1
|
Shahrezaei A, Sohani M, Nasirinezhad F. Mesenchymal stem cells as a therapeutic strategy to combat oxidative stress-mediated neuropathic pain. BIOIMPACTS : BI 2025; 15:30648. [PMID: 40256229 PMCID: PMC12008502 DOI: 10.34172/bi.30648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/22/2024] [Accepted: 09/30/2024] [Indexed: 04/22/2025]
Abstract
Neuropathic pain, a chronic condition resulting from somatosensory system damage, remains a significant clinical challenge due to its complex pathophysiology and inadequate response to traditional therapies. Oxidative stress, characterized by an imbalance between free radicals production and antioxidant defenses, plays a pivotal role in the development and maintenance of neuropathic pain. Mesenchymal stem cells (MSCs) are multipotent stromal cells with the ability to differentiate into various cell types and possess immunomodulatory, anti-inflammatory, and regenerative properties, making them promising candidates for novel pain management strategies. Preclinical studies demonstrate that MSCs can reduce inflammation, scavenge reactive oxygen species (ROS), promote nerve regeneration, and modulate pain signaling pathways. Various administration routes, including intravenous and intrathecal, have been investigated to optimize MSC delivery and efficacy. Additionally, MSC-derived extracellular vesicles (EVs) represent a cell-free alternative with substantial therapeutic potential. Despite encouraging preclinical findings, further research is needed to refine MSC-based therapies, including the exploration of combination treatments and rigorous clinical trials, to translate these promising results into effective clinical applications for neuropathic pain relief. This review explores the therapeutic potential of MSCs in alleviating oxidative stress-mediated neuropathic pain.
Collapse
Affiliation(s)
- Aidin Shahrezaei
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sohani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farinaz Nasirinezhad
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Center of Experimental and Comparative Study, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Zayed MA, Sultan S, Alsaab HO, Yousof SM, Alrefaei GI, Alsubhi NH, Alkarim S, Al Ghamdi KS, Bagabir SA, Jana A, Alghamdi BS, Atta HM, Ashraf GM. Stem-Cell-Based Therapy: The Celestial Weapon against Neurological Disorders. Cells 2022; 11:3476. [PMID: 36359871 PMCID: PMC9655836 DOI: 10.3390/cells11213476] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Stem cells are a versatile source for cell therapy. Their use is particularly significant for the treatment of neurological disorders for which no definitive conventional medical treatment is available. Neurological disorders are of diverse etiology and pathogenesis. Alzheimer's disease (AD) is caused by abnormal protein deposits, leading to progressive dementia. Parkinson's disease (PD) is due to the specific degeneration of the dopaminergic neurons causing motor and sensory impairment. Huntington's disease (HD) includes a transmittable gene mutation, and any treatment should involve gene modulation of the transplanted cells. Multiple sclerosis (MS) is an autoimmune disorder affecting multiple neurons sporadically but induces progressive neuronal dysfunction. Amyotrophic lateral sclerosis (ALS) impacts upper and lower motor neurons, leading to progressive muscle degeneration. This shows the need to try to tailor different types of cells to repair the specific defect characteristic of each disease. In recent years, several types of stem cells were used in different animal models, including transgenic animals of various neurologic disorders. Based on some of the successful animal studies, some clinical trials were designed and approved. Some studies were successful, others were terminated and, still, a few are ongoing. In this manuscript, we aim to review the current information on both the experimental and clinical trials of stem cell therapy in neurological disorders of various disease mechanisms. The different types of cells used, their mode of transplantation and the molecular and physiologic effects are discussed. Recommendations for future use and hopes are highlighted.
