1
|
Riley BC, Stansbury LG, Hasan RA, Hess JR. Transfusion of red blood cells ≥35 days old: A narrative review of clinical outcomes. Transfusion 2023; 63:2179-2187. [PMID: 37681276 DOI: 10.1111/trf.17536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Affiliation(s)
- Brian C Riley
- University of Washington School of Medicine, Seattle, Washington, USA
- Harborview Injury Prevention & Research Center, University of Washington, Seattle, Washington, USA
| | - Lynn G Stansbury
- Harborview Injury Prevention & Research Center, University of Washington, Seattle, Washington, USA
- Department of Anesthesia and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Rida A Hasan
- Harborview Injury Prevention & Research Center, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - John R Hess
- Harborview Injury Prevention & Research Center, University of Washington, Seattle, Washington, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
2
|
Baek JH, Shin HKH, Gao Y, Buehler PW. Ferroportin inhibition attenuates plasma iron, oxidant stress, and renal injury following red blood cell transfusion in guinea pigs. Transfusion 2020; 60:513-523. [PMID: 32064619 DOI: 10.1111/trf.15720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/03/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Red blood cell (RBC) transfusions result in the sequestration and metabolism of storage-damaged RBCs within the spleen and liver. These events are followed by increased plasma iron concentrations that can contribute to oxidant stress and cellular injury. We hypothesized that administration of a ferroportin inhibitor (FPN-INH) immediately after acute RBC exchange transfusion could attenuate posttransfusion circulatory compartment iron exposure, by retaining iron in spleen and hepatic macrophages. STUDY DESIGN AND METHODS Donor guinea pig blood was leukoreduced, and RBCs were preserved at 4°C. Recipient guinea pigs (n = 5/group) were exchange transfused with donor RBCs after refrigerator preservation and dosed intravenously with a small-molecule FPN-INH. Groups included transfusion with vehicle (saline), 5 mg/kg or 25 mg/kg FPN-INH. A time course of RBC morphology, plasma non-transferrin-bound iron (NTBI) and plasma hemoglobin (Hb) were evaluated. End-study spleen, liver, and kidney organ iron levels, as well as renal tissue oxidation and injury, were measured acutely (24-hr after transfusion). RESULTS RBC transfusion increased plasma NTBI, with maximal concentrations occurring 8 hours after transfusion. Posttransfusion iron accumulation resulted in tubule oxidation and acute kidney injury. FPN inhibition increased spleen and liver parenchymal/macrophage iron accumulation, but attenuated plasma NTBI, and subsequent renal tissue oxidation/injury. CONCLUSION In situations of acute RBC transfusion, minimizing circulatory NTBI exposure by FPN inhibition may attenuate organ-specific adverse consequences of iron exposure.
Collapse
Affiliation(s)
- Jin Hyen Baek
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center of Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA
| | - Hye Kyung H Shin
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center of Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA
| | - Yamei Gao
- Division of Viral Products, Center of Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA
| | - Paul W Buehler
- Department of Pathology, Center for Blood Oxygen Transport, Baltimore, Maryland, USA.,Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
van Beers EJ, van Wijk R. Oxidative stress in sickle cell disease; more than a DAMP squib. Clin Hemorheol Microcirc 2018; 68:239-250. [PMID: 29614635 DOI: 10.3233/ch-189010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sickle cell disease (SCD) is a monogenetic disorder marked by hemolytic anemia and vaso-occlusive complications. The hallmark of SCD is the intracellular polymerization of sickle hemoglobin (HbS) after deoxygenation, and the subsequent characteristic shape change (sickling) of red cells. Vaso-occlusion occurs after endothelial activation, expression of adhesion molecules and subsequent adhesion of leucocytes and sickle erythrocytes to the vascular wall. Here we review how oxidative stress from various sources influences this process. Emerging evidence points towards a dominant mechanism in which innate immune receptors, such as Toll like receptor 4, activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidases to produce reactive oxygen species (ROS) which in turn enables downstream pro-inflammatory signaling and subsequent endothelial activation. By serving as an iron donor for the Fenton reaction, heme radically increases the amount of ROS further, thereby increasing the signal originating from the innate immune receptor and downstream effects of innate immune receptor activation. In SCD this results in the production of pro-inflammatory cytokines, endothelial activation and leucocyte adhesion, and eventually vaso-occlusion. Any intervention to stop this cascade, including Toll like receptor blockade, NADPH oxidase inhibition, ROS reduction, heme scavenging, iron chelation, or anti-adhesion molecule antibodies has been successfully used in pre-clinical studies and holds promise for patients with SCD.
