH donors. STUDY DESIGN AND METHODS Whole blood was collected from 10 healthy individuals and 10 newly diagnosed HH patients with elevated serum ferritin. Platelet-rich plasma (PRP) was prepared and split into four 20-mL units. Platelet quality tests were performed on days 0, 1, 3, 5, and 7 of storage, including platelet aggregation (ADP, arachidonic acid, collagen, and epinephrine agonists), blood gas analysis, flow cytometry (CD41, CD42b, and CD62P expression), and ELISA (sCD40L and sCD62p in supernatant). RESULTS Mean serum ferritin levels were higher in HH patients than in controls (847.5 vs 45.8 ng/mL, P < .001). Overall, no difference in quality test results was observed between the two study groups over 7-day storage (P > .05), including blood gas analysis, platelet aggregation, and expression of surface (CD62p and CD42b) and secreted (sCD62P and sCD40L) activation markers. Expected alterations in metabolic (CO2 and glucose decrease, O2 and lactate increase, P < .001) and platelet activation markers (CD42b decrease, CD62P increase, P < .05) over time were observed in both groups. CONCLUSION Although these findings indicate that platelets of individuals with HH are comparable to platelets from healthy donors, more extensive studies are needed before definite conclusions can be drawn.
Collapse
Affiliation(s)
| | - Brynjar Vidarsson
- Department of Hematology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Gudmundur Runarsson
- Department of Hematology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Una Bjarnadottir
- Department of Immunology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Pall T Onundarson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,Department of Hematology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Olafur E Sigurjonsson
- The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland.,School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
| | - Anna M Halldorsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland.,The Blood Bank, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| |
Collapse
|
7
|
Abonnenc M, Crettaz D, Sonego G, Escolar G, Tissot JD, Prudent M. Towards the understanding of the UV light, riboflavin and additive solution contributions to the in vitro lesions observed in Mirasol®-treated platelets. Transfus Clin Biol 2019; 26:209-216. [PMID: 31563447 DOI: 10.1016/j.tracli.2019.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/07/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Pathogen reduction technologies are implemented to increase the safety of blood products. We previously showed that the UVB alone significantly contributes to the storage lesions observed in platelets treated with riboflavin/UVB using a home-made illuminator. The present study aims at confirming these observations using the commercial Mirasol® technology. METHODS A three-arm study (untreated, UV-, Mirasol®-treated platelets) was conducted to investigate the platelet storage lesions throughout storage (n=4). A two-arm study was then designed to compare Intersol and T-PAS+ additive solutions (n=3). Phenotype and functional platelet characteristics were assessed using flow cytometry, aggregometry, antioxidant assays and metabolic parameters. RESULTS Mirasol®-treated platelets exhibit enhanced storage lesions compared to controls (increase of activation markers and glycolysis rate, lower hypotonic shock and double-agonist activation responses, and decrease of total antioxidant capacity). Here, we also confirmed that the UV radiation alone is causing platelet lesions. Riboflavin tends to have an intracellular protective role while it decreases the extracellular antioxidant defenses. Furthermore, benefits of platelet additive solutions containing potassium and magnesium were confirmed as it reduces the extent of storage lesions. CONCLUSIONS The photosensitizer, UV illumination and composition of the platelet additive solutions are key parameters influencing the platelet storage lesion. The clinical relevance of these findings is not fully understood and recent published clinical studies could not show increase in bleeding in patients receiving Mirasol-treated platelets. New developments in storage solutions might help to improve storage conditions of PRT-treated platelets and should be prioritised as research subject in the future.