Collapse
Affiliation(s)
- Mohamed A. Zayed
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Physiology Department, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Samar Sultan
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Shimaa Mohammad Yousof
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Nouf H. Alsubhi
- Department of Biological Sciences, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Saleh Alkarim
- Embryonic and Cancer Stem Cell Research Group, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic Stem Cells Research Unit, Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kholoud S. Al Ghamdi
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sali Abubaker Bagabir
- Genetic Unit, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hazem M. Atta
- Clinical Biochemistry Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
3
|
Dash BC, Korutla L, Vallabhajosyula P, Hsia HC. Unlocking the Potential of Induced Pluripotent Stem Cells for Wound Healing: The Next Frontier of Regenerative Medicine. Adv Wound Care (New Rochelle) 2022; 11:622-638. [PMID: 34155919 DOI: 10.1089/wound.2021.0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Significance: Nonhealing wounds are a significant burden for the health care system all over the world. Existing treatment options are not enough to promote healing, highlighting the urgent need for improved therapies. In addition, the current advancements in tissue-engineered skin constructs and stem cell-based therapies are facing significant hurdles due to the absence of a renewable source of functional cells. Recent Advances: Induced pluripotent stem cell technology (iPSC) is emerging as a novel tool to develop the next generation of personalized medicine for the treatment of chronic wounds. The iPSC provides unlimited access to various skin cells to generate complex personalized three-dimensional skin constructs for disease modeling and autologous grafts. Furthermore, the iPSC-based therapies can target distinct wound healing phases and have shown accelerating wound closure by enhancing angiogenesis, cell migration, tissue regeneration, and modulating inflammation. Critical Issues: Since the last decade, iPSC has been revolutionizing the field of wound healing and skin tissue engineering. Despite the current progress, safety and heterogeneity among iPSC lines are still major hurdles in addition to the lack of large animal studies. These challenges need to be addressed before translating an iPSC-based therapy to the clinic. Future Directions: Future considerations should be given to performing large animal studies to check the safety and efficiency of iPSC-based therapy in a wound healing setup. Furthermore, strategies should be developed to overcome variation between hiPSC lines, develop an efficient manufacturing process for iPSC-derived products, and generate complex skin constructs with vasculature and skin appendages.
Collapse
Affiliation(s)
- Biraja C Dash
- Department of Surgery (Plastic), Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Laxminarayana Korutla
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Prashanth Vallabhajosyula
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Henry C Hsia
- Department of Surgery (Plastic), Yale School of Medicine, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Soares MBP, Gonçalves RGJ, Vasques JF, da Silva-Junior AJ, Gubert F, Santos GC, de Santana TA, Almeida Sampaio GL, Silva DN, Dominici M, Mendez-Otero R. Current Status of Mesenchymal Stem/Stromal Cells for Treatment of Neurological Diseases. Front Mol Neurosci 2022; 15:883378. [PMID: 35782379 PMCID: PMC9244712 DOI: 10.3389/fnmol.2022.883378] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Neurological disorders include a wide spectrum of clinical conditions affecting the central and peripheral nervous systems. For these conditions, which affect hundreds of millions of people worldwide, generally limited or no treatments are available, and cell-based therapies have been intensively investigated in preclinical and clinical studies. Among the available cell types, mesenchymal stem/stromal cells (MSCs) have been widely studied but as yet no cell-based treatment exists for neurological disease. We review current knowledge of the therapeutic potential of MSC-based therapies for neurological diseases, as well as possible mechanisms of action that may be explored to hasten the development of new and effective treatments. We also discuss the challenges for culture conditions, quality control, and the development of potency tests, aiming to generate more efficient cell therapy products for neurological disorders.
