1
|
Phelp PG, van Wonderen SF, Vlaar APJ, Kapur R, Klanderman RB. Developments in Transfusion Medicine: Pulmonary Transfusion Reactions and Novel Blood Cell Labeling Techniques. Anesth Analg 2024:00000539-990000000-00947. [PMID: 39270303 DOI: 10.1213/ane.0000000000007136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Staying updated on advancements in transfusion medicine is crucial, especially in critical care and perioperative setting, where timely and accurate transfusions can be lifesaving therapeutic interventions. This narrative review explores the landscape of transfusion-related adverse events, focusing on pulmonary transfusion reactions such as transfusion-associated circulatory overload (TACO) and transfusion-related acute lung injury (TRALI). TACO and TRALI are the leading causes of transfusion-related morbidity and mortality; however, specific treatments are lacking. Understanding the current incidence, diagnostic criteria, pathogenesis, treatment, and prevention strategies can equip clinicians to help reduce the incidence of these life-threatening complications. The review discusses emerging pathogenic mechanisms, including the possible role of inflammation in TACO and the mechanisms of reverse TRALI and therapeutic targets for TACO and TRALI, emphasizing the need for further research to uncover preventive and treatment modalities. Despite advancements, significant gaps remain in our understanding of what occurs during transfusions, highlighting the necessity for improved monitoring methods. To address this, the review also presents novel blood cell labeling techniques in transfusion medicine used for improving monitoring, quality assessment, and as a consequence, potentially reducing transfusion-related complications. This article aims to provide an update for anesthesiologists, critical care specialists, and transfusion medicine professionals regarding recent advancements and developments in the field of transfusion medicine.
Collapse
Affiliation(s)
- Philippa G Phelp
- From the Department of Laboratory of Experimental Intensive Care and Anesthesiology
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Stefan F van Wonderen
- From the Department of Laboratory of Experimental Intensive Care and Anesthesiology
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Alexander P J Vlaar
- From the Department of Laboratory of Experimental Intensive Care and Anesthesiology
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Rick Kapur
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Robert B Klanderman
- From the Department of Laboratory of Experimental Intensive Care and Anesthesiology
- Department of Anesthesiology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Huang JN, Amini SM, Fadumiye C. Transfusion-Associated Circulatory Overload in a Healthy Patient Following a Road Traffic Accident: A Case Report. Int Med Case Rep J 2024; 17:671-675. [PMID: 39005954 PMCID: PMC11244067 DOI: 10.2147/imcrj.s472055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
Transfusion-associated circulatory overload (TACO) is a potentially fatal blood transfusion complication that often presents itself within 12 hours of transfusion cessation. We present a case of TACO in an orthopedic surgery patient to highlight the importance of anticipating and managing complications of blood loss and transfusion in an otherwise healthy patient.
Collapse
Affiliation(s)
- Justine N Huang
- Department of Anesthesiology, Medical College of Wisconsin Affiliated Hospitals, Milwaukee, WI, USA
| | - Sara Mariam Amini
- Department of Anesthesiology, Medical College of Wisconsin Affiliated Hospitals, Milwaukee, WI, USA
| | - Christopher Fadumiye
- Department of Anesthesiology, Medical College of Wisconsin Affiliated Hospitals, Milwaukee, WI, USA
| |
Collapse
|
3
|
Smith CM. CE: Recognizing Transfusion-Associated Circulatory Overload. Am J Nurs 2023; 123:34-41. [PMID: 37882401 DOI: 10.1097/01.naj.0000995356.33506.f5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
ABSTRACT Transfusion-associated circulatory overload (TACO) is the leading cause of transfusion-related deaths in the United States, accounting for more than 30% of fatalities reported to the Food and Drug Administration between 2016 and 2020. However, TACO is widely considered to be an underdiagnosed and underreported complication of blood transfusions, and its exact incidence is unknown. One of the reasons for this is a lack of recognition of TACO and its signs and symptoms, especially as the definition of TACO has been updated twice since 2018 without full dissemination to nurses, who are responsible for bedside care of patients during and following blood transfusions. This article seeks to bridge this gap by discussing the updated definitions and signs and symptoms of TACO, as well as the management of this treatable blood transfusion reaction.