Collapse
Affiliation(s)
- M Abonnenc
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - D Crettaz
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - G Sonego
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Epalinges, Switzerland
| | - G Escolar
- Department of Hematopathology, Hospital Clinic of Barcelona, Biomedical Diagnosis Centre (CDB), Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - J-D Tissot
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Epalinges, Switzerland; Faculté de Biologie et de Médecine, Université de Lausanne, Lausanne, Switzerland
| | - M Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Recherche et Développement Produits, Transfusion Interrégionale CRS, Epalinges, Switzerland; Faculté de Biologie et de Médecine, Université de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Viau S, Eap S, Chabrand L, Lagrange A, Delorme B. Viral inactivation of human platelet lysate by gamma irradiation preserves its optimal efficiency in the expansion of human bone marrow mesenchymal stromal cells. Transfusion 2019; 59:1069-1079. [PMID: 30793328 DOI: 10.1111/trf.15205] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Human platelet lysate (hPL) represents a powerful medium supplement for human mesenchymal stromal cell (hMSC) expansion. The recently published general chapters of the Pharmacopeia require the addition of a step of viral inactivation during the production process of such raw biological material used for cell-based medicinal products. STUDY DESIGN AND METHODS The ability of gamma irradiation to inactivate viruses from a panel representative of the virus diversity was evaluated. The impact of gamma irradiation on hPL composition and efficiency as a supplement for hMSC culture was evaluated. RESULTS An efficient inactivation of all the viruses tested was demonstrated, with the minimum reduction factors obtained being superior to 4.5 log10 for human immunodeficiency virus (HIV) and hepatitis A virus (HAV) and superior to 5 log10 for bovine viral diarrhea virus (BVDV), pseudorabies virus (PRV) and porcine parvovirus (PPV). The gamma irradiation did not affect the content in interesting biochemical factors for cell culture or in growth factors (GF), except to basic fibroblast GF (bFGF) whereas it highly impacted the contents in the factors involved in the coagulation cascade. Finally, gamma irradiated hPL remained as efficient as non-irradiated hPL for the proliferation, clonogenic potential, differentiation potential, and immunosuppressive properties of hMSCs. CONCLUSION The feasibility of using gamma irradiation to efficiently inactivate viruses in hPL while maintaining its optimal efficacy as a supplement for hMSC expansion was demonstrated. Such an inactivated hPL represents a very attractive raw material for the efficient production of safe cellular therapy products.
Collapse
Affiliation(s)
- Sabrina Viau
- Biotherapy Division, Macopharma, Mouvaux, France
| | - Sandy Eap
- Biotherapy Division, Macopharma, Mouvaux, France
| | | | | | | |
Collapse
|
9
|
Feys HB, Van Aelst B, Compernolle V. Biomolecular Consequences of Platelet Pathogen Inactivation Methods. Transfus Med Rev 2018; 33:29-34. [PMID: 30021699 DOI: 10.1016/j.tmrv.2018.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022]
Abstract
Pathogen inactivation (PI) for platelet concentrates (PC) is a fairly recent development in transfusion medicine that is intended to decrease infectious disease transmission from the donor to the receiving patient. Effective inactivation of viruses, bacteria and eukaryotic parasites adds a layer of safety, protecting the blood supply against customary and emerging pathogens. Three PI methods have been described for platelets. These are based on photochemical damage of nucleic acids which prevents replication of most infectious pathogens and contaminating donor leukocytes. Because platelets do not replicate, the collateral damage to platelet function is considered low to non-existing. This is disputable however because photochemistry is not specific for nucleic acids and significantly affects platelet biomolecules as well. The impact of these biomolecular changes on platelet function and hemostasis is not well understood, but is increasingly being studied. The results of these studies can help explain current and future clinical observations with PI platelets, including the impact on transfusion yield and bleeding. This review summarizes the biomolecular effects of PI treatment on platelets. We conclude that despite a comparable principle of photochemical inactivation, all three methods affect platelets in different ways. This knowledge can help blood banks and transfusion specialists to guide their choice when considering the implementation or clinical use of PI treated platelets.