Collapse
Affiliation(s)
- Milena B. P. Soares
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Renata G. J. Gonçalves
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana F. Vasques
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Almir J. da Silva-Junior
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Gubert
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Girlaine Café Santos
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Thaís Alves de Santana
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | - Gabriela Louise Almeida Sampaio
- Laboratório de Engenharia Tecidual e Imunofarmacologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (IGM-FIOCRUZ/BA), Salvador, Brazil
- Instituto SENAI de Sistemas Avançados de Saúde (CIMATEC ISI-SAS), Centro Universitário SENAI/CIMATEC, Salvador, Brazil
| | | | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, University of Modena and Reggio Emilia (UNIMORE), Modena, Italy
| | - Rosalia Mendez-Otero
- Laboratório de Neurobiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Saúde no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Programa Redes de Pesquisa em Nanotecnologia no Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Yang HY, Fierro F, Yoon DJ, Gallegos A, Osborn SL, Nguyen AV, Peavy TR, Ferrier W, Talken L, Ma BW, Galang KG, Medina Lopez A, Fregoso DR, Stewart H, Kurzrock EA, Soulika AM, Nolta JA, Isseroff RR. Combination product of dermal matrix, preconditioned human mesenchymal stem cells and timolol promotes wound healing in the porcine wound model. J Biomed Mater Res B Appl Biomater 2022; 110:1615-1623. [PMID: 35099112 DOI: 10.1002/jbm.b.35022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/13/2021] [Indexed: 01/13/2023]
Abstract
A combination product of human mesenchymal stem/stromal cells (MSCs) embedded in an extracellular matrix scaffold and preconditioned with hypoxia and the beta-adrenergic receptor antagonist, timolol, combined with sustained timolol application post implantation, has shown promising results for improving wound healing in a diabetic mouse model. In the present study, we extend those findings to the more translatable large animal porcine wound model and show that the combined treatment promotes wound reepithelialization in these excisional wounds by 40.2% and increases the CD31 immunostaining marker of angiogenesis compared with the matrix control, while maintaining an accumulated timolol plasma concentration below the clinically safe level of 0.3 ng/mL after the 15-day course of topical application. Human GAPDH was not elevated in the day 15 wounds treated with MSC-containing device relative to wounds treated with matrix alone, indicating that the xenografted human MSCs in the treatment do not persist in these immune-competent animals after 15 days. The work demonstrates the efficacy and safety of the combined treatment for improving healing in the clinically relevant porcine wound model.
Collapse
Affiliation(s)
- Hsin-Ya Yang
- Department of Dermatology, School of Medicine, University of California Davis Health System, Sacramento, California, USA
| | - Fernando Fierro
- Department of Cell Biology and Human Anatomy, University of California Davis Health System, Sacramento, California, USA.,Stem Cell Program, Department of Internal Medicine, University of California Davis Health System, Sacramento, California, USA
| | - Daniel J Yoon
- Department of Dermatology, School of Medicine, University of California Davis Health System, Sacramento, California, USA
| | - Anthony Gallegos
- Department of Dermatology, School of Medicine, University of California Davis Health System, Sacramento, California, USA
| | - Stephanie L Osborn
- Stem Cell Program, Department of Internal Medicine, University of California Davis Health System, Sacramento, California, USA.,Department of Urologic Surgery, School of Medicine, University of California Davis Health System, Sacramento, California, USA
| | - Alan V Nguyen
- Department of Dermatology, School of Medicine, University of California Davis Health System, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, California, USA
| | - Thomas R Peavy
- Department of Biological Sciences, California State University, Sacramento, Sacramento, California, USA
| | - William Ferrier
- Large Animal Survival Surgery Facility, Stem Cell Program, University of California Davis Health System, Sacramento, California, USA
| | - Linda Talken
- Large Animal Survival Surgery Facility, Stem Cell Program, University of California Davis Health System, Sacramento, California, USA
| | - Betty W Ma
- Campus Veterinary Services Clinic, Office of Research, University of California, Davis, Davis, California, USA
| | - Kristopher G Galang
- Campus Veterinary Services Clinic, Office of Research, University of California, Davis, Davis, California, USA.,Residency Program in Laboratory Animal/Primate Medicine, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Andrea Medina Lopez
