1
|
Arnoni CP, Araújo CSR, Machado BA, Pasqualotti A, Silva NM, Cortez A, Latini FRM, Castilho L. Novel molecular mechanism underlying the In(Lu) phenotype in Brazilians. Transfusion 2025; 65:E10-E12. [PMID: 39994991 DOI: 10.1111/trf.18169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/20/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025]
Affiliation(s)
- C P Arnoni
- Colsan - Associação Beneficente de Coleta de Sangue, São Paulo, São Paulo, Brazil
| | - C S R Araújo
- Serviço de Hemoterapia do Hospital São Vicente de Paulo, Passo Fundo, Rio Grande do Sul, Brazil
- Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - B A Machado
- Serviço de Hemoterapia do Hospital São Vicente de Paulo, Passo Fundo, Rio Grande do Sul, Brazil
| | - A Pasqualotti
- Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - N M Silva
- Colsan - Associação Beneficente de Coleta de Sangue, São Paulo, São Paulo, Brazil
| | - A Cortez
- Colsan - Associação Beneficente de Coleta de Sangue, São Paulo, São Paulo, Brazil
| | - F R M Latini
- Colsan - Associação Beneficente de Coleta de Sangue, São Paulo, São Paulo, Brazil
| | - L Castilho
- Hemocentro - Unicamp, Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Wu PC, McGowan EC, Lee YQ, Ghosh S, Hansson J, Olsson ML. Epigenetic dissection of human blood group genes reveals regulatory elements and detailed characteristics of KEL and four other loci. Transfusion 2024; 64:1083-1096. [PMID: 38644556 DOI: 10.1111/trf.17840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND Blood typing is essential for safe transfusions and is performed serologically or genetically. Genotyping predominantly focuses on coding regions, but non-coding variants may affect gene regulation, as demonstrated in the ABO, FY and XG systems. To uncover regulatory loci, we expanded a recently developed bioinformatics pipeline for discovery of non-coding variants by including additional epigenetic datasets. METHODS Multiple datasets including ChIP-seq with erythroid transcription factors (TFs), histone modifications (H3K27ac, H3K4me1), and chromatin accessibility (ATAC-seq) were analyzed. Candidate regulatory regions were investigated for activity (luciferase assays) and TF binding (electrophoretic mobility shift assay, EMSA, and mass spectrometry, MS). RESULTS In total, 814 potential regulatory sites in 47 blood-group-related genes were identified where one or more erythroid TFs bound. Enhancer candidates in CR1, EMP3, ABCB6, and ABCC4 indicated by ATAC-seq, histone markers, and co-occupancy of 4 TFs (GATA1/KLF1/RUNX1/NFE2) were investigated but only CR1 and ABCC4 showed increased transcription. Co-occupancy of GATA1 and KLF1 was observed in the KEL promoter, previously reported to contain GATA1 and Sp1 sites. TF binding energy scores decreased when three naturally occurring variants were introduced into GATA1 and KLF1 motifs. Two of three GATA1 sites and the KLF1 site were confirmed functionally. EMSA and MS demonstrated increased GATA1 and KLF1 binding to the wild-type compared to variant motifs. DISCUSSION This combined bioinformatics and experimental approach revealed multiple candidate regulatory regions and predicted TF co-occupancy sites. The KEL promoter was characterized in detail, indicating that two adjacent GATA1 and KLF1 motifs are most crucial for transcription.
Collapse
Affiliation(s)
- Ping Chun Wu
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine and the Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Eunike C McGowan
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine and the Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Yan Quan Lee
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine and the Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sudip Ghosh
- Department of Experimental Medical Science and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Jenny Hansson
- Department of Experimental Medical Science and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Martin L Olsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine and the Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Region Skåne, Sweden
| |
Collapse
|
3
|
Bieker JJ, Philipsen S. Erythroid Krüppel-Like Factor (KLF1): A Surprisingly Versatile Regulator of Erythroid Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:217-242. [PMID: 39017846 PMCID: PMC12121306 DOI: 10.1007/978-3-031-62731-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Erythroid Krüppel-like factor (KLF1), first discovered in 1992, is an erythroid-restricted transcription factor (TF) that is essential for terminal differentiation of erythroid progenitors. At face value, KLF1 is a rather inconspicuous member of the 26-strong SP/KLF TF family. However, 30 years of research have revealed that KLF1 is a jack of all trades in the molecular control of erythropoiesis. Initially described as a one-trick pony required for high-level transcription of the adult HBB gene, we now know that it orchestrates the entire erythroid differentiation program. It does so not only as an activator but also as a repressor. In addition, KLF1 was the first TF shown to be directly involved in enhancer/promoter loop formation. KLF1 variants underlie a wide range of erythroid phenotypes in the human population, varying from very mild conditions such as hereditary persistence of fetal hemoglobin and the In(Lu) blood type in the case of haploinsufficiency, to much more serious non-spherocytic hemolytic anemias in the case of compound heterozygosity, to dominant congenital dyserythropoietic anemia type IV invariably caused by a de novo variant in a highly conserved amino acid in the KLF1 DNA-binding domain. In this chapter, we present an overview of the past and present of KLF1 research and discuss the significance of human KLF1 variants.