Collapse
Affiliation(s)
- Hendrik B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - Britt Van Aelst
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium; Blood Service of the Belgian Red Cross-Flanders, Mechelen, Belgium
| | - Veerle Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium; Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Blood Service of the Belgian Red Cross-Flanders, Mechelen, Belgium
| |
Collapse
|
10
|
Feys HB, Devloo R, Sabot B, Coene J, Compernolle V. Comparison of three commercially available buffy coat pooling sets for the preparation of platelet concentrates. Vox Sang 2018; 113:555-561. [PMID: 29797720 DOI: 10.1111/vox.12668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/16/2018] [Accepted: 05/02/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND A disposable set for platelet concentrate (PC) preparation by the buffy coat method allows pooling of buffy coats, centrifugation and cell separation with in-line leucocyte filtration. This study compares three commercially available pooling sets in combination with INTERCEPT pathogen inactivation (PI). MATERIALS AND METHODS Sets for pooling of buffy coats were from Fresenius Kabi (FRE), Macopharma (MAC) and Terumo BCT (TER). Platelet yield, recovery and concentration were compared before and after PI (n = 20). Platelet quality was assessed by annexin V binding, P-selectin expression and PAC1 binding. RESULTS The TER pooling set had the highest platelet yield (5·39 ± 0·44 × 1011 ) compared with MAC (4·53 ± 0·77) and FRE (4·56 ± 0·51) prior to PI. This was the result of a significantly higher platelet concentration in the TER storage bag (1·41 ± 0·12 × 106 /μL) compared with MAC (1·18 ± 0·19) and FRE (1·28 ± 0·15). However, the TER platelet content decreased by 15·6% after PI, yielding 4·55 ± 0·47 × 1011 platelets compared with smaller reductions at 9·5% for MAC (4·10 ± 0·69) and 4·4% for FRE (4·36 ± 0·52). None of the individual PC contained >106 leucocytes. The pH in TER PC was lower compared with MAC and FRE caused by a higher lactic acid production rate. Consequently, PAC1 binding after TRAP activation was lowest for TER PC on day 6. P-selectin and annexin V were not different between suppliers. CONCLUSION This study demonstrates the added value of evaluating the entire component production process when introducing a new consumable. This study helped to inform a decision on what pooling set is ideally suited for routine implementation taking into account PI.
Collapse
Affiliation(s)
- H B Feys
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - R Devloo
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
| | - B Sabot
- Blood Service of the Belgian Red Cross-Flanders, Ghent, Belgium
| | - J Coene
- Blood Service of the Belgian Red Cross-Flanders, Ghent, Belgium
| | - V Compernolle
- Transfusion Research Center, Belgian Red Cross-Flanders, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Blood Service of the Belgian Red Cross-Flanders, Ghent, Belgium
| |
Collapse
|
11
|
van der Meer PF, de Korte D. Platelet Additive Solutions: A Review of the Latest Developments and Their Clinical Implications. Transfus Med Hemother 2018; 45:98-102. [PMID: 29765292 DOI: 10.1159/000487513] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/08/2018] [Indexed: 11/19/2022] Open
Abstract
Summary Platelet additive solutions (PASs) have undergone many reformulations in order to further improve platelet storage. Studies of platelets stored in PAS-F (containing acetate, magnesium and potassium as key constituents) showed that platelets may be stored for 13 days with recovery and survival outcomes that are equal or even superior to 7-day stored platelets in plasma. Clinically, patients transfused with platelets in PAS have fewer allergic reactions, while for febrile reactions data are conflicting. Transfusion-related acute lung injury (TRALI) occurs less frequently if PAS is used for buffy coat-derived platelets, but for apheresis platelets there is no difference. For PAS-B and PAS-C, corrected count increments (CCIs) are lower than for platelets stored in plasma, but for PAS-E (like PAS-F also with acetate, magnesium and potassium but with additional phosphate), though limited data is available in the literature, the CCIs seem to be comparable to those observed for platelets in plasma. With platelets in PAS, there is an accumulated dilution effect of anticoagulant and PAS as well as a loss of number and function (due to storage and/or pathogen inactivation treatment) of platelets, of which it is not clear how this impacts clinical outcomes of patients undergoing massive transfusion. Worst-case in vitro studies, where the entire plasma fraction is replaced by supernatant of platelets in PAS, do show an effect on the ability of reconstituted whole blood to clot, but in a more realistic scenario, functional clotting parameters are not different. In this review, recent laboratory and clinical data are discussed, focusing on studies published after 2010.
Collapse
Affiliation(s)
- Pieter F van der Meer
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
| | - Dirk de Korte
- Department of Product and Process Development, Sanquin Blood Bank, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Ware AD, Jacquot C, Tobian AAR, Gehrie EA, Ness PM, Bloch EM. Pathogen reduction and blood transfusion safety in Africa: strengths, limitations and challenges of implementation in low-resource settings. Vox Sang 2017; 113:3-12. [PMID: 29193128 DOI: 10.1111/vox.12620] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/27/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Transfusion-transmitted infection risk remains an enduring challenge to blood safety in Africa. A high background incidence and prevalence of the major transfusion-transmitted infections (TTIs), dependence on high-risk donors to meet demand, suboptimal testing and quality assurance collectively contribute to the increased risk. With few exceptions, donor testing is confined to serological evaluation of human immunodeficiency virus (HIV), hepatitis B and C (HBV and HCV) and syphilis. Barriers to implementation of broader molecular methods include cost, limited infrastructure and lack of technical expertise. Pathogen reduction (PR), a term used to describe a variety of methods (e.g. solvent detergent treatment or photochemical activation) that may be applied to blood following collection, offers the means to diminish the infectious potential of multiple pathogens simultaneously. This is effective against different classes of pathogen, including the major TTIs where laboratory screening is already implemented (e.g. HIV, HBV and HCV) as well pathogens that are widely endemic yet remain unaddressed (e.g. malaria, bacterial contamination). We sought to review the available and emerging PR techniques and their potential application to resource-constrained parts of Africa, focusing on the advantages and disadvantages of such technologies. PR has been slow to be adopted even in high-income countries, primarily given the high costs of use. Logistical considerations, particularly in low-resourced parts of Africa, also raise concerns about practicality. Nonetheless, PR offers a rational, innovative strategy to contend with TTIs; technologies in development may well present a viable complement or even alternative to targeted screening in the future.