- Department of Dermatology, School of Medicine, University of California Davis Health System, Sacramento, California, USA
| | - Daniel R Fregoso
- Department of Dermatology, School of Medicine, University of California Davis Health System, Sacramento, California, USA
| | - Heather Stewart
- Stem Cell Program, Department of Internal Medicine, University of California Davis Health System, Sacramento, California, USA
| | - Eric A Kurzrock
- Stem Cell Program, Department of Internal Medicine, University of California Davis Health System, Sacramento, California, USA.,Department of Urologic Surgery, School of Medicine, University of California Davis Health System, Sacramento, California, USA
| | - Athena M Soulika
- Department of Dermatology, School of Medicine, University of California Davis Health System, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, Sacramento, California, USA
| | - Jan A Nolta
- Stem Cell Program, Department of Internal Medicine, University of California Davis Health System, Sacramento, California, USA
| | - R Rivkah Isseroff
- Department of Dermatology, School of Medicine, University of California Davis Health System, Sacramento, California, USA.,Dermatology Section, VA Northern California Health Care System, Mather, California, USA
| |
Collapse
|
6
|
Tsagkaris C, Moysidis DV, Papazoglou AS, Khan A, Papadakos S, Louka AM, Scordilis DM, Shkodina A, Varmpompiti K, Batiha GES, Alexiou A. Current Trends of Stem Cells in Neurodegenerative Diseases. NUTRITIONAL NEUROSCIENCES 2022:311-339. [DOI: 10.1007/978-981-15-9781-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
|
7
|
Coccè V, Bonomi A, Cavicchini L, Sisto F, Giannì A, Farronato G, Alessandri G, Petrella F, Sordi V, Parati E, Bondiolotti G, Paino F, Pessina A. Paclitaxel Priming of TRAIL Expressing Mesenchymal Stromal Cells (MSCs-TRAIL) Increases Antitumor Efficacy of Their Secretome. Curr Cancer Drug Targets 2020; 21:CCDT-EPUB-111520. [PMID: 33200709 DOI: 10.2174/1568009620666201116112153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 09/07/2020] [Accepted: 09/16/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Adipose tissue derived MSCs engineered with the tumor necrosis factor-related apoptosis-inducing ligand protein (MSCs-TRAIL) have a significant anticancer activity. MSCs, without any genetic modifications, exposed to high doses of chemotherapeutic agents are able to uptake the drug and release it in amount affecting tumor proliferation. The purpose of this study was to verify the ability of MSCs-TRAIL to uptake and release paclitaxel (PTX) by providing an increased antitumor efficacy. METHODS MSCs and MSCs-TRAIL were tested for their sensitivity to Paclitaxel (PTX) by MTT assay and the cells were loaded with PTX according to a standardized procedure. The secretome was analysed by HPLC for the presence of PTX, microarray assay for soluble TRAIL (s-TRAIL) and tested for in vitro anticancer activity. RESULTS MSCs-TRAIL were resistant to PTX and able to incorporate and then release the drug. The secretion of s-TRAIL by PTX loaded MSCs-TRAIL was not inhibited and the PTX delivery together with s-TRAIL secretion resulted into an increased antitumor efficacy of cell secretoma as tested in vitro on human pancreatic carcinoma (CFPAC-1) and glioblastoma (U87-MG). CONCLUSIONS Our result is the first demonstration of the possible merging of two new MSCs therapy approaches based on genetic manipulation and drug delivery. If confirmed in vivo, this could potentiate the efficacy of MSCs-TRAIL and strongly contribute to reduce the toxicity due to the systemic treatment of PTX.
Collapse
Affiliation(s)
- Valentina Coccè
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Arianna Bonomi
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Loredana Cavicchini
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Francesca Sisto
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Aldo Giannì
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Giampietro Farronato
- Department of Biomedical, Surgical and Dental Sciences, Unit of Orthodontics and Paediatric Dentistry, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano. Italy
| | - Giulio Alessandri
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan. Italy
| | - Francesco Petrella
- Department of Oncology and Hematology, University of Milan, Milan. Italy
| | - Valeria Sordi
- San Raffaele Diabetes Research Institute; San Raffaele Scientific Institute, Milan. Italy
| | - Eugenio Parati
- Cellular Neurobiology Laboratory, Department of Cerebrovascular Diseases, IRCCS Neurological Institute C. Besta, Milan. Italy
| | - Gianpietro Bondiolotti
- Department of Medical Biotechnology and Translational Medicine, University of Milan. Italy
| | - Francesca Paino
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| | - Augusto Pessina