Collapse
Affiliation(s)
- Eduard J van Beers
- Van Creveldkliniek, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Richard van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
4
|
Heddle NM. From cytokines to pragmatic designs: changing paradigms. Transfusion 2017; 57:2298-2306. [PMID: 28871619 DOI: 10.1111/trf.14309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 11/29/2022]
Abstract
Emily Cooley was a well-respected medical technologist and morphologist with a remarkable skill set. She was highly regarded both professionally and personally. The "Emily Cooley Lectureship and Award" was established to honor her in particular and medical technologists in general. This article first reviews how a medical laboratory technologist was inspired to become a clinical researcher, then goes on to describe research that led to the discovery of cytokines as the cause of febrile nonhemolytic transfusion and the use of a pragmatic randomized controlled trial design to address evidence of harm when stored red blood cells were transfused. Important lessons for performing quality, meaningful research are highlighted.
Collapse
Affiliation(s)
- Nancy M Heddle
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
5
|
Ning S, Heddle NM, Acker JP. Exploring donor and product factors and their impact on red cell post-transfusion outcomes. Transfus Med Rev 2017; 32:28-35. [PMID: 28988603 DOI: 10.1016/j.tmrv.2017.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/06/2017] [Accepted: 07/24/2017] [Indexed: 01/28/2023]
Abstract
The impact of donor characteristics, red cell age, and red cell processing methods on recipient outcomes is an emerging area of research. Knowledge generated from exploring this transfusion continuum has the potential to change the way donors are selected and how donations are processed and stored with important clinical and operational impact. Recently, donor characteristics including age, gender, donation frequency, genetics, and ethnicity have been shown to affect product quality and possibly recipient outcomes. The structural, biochemical and immunological changes that occur with red cell storage appear to not cause harm to blood recipients after 14 randomized clinical trials. However, both in vitro and clinical data are now beginning to question the safety of blood stored for a shorter duration. Whole blood filtration, a method of blood processing, has been linked to inferior recipient outcomes when compared to red cell filtration. Collectively, this emerging body of literature suggests that pre-transfusion parameters impact product quality and recipient outcomes and that no 2 units of red cells are quite the same. This review will summarize both the pre-clinical and clinical studies evaluating these associations.
Collapse
Affiliation(s)
- Shuoyan Ning
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Nancy M Heddle
- Department of Medicine, McMaster University, Hamilton, ON, Canada; Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.
| | - Jason P Acker
- Centre for Innovation, Product and Process Development, Canadian Blood Services, Edmonton, AB, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Francis RO, Hod EA. The questions surrounding stored blood do not get old. Transfusion 2017; 57:1328-1331. [PMID: 28594139 DOI: 10.1111/trf.14129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 03/20/2017] [Indexed: 02/02/2023]
Affiliation(s)
- Richard O Francis
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital, New York, NY
| |
Collapse
|
7
|
García-Roa M, del Carmen Vicente-Ayuso M, Bobes AM, Pedraza AC, González-Fernández A, Martín MP, Sáez I, Seghatchian J, Gutiérrez L. Red blood cell storage time and transfusion: current practice, concerns and future perspectives. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:222-231. [PMID: 28518049 PMCID: PMC5448828 DOI: 10.2450/2017.0345-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/24/2016] [Indexed: 12/25/2022]
Abstract
Red blood cells (RBCs) units are the most requested transfusion product worldwide. Indications for transfusion include symptomatic anaemia, acute sickle cell crisis, and acute blood loss of more than 30% of the blood volume, with the aim of restoring tissue oxygen delivery. However, stored RBCs from donors are not a qualitative equal product, and, in many ways, this is a matter of concern in the transfusion practice. Besides donor-to-donor variation, the storage time influences the RBC unit at the qualitative level, as RBCs age in the storage bag and are exposed to the so-called storage lesion. Several studies have shown that the storage lesion leads to post-transfusion enhanced clearance, plasma transferrin saturation, nitric oxide scavenging and/or immunomodulation with potential unwanted transfusion-related clinical outcomes, such as acute lung injury or higher mortality rate. While, to date, several studies have claimed the risk or deleterious effects of "old" vs "young" RBC transfusion regimes, it is still a matter of debate, and consideration should be taken of the clinical context. Transfusion-dependent patients may benefit from transfusion with "young" RBC units, as it assures longer inter-transfusion periods, while transfusion with "old" RBC units is not itself harmful. Unbiased Omics approaches are being applied to the characterisation of RBC through storage, to better understand the (patho)physiological role of microparticles (MPs) that are found naturally, and also on stored RBC units. Perhaps RBC storage time is not an accurate surrogate for RBC quality and there is a need to establish which parameters do indeed reflect optimal efficacy and safety. A better Omics characterisation of components of "young" and "old" RBC units, including MPs, donor and recipient, might lead to the development of new therapies, including the use of engineered RBCs or MPs as cell-based drug delivering tools, or cost-effective personalised transfusion strategies.