Collapse
Affiliation(s)
- Christy M Smith
- Christy M. Smith is chief nursing executive at Versafusion Medical, a mobile infusion service, in Johnson City, TN. Contact author: . The author and planners have disclosed no potential conflicts of interest, financial or otherwise
| |
Collapse
|
4
|
Bulle EB, Blanken B, Klanderman RB, van Manen L, Juffermans NP, Vlaar APJ. Exploring NT-proBNP, syndecan-1, and cytokines as biomarkers for transfusion-associated circulatory overload in a critically ill patient population receiving a single-unit red blood cell transfusion. Transfusion 2023; 63:2052-2060. [PMID: 37797228 DOI: 10.1111/trf.17561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND Transfusion-associated circulatory overload (TACO) is an often underdiagnosed pulmonary transfusion complication. A biomarker could aid with the diagnosis. To date, B-type natriuretic peptide (BNP) and N-terminal prohormone B-type natriuretic peptide (NT-proBNP) seem the most promising biomarkers in the general hospital population. The aim was to evaluate NT-proBNP as a biomarker for TACO in a critically ill patient population and explore syndecan-1 and cytokines as other potential biomarkers. STUDY DESIGN AND METHODS A retrospective study was performed using samples and clinical data collected during a prospective observational study. Adult patients admitted to the intensive care and transfused with a single red blood cell unit were included. TACO cases were retrospectively identified using a case definition based on the current TACO definition. The primary biomarker was NT-proBNP, also we measured syndecan-1 IL-6, IL-8, and IL-10. All markers were measured directly before transfusion, 1 and 24 h after transfusion. RESULTS Our cohort included 64 patients, 12 of which were identified as TACO patients. TACO patients had a lower PaO2 /FiO2 ratio and were more often ventilated following transfusion compared to non-TACO patients. There was no significant difference in NT-proBNP between pre- and post-transfusion levels nor between TACO and non-TACO patients. Syndecan-1 was significantly elevated in TACO patients both pre- and post-transfusion compared to non-TACO patients. DISCUSSION NT-proBNP was not associated with TACO in this critically ill patient population. Interestingly, levels of syndecan-1 were increased in TACO patients at baseline. More research is needed to clarify this association and its possibilities as a biomarker to predict patients at risk for TACO.
Collapse
Affiliation(s)
- Esther B Bulle
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Britt Blanken
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Robert B Klanderman
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa van Manen
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Intensive Care, OLVG Hospital, Amsterdam, The Netherlands
| | - Alexander P J Vlaar
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Sevdi MS, Erkalp K, Ozalp A, Ozcan FG, Demirgan S, Akyol O, Guneyli HC, Tunali MC, Selcan A. Convalescent plasma therapy in critically İll COVID-19 patients: A retrospective cohort study. Niger J Clin Pract 2023; 26:1410-1422. [PMID: 37929515 DOI: 10.4103/njcp.njcp_552_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Background Convalescent plasma (CP) therapy can be defined as a passive immunity transfer approach involving the administration of plasma for therapeutic purposes to inpatients hospitalized due to an active virus infection. Passive immunity antibodies can reduce target organ damage and directly neutralize the responsible pathogens. A limited number of studies on the use of CP have reported that critically ill patients can benefit from CP therapy. Aim We aimed in this study as the outcomes of CP therapy in critically ill coronavirus disease 2019 (COVID-19) patients in intensive care unit (ICU) and determine the differences between the recovery and mortality groups. Patients and Methods This retrospective design study involved critically ill patients who were diagnosed with COVID-19 pneumonia or who were suspected of having COVID-19 in the ICU between April 1, 2020, and June 1, 2020. Comorbidity of patients, respiratory findings, hemodynamic data, laboratory data, and poor prognostic measures were compared between mortality and recovery group. Results Convalescent plasma (CP) therapy was supplied for 41 (13.58%) patients in total of 302 COVID-19 patients. Twenty-nine patients were died in total of 41 COVID-19 patients who supplied CP therapy. The mortality rate is 70.73% in CP therapy. There was a significantly higher incidence (P < 0.021) of invasive mechanical ventilation (IMV) and significantly lower mean arterial pressure (MAP) values in mortality group (P < 0.05). There were significantly higher NLR values (P < 0.05), lower platelet count (P < 0.05), lower of glomerular filtration rate (GFR) level (P < 0.05), higher creatinine values (P < 0.05), higher lactate dehydrogenase (LDH) levels (P < 0.05), higher D-dimer levels (P < 0.05), higher level of pro-brain natriuretic peptide (BNP) (P = 0.000), rate of fever (P = 0.031), arrythmia (P = 0.024), and transfusion-associated circulatory overload (TACO) (P = 0.008) were more often in mortality group. Conclusion Convalescent plasma therapy seems not useful in critically ill COVID-19 patients.