- CRC StaMeTec, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan. Italy
| |
Collapse
|
8
|
IGF-1-Overexpressing Mesenchymal Stem/Stromal Cells Promote Immunomodulatory and Proregenerative Effects in Chronic Experimental Chagas Disease. Stem Cells Int 2018; 2018:9108681. [PMID: 30140292 PMCID: PMC6081563 DOI: 10.1155/2018/9108681] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been investigated for the treatment of diseases that affect the cardiovascular system, including Chagas disease. MSCs are able to promote their beneficial actions through the secretion of proregenerative and immunomodulatory factors, including insulin-like growth factor-1 (IGF-1), which has proregenerative actions in the heart and skeletal muscle. Here, we evaluated the therapeutic potential of IGF-1-overexpressing MSCs (MSC_IGF-1) in a mouse model of chronic Chagas disease. C57BL/6 mice were infected with Colombian strain Trypanosoma cruzi and treated with MSCs, MSC_IGF-1, or vehicle (saline) six months after infection. RT-qPCR analysis confirmed the presence of transplanted cells in both the heart and skeletal muscle tissues. Transplantation of either MSCs or MSC_IGF-1 reduced the number of inflammatory cells in the heart when compared to saline controls. Moreover, treatment with MSCs or MSC_IGF-1 significantly reduced TNF-α, but only MSC treatment reduced IFN-γ production compared to the saline group. Skeletal muscle sections of both MSC- and MSC_IGF-1-treated mice showed a reduction in fibrosis compared to saline controls. Importantly, the myofiber area was reduced in T. cruzi-infected mice, and this was recovered after treatment with MSC_IGF-1. Gene expression analysis in the skeletal muscle showed a higher expression of pro- and anti-inflammatory molecules in MSC_IGF-1-treated mice compared to MSCs alone, which significantly reduced the expression of TNF-α and IL-1β. In conclusion, our results indicate the therapeutic potential of MSC_IGF-1, with combined immunomodulatory and proregenerative actions to the cardiac and skeletal muscles.
Collapse
|
9
|
Silva DN, Souza BSF, Vasconcelos JF, Azevedo CM, Valim CXR, Paredes BD, Rocha VPC, Carvalho GB, Daltro PS, Macambira SG, Nonaka CKV, Ribeiro-Dos-Santos R, Soares MBP. Granulocyte-Colony Stimulating Factor-Overexpressing Mesenchymal Stem Cells Exhibit Enhanced Immunomodulatory Actions Through the Recruitment of Suppressor Cells in Experimental Chagas Disease Cardiomyopathy. Front Immunol 2018; 9:1449. [PMID: 30013550 PMCID: PMC6036245 DOI: 10.3389/fimmu.2018.01449] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/11/2018] [Indexed: 12/29/2022] Open
Abstract
Genetic modification of mesenchymal stem cells (MSCs) is a promising strategy to improve their therapeutic effects. Granulocyte-colony stimulating factor (G-CSF) is a growth factor widely used in the clinical practice with known regenerative and immunomodulatory actions, including the mobilization of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). Here we evaluated the therapeutic potential of MSCs overexpressing G-CSF (MSC_G-CSF) in a model of inflammatory cardiomyopathy due to chronic Chagas disease. C57BL/6 mice were treated with wild-type MSCs, MSC_G-CSF, or vehicle (saline) 6 months after infection with Trypanosoma cruzi. Transplantation of MSC_G-CSF caused an increase in the number of circulating leukocytes compared to wild-type MSCs. Moreover, G-CSF overexpression caused an increase in migration capacity of MSCs to the hearts of infected mice. Transplantation of either MSCs or MSC_G-CSF improved exercise capacity, when compared to saline-treated chagasic mice. MSC_G-CSF mice, however, were more potent than MSCs in reducing the number of infiltrating leukocytes and fibrosis in the heart. Similarly, MSC_G-CSF-treated mice presented significantly lower levels of inflammatory mediators, such as IFNγ, TNFα, and Tbet, with increased IL-10 production. A marked increase in the percentage of Tregs and MDSCs in the hearts of infected mice was seen after administration of MSC_G-CSF, but not MSCs. Moreover, Tregs were positive for IL-10 in the hearts of T. cruzi-infected mice. In vitro analysis showed that recombinant hG-CSF and conditioned medium of MSC_G-CSF, but not wild-type MSCs, induce chemoattraction of MDSCs in a transwell assay. Finally, MDSCs purified from hearts of MSC_G-CSF transplanted mice inhibited the proliferation of activated splenocytes in a co-culture assay. Our results demonstrate that G-CSF overexpression by MSCs potentiates their immunomodulatory effects in our model of Chagas disease and suggest that mobilization of suppressor cell populations such as Tregs and MDSCs as a promising strategy for the treatment of chronic Chagas disease. Finally, our results reinforce the therapeutic potential of genetic modification of MSCs, aiming at increasing their paracrine actions.