Collapse
Affiliation(s)
- James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Krüppel-Like Factor 1: A Pivotal Gene Regulator in Erythropoiesis. Cells 2022; 11:cells11193069. [PMID: 36231031 PMCID: PMC9561966 DOI: 10.3390/cells11193069] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Krüppel-like factor 1 (KLF1) plays a crucial role in erythropoiesis. In-depth studies conducted on mice and humans have highlighted its importance in erythroid lineage commitment, terminal erythropoiesis progression and the switching of globin genes from γ to β. The role of KLF1 in haemoglobin switching is exerted by the direct activation of β-globin gene and by the silencing of γ-globin through activation of BCL11A, an important γ-globin gene repressor. The link between KLF1 and γ-globin silencing identifies this transcription factor as a possible therapeutic target for β-hemoglobinopathies. Moreover, several mutations have been identified in the human genes that are responsible for various benign phenotypes and erythroid disorders. The study of the phenotype associated with each mutation has greatly contributed to the current understanding of the complex role of KLF1 in erythropoiesis. This review will focus on some of the principal functions of KLF1 on erythroid cell commitment and differentiation, spanning from primitive to definitive erythropoiesis. The fundamental role of KLF1 in haemoglobin switching will be also highlighted. Finally, an overview of the principal human mutations and relative phenotypes and disorders will be described.
Collapse
|
5
|
Eernstman J, Veldhuisen B, Ligthart P, von Lindern M, van der Schoot CE, van den Akker E. Novel variants in Krueppel like factor 1 that cause persistence of fetal hemoglobin in In(Lu) individuals. Sci Rep 2021; 11:18557. [PMID: 34535703 PMCID: PMC8448862 DOI: 10.1038/s41598-021-97149-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/09/2021] [Indexed: 11/09/2022] Open
Abstract
Beta-hemoglobinopathies become prominent after birth due to a switch from γ-globin to the mutated β-globin. Haploinsufficiency for the erythroid specific indispensable transcription factor Krueppel-like factor 1 (KLF1) is associated with high persistence of fetal hemoglobin (HPFH). The In(Lu) phenotype, characterized by low to undetectable Lutheran blood group expression is caused by mutations within KLF1 gene. Here we screened a blood donor cohort of 55 Lutheran weak or negative donors for KLF1 variants and evaluated their effect on KLF1 target gene expression. To discriminate between weak and negative Lutheran expression, a flow cytometry (FCM) assay was developed to detect Lu antigen expression. The Lu(a-b-) (negative) donor group, showing a significant decreased CD44 (Indian blood group) expression, also showed increased HbF and HbA2 levels, with one individual expressing HbF as high as 5%. KLF1 exons and promoter sequencing revealed variants in 80% of the Lutheran negative donors. Thirteen different variants plus one high frequency SNP (c.304 T > C) were identified of which 6 were novel. In primary erythroblasts, knockdown of endogenous KLF1 resulted in decreased CD44, Lu and increased HbF expression, while KLF1 over-expressing cells were comparable to wild type (WT). In line with the pleiotropic effects of KLF1 during erythropoiesis, distinct KLF1 mutants expressed in erythroblasts display different abilities to rescue CD44 and Lu expression and/or to affect fetal (HbF) or adult (HbA) hemoglobin expression. With this study we identified novel KLF1 variants to be include into blood group typing analysis. In addition, we provide further insights into the regulation of genes by KLF1.
Collapse
Affiliation(s)
- Jesse Eernstman
- Sanquin Research, Department of Hematopoiesis, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Sanquin Research, department of Immunohematology Experimental, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Barbera Veldhuisen
- Sanquin Research, department of Immunohematology Experimental, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Immunohematology Experimental, Sanquin Research, Amsterdam, The Netherlands
| | - Peter Ligthart
- Sanquin Research, department of Immunohematology Experimental, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Immunohematology Experimental, Sanquin Research, Amsterdam, The Netherlands
| | - Marieke von Lindern
- Sanquin Research, Department of Hematopoiesis, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Sanquin Research, department of Immunohematology Experimental, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - C Ellen van der Schoot
- Sanquin Research, department of Immunohematology Experimental, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Immunohematology Experimental, Sanquin Research, Amsterdam, The Netherlands
| | - Emile van den Akker
- Sanquin Research, Department of Hematopoiesis, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. .,Sanquin Research, department of Immunohematology Experimental, Amsterdam, The Netherlands, and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Barbarani G, Fugazza C, Strouboulis J, Ronchi AE. The Pleiotropic Effects of GATA1 and KLF1 in Physiological Erythropoiesis and in Dyserythropoietic Disorders. Front Physiol 2019; 10:91. [PMID: 30809156 PMCID: PMC6379452 DOI: 10.3389/fphys.2019.00091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/25/2019] [Indexed: 01/19/2023] Open
Abstract
In the last few years, the advent of new technological approaches has led to a better knowledge of the ontogeny of erythropoiesis during development and of the journey leading from hematopoietic stem cells (HSCs) to mature red blood cells (RBCs). Our view of a well-defined hierarchical model of hematopoiesis with a near-homogeneous HSC population residing at the apex has been progressively challenged in favor of a landscape where HSCs themselves are highly heterogeneous and lineages separate earlier than previously thought. The coordination of these events is orchestrated by transcription factors (TFs) that work in a combinatorial manner to activate and/or repress their target genes. The development of next generation sequencing (NGS) has facilitated the identification of pathological mutations involving TFs underlying hematological defects. The examples of GATA1 and KLF1 presented in this review suggest that in the next few years the number of TF mutations associated with dyserythropoietic disorders will further increase.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - Cristina Fugazza
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - John Strouboulis
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Antonella E Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| |
Collapse
|