Collapse
Affiliation(s)
- M S Sevdi
- Anesthesiology and Reanimation, Istanbul Bagcilar Research and Training Hospital, Istanbul, Turkey
| | - K Erkalp
- Anesthesiology and Reanimation, Istanbul University-Cerrahpasa Institute of Cardiology, Istanbul, Turkey
| | - A Ozalp
- Anesthesiology and Reanimation, Istanbul Bagcilar Research and Training Hospital, Istanbul, Turkey
| | - F G Ozcan
- Anesthesiology and Reanimation, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - S Demirgan
- Anesthesiology and Reanimation, Istanbul Bagcilar Research and Training Hospital, Istanbul, Turkey
| | - O Akyol
- Anesthesiology and Reanimation, Istanbul Bagcilar Research and Training Hospital, Istanbul, Turkey
| | - H C Guneyli
- Anesthesiology and Reanimation, Istanbul Bagcilar Research and Training Hospital, Istanbul, Turkey
| | - M C Tunali
- Anesthesiology and Reanimation, Istanbul Bagcilar Research and Training Hospital, Istanbul, Turkey
| | - A Selcan
- Anesthesiology and Reanimation, Istanbul Bagcilar Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
6
|
Wang Y, Rao Q, Li X. Adverse transfusion reactions and what we can do. Expert Rev Hematol 2022; 15:711-726. [PMID: 35950450 DOI: 10.1080/17474086.2022.2112564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/09/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Transfusions of blood and blood components have inherent risks and the ensuing adverse reactions. It is very important to understand the adverse reactions of blood transfusion comprehensively for ensuring the safety of any future transfusions. AREAS COVERED According to the time of onset, adverse reactions of blood transfusion are divided into immediate and delayed transfusion reactions. In acute transfusion reactions, timely identification and immediate cessation of transfusion is critical. Vigilance is required to distinguish delayed responses or reactions that present nonspecific signs and symptoms. In this review, we present the progress of mechanism, clinical characteristics and management of commonly encountered transfusion reactions. EXPERT OPINION The incidence of many transfusion-related adverse events is decreasing, but threats to transfusion safety are always emerging. It is particularly important for clinicians and blood transfusion staff to recognize the causes, symptoms, and treatment methods of adverse blood transfusion reactions to improve the safety. In the future, at-risk patients will be better identified and can benefit from more closely matched blood components.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Quan Rao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaofei Li
- Department of Blood Transfusion, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Klanderman RB, Wijnberge M, Bosboom JJ, Roelofs JJTH, de Korte D, van Bruggen R, Hollmann MW, Vroom MB, Veelo DP, Juffermans NP, Geerts BF, Vlaar APJ. Differential effects of speed and volume on transfusion-associated circulatory overload: A randomized study in rats. Vox Sang 2022; 117:371-378. [PMID: 34396543 PMCID: PMC9291097 DOI: 10.1111/vox.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Transfusion-associated circulatory overload (TACO) is the primary cause of transfusion-related mortality. Speed and volume of transfusion are major risk factors. The aim of this study was to investigate the interaction of red blood cell (RBC) transfusion speed and volume on the development of TACO. MATERIALS AND METHODS A validated model for TACO in anaemic Lewis rats with an acute myocardial infarction was used. The effect on pulmonary hydrostatic pressure of one, two or four units of packed RBCs transfused in either 30 or 60 min was evaluated (3.3-26.6 ml·kg-1 ·hr-1 ). Pulmonary capillary pressure was measured as left ventricular end-diastolic pressure (LVEDP). Cardiac stress biomarkers atrial natriuretic-peptide (ANP) and N-terminal pro-brain natriuretic peptide (NT-proBNP) were measured 1-h post-transfusion. RESULTS Thirty animals were included (n = 5 per group). Transfusion of RBCs increased LVEDP in a volume-dependent manner (ΔLVEDP [mmHg]: -0.95, +0.50, +6.26, p < 0.001). Fast transfusion increased overall ΔLVEDP by +3.5 mmHg and up to +11.8 mmHg in the four units' group (p = 0.016). Doubling transfusion speed increased ΔLVEDP more than doubling volume in the larger volume groups. No difference in ANP or NT-proBNP were seen in high transfusion volume or groups. CONCLUSION Transfusion volume dose-dependently increased LVEDP, with speed of transfusion rapidly elevating LVEDP at higher transfusion volumes. ANP and NT-proBNP were not impacted by transfusion volume or speed in this model. TACO is seen as purely volume overload, however, this study emphasizes that limiting transfusion speed, as a modifiable risk factor, might aid in preventing TACO.