Collapse
Affiliation(s)
- A D Ware
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - C Jacquot
- Children's National Health System and George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - A A R Tobian
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - E A Gehrie
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - P M Ness
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - E M Bloch
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Pathogen reduction through additive-free short-wave UV light irradiation retains the optimal efficacy of human platelet lysate for the expansion of human bone marrow mesenchymal stem cells. PLoS One 2017; 12:e0181406. [PMID: 28763452 PMCID: PMC5538655 DOI: 10.1371/journal.pone.0181406] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/30/2017] [Indexed: 12/17/2022] Open
Abstract
Background We recently developed and characterized a standardized and clinical grade human Platelet Lysate (hPL) that constitutes an advantageous substitute for fetal bovine serum (FBS) for human mesenchymal stem cell (hMSC) expansion required in cell therapy procedures, avoiding xenogenic risks (virological and immunological) and ethical issues. Because of the progressive use of pathogen-reduced (PR) labile blood components, and the requirement of ensuring the viral safety of raw materials for cell therapy products, we evaluated the impact of the novel procedure known as THERAFLEX UV-Platelets for pathogen reduction on hPL quality (growth factors content) and efficacy (as a medium supplement for hMSC expansion). This technology is based on short-wave ultraviolet light (UV-C) that induces non-reversible damages in DNA and RNA of pathogens while preserving protein structures and functions, and has the main advantage of not needing the addition of any photosensitizing additives (that might secondarily interfere with hMSCs). Methodology / Principal findings We applied the THERAFLEX UV-Platelets procedure on fresh platelet concentrates (PCs) suspended in platelet additive solution and prepared hPL from these treated PCs. We compared the quality and efficacy of PR-hPL with the corresponding non-PR ones. We found no impact on the content of five cytokines tested (EGF, bFGF, PDGF-AB, VEGF and IGF-1) but a significant decrease in TGF-ß1 (-21%, n = 11, p<0.01). We performed large-scale culture of hMSCs from bone marrow (BM) during three passages and showed that hPL or PR-hPL at 8% triggered comparable BM-hMSC proliferation as FBS at 10% plus bFGF. Moreover, after proliferation of hMSCs in an hPL- or PR-hPL-containing medium, their profile of membrane marker expression, their clonogenic potential and immunosuppressive properties were maintained, in comparison with BM-hMSCs cultured under FBS conditions. The potential to differentiate towards the adipogenic and osteogenic lineages of hMSCs cultured in parallel in the three conditions also remained identical. Conclusion / Significance We demonstrated the feasibility of using UV-C-treated platelets to subsequently obtain pathogen-reduced hPL, while preserving its optimal quality and efficacy for hMSC expansion in cell therapy applications.