Collapse
Affiliation(s)
- María García-Roa
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| | - María del Carmen Vicente-Ayuso
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| | - Alejandro M. Bobes
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| | - Alexandra C. Pedraza
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| | - Ataúlfo González-Fernández
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| | - María Paz Martín
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| | - Isabel Sáez
- ”Servicio de Hematología y Hemoterapia”, “Hospital Clínico San Carlos”, Madrid, Spain
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/Safety Improvement and DDR Strategy, London, United Kingdom
| | - Laura Gutiérrez
- Department of Hematology, “Instituto de Investigación Sanitaria San Carlos” (IdISSC), “Hospital Clínico San Carlos”, Madrid, Spain
| |
Collapse
|
8
|
Duration of red blood cell storage and inflammatory marker generation. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2017; 15:145-152. [PMID: 28263172 DOI: 10.2450/2017.0343-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/16/2016] [Indexed: 02/08/2023]
Abstract
Red blood cell (RBC) transfusion is a life-saving treatment for several pathologies. RBCs for transfusion are stored refrigerated in a preservative solution, which extends their shelf-life for up to 42 days. During storage, the RBCs endure abundant physicochemical changes, named RBC storage lesions, which affect the overall quality standard, the functional integrity and in vivo survival of the transfused RBCs. Some of the changes occurring in the early stages of the storage period (for approximately two weeks) are reversible but become irreversible later on as the storage is extended. In this review, we aim to decipher the duration of RBC storage and inflammatory marker generation. This phenomenon is included as one of the causes of transfusion-related immunomodulation (TRIM), an emerging concept developed to potentially elucidate numerous clinical observations that suggest that RBC transfusion is associated with increased inflammatory events or effects with clinical consequence.
Collapse
|
9
|
D'Alessandro A, Seghatchian J. Hitchhiker's guide to the red cell storage galaxy: Omics technologies and the quality issue. Transfus Apher Sci 2017; 56:248-253. [PMID: 28343934 DOI: 10.1016/j.transci.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Red blood cell storage in the blood bank makes millions of units of available for transfusion to civilian and military recipients every year. From glass bottles to plastic bags, from anticoagulants to complex additives, from whole blood to leukocyte filtered packed red blood cells: huge strides have been made in the field of blood component processing and storage in the blood bank during the last century. Still, refrigerated preservation of packed red blood cells under blood bank conditions results in the progressive accumulation of a wide series of biochemical and morphological changes to the stored erythrocytes, collectively referred to as the storage lesion(s). Approximately ten years ago, retrospective clinical evidence had suggested that such lesion(s) may be clinically relevant and mediate some of the untoward transfusion-related effects observed especially in some categories of recipients at risk (e.g. massively or chronically transfused recipients). Since then, randomized clinical trials have failed to prospectively detect any signal related to red cell storage duration and increased morbidity and mortality in several categories of recipients, at the limits of the statistical power of these studies. While a good part of the transfusion community has immediately adopted the take-home message "if it isn't broken, don't fix it" (i.e. no change to the standard of practice should be pursued), decision makers have been further questioning whether there may be room for further improvements in this field. Provocatively, we argue that consensus has yet to be unanimously reached on what makes a good quality marker of the red cell storage lesion and transfusion safety/efficacy. In other words, if it is true that "you can't manage what you can't measure", then future advancements in the field of transfusion medicine will necessarily rely on state of the art analytical omics technologies of well-defined quality parameters. Heavily borrowing from Douglas Adam's imaginary repertoire from the world famous "Hitchhiker's guide to the galaxy", we briefly summarize how some of the principles for intergalactic hitchhikers may indeed apply to inform navigation through the complex universe of red cell storage quality, safety and efficacy.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| | - Jerard Seghatchian
- International Consultancy in Blood Component Quality/Safety Improvement, Audit/Inspection and DDR Strategies, London, UK.
| |
Collapse
|