Collapse
Affiliation(s)
- Robert B. Klanderman
- Department of Intensive CareAmsterdam UMCAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
- Department of AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
| | - Marije Wijnberge
- Department of AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
| | | | | | - Dirk de Korte
- Department of Product and Process DevelopmentSanquin Blood Bank – AmsterdamAmsterdamThe Netherlands
- Department of Blood Cell ResearchSanquin Research and Landsteiner Laboratory – AmsterdamAmsterdamThe Netherlands
| | - Robin van Bruggen
- Department of Blood Cell ResearchSanquin Research and Landsteiner Laboratory – AmsterdamAmsterdamThe Netherlands
| | - Markus W. Hollmann
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
- Department of AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
| | | | - Denise P. Veelo
- Department of AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
| | - Nicole P. Juffermans
- Department of Intensive CareAmsterdam UMCAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
| | - Bart F. Geerts
- Department of AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
| | - Alexander P. J. Vlaar
- Department of Intensive CareAmsterdam UMCAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
| |
Collapse
|
8
|
van den Akker TA, Grimes ZM, Friedman MT. Transfusion-Associated Circulatory Overload and Transfusion-Related Acute Lung Injury. Am J Clin Pathol 2021; 156:529-539. [PMID: 33822854 DOI: 10.1093/ajcp/aqaa279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES To review the new current diagnostic criteria of transfusion-associated circulatory overload (TACO) and transfusion-related acute lung injury (TRALI) from the literature while highlighting distinguishing features. We provide comprehensive understanding of the importance of hemovigilance and its role in appropriately identifying and reporting these potentially fatal transfusion reactions. METHODS A review of the English language literature was performed to analyze TACO and TRALI while providing further understanding of the rationale behind the historical underrecognition and underreporting. RESULTS Our review demonstrates the new 2018 and 2019 case definitions for TACO and TRALI, respectively. With more comprehensive diagnostic strategies, adverse transfusion events can be better recognized from mimicking events and underlying disease. In addition, there are mitigation strategies in place to help prevent complications of blood product transfusion, with emphasis on the prevention of TACO and TRALI. CONCLUSIONS TACO and TRALI are potentially fatal adverse complications of blood transfusion. Both have been historically underrecognized and underreported due to poor defining criteria and overlapping symptomatology. Developing a thorough clinical understanding between these two entities can improve hemovigilance reporting and can contribute to risk factor identification and preventative measures.
Collapse
Affiliation(s)
- Tayler A van den Akker
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zachary M Grimes
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark T Friedman
- Department of Pathology, NYU Long Island School of Medicine, Mineola, NY, USA
| |
Collapse
|
9
|
Davidow EB, Blois SL, Goy-Thollot I, Harris L, Humm K, Musulin S, Nash KJ, Odunayo A, Sharp CR, Spada E, Thomason J, Walton J, Wardrop KJ. Association of Veterinary Hematology and Transfusion Medicine (AVHTM) Transfusion Reaction Small Animal Consensus Statement (TRACS). Part 1: Definitions and clinical signs. J Vet Emerg Crit Care (San Antonio) 2021; 31:141-166. [PMID: 33792171 DOI: 10.1111/vec.13044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/06/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To use a systematic, evidence-based consensus process to develop definitions for transfusion reactions in dogs and cats. DESIGN Evidence evaluation of the literature was carried out for identified transfusion reaction types in dogs and cats. Reaction definitions were generated based on synthesis of human and veterinary literature. Consensus on the definitions was achieved through Delphi-style surveys. Draft recommendations were made available through industry specialty listservs and comments were incorporated. RESULTS Definitions with imputability criteria were developed for 14 types of transfusion reactions. CONCLUSIONS The evidence review and consensus process resulted in definitions that can be used to facilitate future veterinary transfusion reaction research.