Collapse
|
14
|
Estcourt LJ, Malouf R, Hopewell S, Trivella M, Doree C, Stanworth SJ, Murphy MF. Pathogen-reduced platelets for the prevention of bleeding. Cochrane Database Syst Rev 2017; 7:CD009072. [PMID: 28756627 PMCID: PMC5558872 DOI: 10.1002/14651858.cd009072.pub3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Platelet transfusions are used to prevent and treat bleeding in people who are thrombocytopenic. Despite improvements in donor screening and laboratory testing, a small risk of viral, bacterial, or protozoal contamination of platelets remains. There is also an ongoing risk from newly emerging blood transfusion-transmitted infections for which laboratory tests may not be available at the time of initial outbreak.One solution to reduce the risk of blood transfusion-transmitted infections from platelet transfusion is photochemical pathogen reduction, in which pathogens are either inactivated or significantly depleted in number, thereby reducing the chance of transmission. This process might offer additional benefits, including platelet shelf-life extension, and negate the requirement for gamma-irradiation of platelets. Although current pathogen-reduction technologies have been proven to reduce pathogen load in platelet concentrates, a number of published clinical studies have raised concerns about the effectiveness of pathogen-reduced platelets for post-transfusion platelet count recovery and the prevention of bleeding when compared with standard platelets.This is an update of a Cochrane review first published in 2013. OBJECTIVES To assess the effectiveness of pathogen-reduced platelets for the prevention of bleeding in people of any age requiring platelet transfusions. SEARCH METHODS We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 9), MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1937), the Transfusion Evidence Library (from 1950), and ongoing trial databases to 24 October 2016. SELECTION CRITERIA We included RCTs comparing the transfusion of pathogen-reduced platelets with standard platelets, or comparing different types of pathogen-reduced platelets. DATA COLLECTION AND ANALYSIS We used the standard methodological procedures expected by Cochrane. MAIN RESULTS We identified five new trials in this update of the review. A total of 15 trials were eligible for inclusion in this review, 12 completed trials (2075 participants) and three ongoing trials. Ten of the 12 completed trials were included in the original review. We did not identify any RCTs comparing the transfusion of one type of pathogen-reduced platelets with another.Nine trials compared Intercept® pathogen-reduced platelets to standard platelets, two trials compared Mirasol® pathogen-reduced platelets to standard platelets; and one trial compared both pathogen-reduced platelets types to standard platelets. Three RCTs were randomised cross-over trials, and nine were parallel-group trials. Of the 2075 participants enrolled in the trials, 1981 participants received at least one platelet transfusion (1662 participants in Intercept® platelet trials and 319 in Mirasol® platelet trials).One trial included children requiring cardiac surgery (16 participants) or adults requiring a liver transplant (28 participants). All of the other participants were thrombocytopenic individuals who had a haematological or oncological diagnosis. Eight trials included only adults.Four of the included studies were at low risk of bias in every domain, while the remaining eight included studies had some threats to validity.Overall, the quality of the evidence was low to high across different outcomes according to GRADE methodology.We are very uncertain as to whether pathogen-reduced platelets increase the risk of any bleeding (World Health Organization (WHO) Grade 1 to 4) (5 trials, 1085 participants; fixed-effect risk ratio (RR) 1.09, 95% confidence interval (CI) 1.02 to 1.15; I2 = 59%, random-effect RR 1.14, 95% CI 0.93 to 1.38; I2 = 59%; low-quality evidence).There was no evidence of a difference between pathogen-reduced platelets and standard platelets in the incidence of clinically significant bleeding complications (WHO Grade 2 or higher) (5 trials, 1392 participants; RR 1.10, 95% CI 0.97 to 1.25; I2 = 0%; moderate-quality evidence), and there is probably no difference in the risk of developing severe bleeding (WHO Grade 3 or higher) (6 trials, 1495 participants; RR 1.24, 95% CI 0.76 to 2.02; I2 = 32%; moderate-quality evidence).There is probably no difference between pathogen-reduced platelets and standard platelets in the incidence of all-cause mortality at 4 to 12 weeks (6 trials, 1509 participants; RR 0.81, 95% CI 0.50 to 1.29; I2 = 26%; moderate-quality evidence).There is probably no difference between pathogen-reduced platelets and standard platelets in the incidence of serious adverse events (7 trials, 1340 participants; RR 1.09, 95% CI 0.88 to 1.35; I2 = 0%; moderate-quality evidence). However, no bacterial transfusion-transmitted infections occurred in the six trials that reported this outcome.Participants who received pathogen-reduced platelet transfusions had an increased risk of developing platelet refractoriness (7 trials, 1525 participants; RR 2.94, 95% CI 2.08 to 4.16; I2 = 0%; high-quality evidence), though the definition of platelet refractoriness differed between trials.Participants who received pathogen-reduced platelet transfusions required more platelet transfusions (6 trials, 1509 participants; mean difference (MD) 1.23, 95% CI 0.86 to 1.61; I2 = 27%; high-quality evidence), and there was probably a shorter time interval between transfusions (6 trials, 1489 participants; MD -0.42, 95% CI -0.53 to -0.32; I2 = 29%; moderate-quality evidence). Participants who received pathogen-reduced platelet transfusions had a lower 24-hour corrected-count increment (7 trials, 1681 participants; MD -3.02, 95% CI -3.57 to -2.48; I2 = 15%; high-quality evidence).None of the studies reported quality of life.We did not evaluate any economic outcomes.There was evidence of subgroup differences in multiple transfusion trials between the two pathogen-reduced platelet technologies assessed in this review (Intercept® and Mirasol®) for all-cause mortality and the interval between platelet transfusions (favouring Intercept®). AUTHORS' CONCLUSIONS Findings from this review were based on 12 trials, and of the 1981 participants who received a platelet transfusion only 44 did not have a haematological or oncological diagnosis.In people with haematological or oncological disorders who are thrombocytopenic due to their disease or its treatment, we found high-quality evidence that pathogen-reduced platelet transfusions increase the risk of platelet refractoriness and the platelet transfusion requirement. We found moderate-quality evidence that pathogen-reduced platelet transfusions do not affect all-cause mortality, the risk of clinically significant or severe bleeding, or the risk of a serious adverse event. There was insufficient evidence for people with other diagnoses.All three ongoing trials are in adults (planned recruitment 1375 participants) with a haematological or oncological diagnosis.