Collapse
Affiliation(s)
- Daniela N Silva
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Bruno S F Souza
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Juliana F Vasconcelos
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Carine M Azevedo
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Clarissa X R Valim
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil
| | - Bruno D Paredes
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Vinicius P C Rocha
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Gisele B Carvalho
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil
| | - Pamela S Daltro
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil
| | - Simone G Macambira
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,Federal University of Bahia (UFBA), Salvador, Brazil
| | - Carolina K V Nonaka
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil
| | - Ricardo Ribeiro-Dos-Santos
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Milena B P Soares
- Center for Biotechnology and Cell Therapy, Hospital São Rafael, Salvador, Brazil.,Gonçalo Moniz Institute, FIOCRUZ, Salvador, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Corey S, Ghanekar S, Sokol J, Zhang JH, Borlongan CV. An update on stem cell therapy for neurological disorders: cell death pathways as therapeutic targets. Chin Neurosurg J 2017. [DOI: 10.1186/s41016-016-0071-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
11
|
Crivelli B, Chlapanidas T, Perteghella S, Lucarelli E, Pascucci L, Brini AT, Ferrero I, Marazzi M, Pessina A, Torre ML. Mesenchymal stem/stromal cell extracellular vesicles: From active principle to next generation drug delivery system. J Control Release 2017; 262:104-117. [PMID: 28736264 DOI: 10.1016/j.jconrel.2017.07.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/12/2017] [Accepted: 07/15/2017] [Indexed: 02/06/2023]
Abstract
It has been demonstrated that the biological effector of mesenchymal stem/stromal cells (MSCs) is their secretome, which is composed of a heterogeneous pool of bioactive molecules, partially enclosed in extracellular vesicles (EVs). Therefore, the MSC secretome (including EVs) has been recently proposed as possible alternative to MSC therapy. The secretome can be considered as a protein-based biotechnological product, it is probably safer compared with living/cycling cells, it presents virtually lower tumorigenic risk, and it can be handled, stored and sterilized as an Active Pharmaceutical/Principle Ingredient (API). EVs retain some structural and technological analogies with synthetic drug delivery systems (DDS), even if their potential clinical application is also limited by the absence of reproducible/scalable isolation methods and Good Manufacturing Practice (GMP)-compliant procedures. Notably, EVs secreted by MSCs preserve some of their parental cell features such as homing, immunomodulatory and regenerative potential. This review focuses on MSCs and their EVs as APIs, as well as DDS, considering their ability to reach inflamed and damaged tissues and to prolong the release of encapsulated drugs. Special attention is devoted to the illustration of innovative therapeutic approaches in which nanomedicine is successfully combined with stem cell therapy, thus creating a novel class of "next generation drug delivery systems."
Collapse
Affiliation(s)
- Barbara Crivelli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Theodora Chlapanidas
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | - Enrico Lucarelli
- Osteoarticular Regeneration Laboratory, 3rd Orthopaedic and Traumatologic Clinic, Rizzoli Orthopedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Luisa Pascucci
- Veterinary Medicine Department, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy.
| | - Anna Teresa Brini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20100 Milan, Italy; I.R.C.C.S. Galeazzi Orthopedic Institute, Via Riccardo Galeazzi 4, 20161 Milan, Italy.
| | - Ivana Ferrero
- Paediatric Onco-Haematology, Stem Cell Transplantation and Cellular Therapy Division, City of Science and Health of Turin, Regina Margherita Children's Hospital, Piazza Polonia 94, 10126 Turin, Italy; Department of Public Health and Paediatrics, University of Turin, Piazza Polonia 94, 10126 Turin, Italy.
| | - Mario Marazzi
- Tissue Therapy Unit, ASST Niguarda Hospital, Piazza Ospedale Maggiore 3, 20162 Milan, Italy.
| | - Augusto Pessina
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20100 Milan, Italy.
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy.
| | | |
Collapse
|