Collapse
Affiliation(s)
- Lise J Estcourt
- NHS Blood and TransplantHaematology/Transfusion MedicineLevel 2, John Radcliffe HospitalHeadingtonOxfordUKOX3 9BQ
| | - Reem Malouf
- University of OxfordNational Perinatal Epidemiology Unit (NPEU)Old Road CampusOxfordUKOX3 7LF
| | - Sally Hopewell
- University of OxfordOxford Clinical Trials Research UnitNuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesWindmill RoadOxfordUKOX3 7LD
| | - Marialena Trivella
- University of OxfordCentre for Statistics in MedicineBotnar Research CentreWindmill RoadOxfordUKOX3 7LD
| | - Carolyn Doree
- NHS Blood and TransplantSystematic Review InitiativeJohn Radcliffe HospitalOxfordUKOX3 9BQ
| | - Simon J Stanworth
- Oxford University Hospitals NHS Foundation Trust and University of OxfordNational Institute for Health Research (NIHR) Oxford Biomedical Research CentreJohn Radcliffe Hospital, Headley WayHeadingtonOxfordUKOX3 9BQ
| | - Michael F Murphy
- Oxford University Hospitals NHS Foundation Trust and University of OxfordNHS Blood and Transplant; National Institute for Health Research (NIHR) Oxford Biomedical Research CentreJohn Radcliffe HospitalHeadingtonOxfordUK
| |
Collapse
|
15
|
Webb J, Abraham A. Complex Transfusion Issues in Pediatric Hematopoietic Stem Cell Transplantation. Transfus Med Rev 2016; 30:202-8. [PMID: 27439965 DOI: 10.1016/j.tmrv.2016.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/15/2016] [Indexed: 12/13/2022]
Abstract
Advances in the fields of pediatric transfusion medicine and hematopoietic stem cell transplant have resulted in improved outcomes but also present new questions for research. The diagnostic capabilities involved in transfusion medicine have improved in recent times, now including methods for determination of red blood cell minor antigens, detection of anti-human leukocyte antigen antibodies, and noninvasive iron quantification. At the same time, transplants are being performed for more indications including nonmalignant disease and with less intense conditioning regimens that allow some recipient blood cells to persist after transplant. We are therefore faced with new opportunities to understand the implications of transfusion medicine testing and to develop data-driven guidelines relevant to the current-day approach to transfusion and transplantation.
Collapse
Affiliation(s)
- Jennifer Webb
- Division of Transfusion Medicine, Children's National Medical Center, Washington, DC.
| | - Allistair Abraham
- Division of Blood and Marrow Transplantation, Children's National Medical Center, Washington, DC
| |
Collapse
|
16
|
Kaplan A, Lindgren B, Marschner S, Aznar M, Zalba S, Sánchez P, Ayape ML, Olavarría E, Antelo ML. Evaluation of the post-transfusion platelet increment and safety of riboflavin-based pathogen reduction technology (PRT) treated platelet products stored in platelet additive solution for 5 days or less versus 6–7 days. Transfus Apher Sci 2016; 54:248-52. [DOI: 10.1016/j.transci.2015.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 11/24/2022]
|