Collapse
Affiliation(s)
| | - Shauna L Blois
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Canada
| | | | | | - Karen Humm
- Department of Clinical Science and Services, The Royal Veterinary College, London, UK
| | - Sarah Musulin
- College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Katherine J Nash
- VetMED Emergency and Specialty Veterinary Hospital, Phoenix, AZ, USA
| | - Adesola Odunayo
- Department of Small Animal Clinical Sciences, University of Tennessee, Knoxville, TN, USA
| | - Claire R Sharp
- School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Eva Spada
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | - John Thomason
- Department of Clinical Sciences, Mississippi State University, Mississippi State, MS, USA
| | | | - K Jane Wardrop
- Veterinary Clinical Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
10
|
Odunayo A, Nash KJ, Davidow EB, Blois SL, Goy-Thollot I, Harris L, Humm K, Musulin S, Sharp CR, Spada E, Thomason J, Walton J, Jane Wardrop K. Association of Veterinary Hematology and Transfusion Medicine (AVHTM) transfusion reaction small animal consensus statement (TRACS). Part 3: Diagnosis and treatment. J Vet Emerg Crit Care (San Antonio) 2021; 31:189-203. [PMID: 33751797 DOI: 10.1111/vec.13043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/06/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To systematically review available evidence to develop guidelines for diagnosis and treatment of transfusion-associated reactions in dogs and cats. DESIGN Standardized and systemic evaluation of the literature (identified through Medline via PubMed and Google Scholar searches) was carried out for identified transfusion reaction types in dogs and cats. The available evidence was evaluated using PICO (Population, Intervention, Comparison, Outcome) questions generated for each reaction type. The evidence was categorized by level of evidence (LOE) and quality (Good, Fair, or Poor). Guidelines, diagnostic, and treatment algorithms were generated based on the evaluation of the evidence. Consensus on the final guidelines was achieved through Delphi-style surveys. Draft recommendations were disseminated through veterinary specialty listservs for review and comments, which were evaluated and integrated prior to final publication. RESULTS Medline via PubMed and Google Scholar databases were searched. There were 14 Population Intervention Comparison Outcome questions identified and corresponding worksheets were developed focusing on the diagnosis and treatment of transfusion-associated reactions in dogs and cats. Fourteen guidelines and four algorithms were developed with a high degree of consensus. CONCLUSIONS This systematic evidence evaluation process yielded recommended diagnostic and treatment algorithms for use in practice. However, significant knowledge gaps were identified, demonstrating the need for additional research in veterinary transfusion medicine.
Collapse
Affiliation(s)
- Adesola Odunayo
- Department of Small Animal Clinical Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Katherine J Nash
- VetMED Emergency and Specialty Veterinary Hospital, Phoenix, Arizona, USA
| | - Elizabeth B Davidow
- Veterinary Clinical Sciences, Washington State University, Pullman, Washington, USA
| | - Shauna L Blois
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | | | | | - Karen Humm
- Department of Clinical Science and Services, The Royal Veterinary College, London, UK
| | - Sarah Musulin
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Claire R Sharp
- School of Veterinary Medicine, Murdoch University, Perth, Australia
| | - Eva Spada
- Department of Veterinary Medicine, University of Milan, Lodi, Italy
| | - John Thomason
- Department of Clinical Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | | | - K Jane Wardrop
- Veterinary Clinical Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
11
|
McVey MJ, Cohen R, Arsenault V, Escorcia A, Tasmin F, Pendergrast J, Lieberman L, Lin Y, Callum J, Cserti-Gazdewich C. Frequency and timing of all-cause deaths in visits involving suspected transfusion reactions, and the significance of cardiopulmonary disturbances. Vox Sang 2021; 116:898-909. [PMID: 33634884 DOI: 10.1111/vox.13086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND/OBJECTIVES Transfusion reactions (TRs) may cause or contribute to death. Cardiopulmonary TRs are distressing, and collectively account for most transfusion fatalities, though the degree to which they alter survival more broadly is unclear. Deaths (and their timing) after TRs may provide further insights. MATERIALS/METHODS Adult (tri-hospital network) haemovigilance data (2013-2016) recorded referrals with conclusions ranging from unrelated to transfusion (UTR) to entities such as: septic TRs, serologic/haemolytic reactions, transfusion-associated circulatory overload (TACO), transfusion-associated dyspnoea (TAD), transfusion-related acute lung injury (TRALI), allergic transfusion reaction (ATR), and others. For (in- or out-patient) visits involving suspected TRs (VISTRs), all-cause mortalities (% [95% confidence interval]) and associated time-to-death (TTD) (median days, [interquartile range]) were compared. Diagnoses were defined inclusively (possible-to-definite) or strictly (probable-to-definite). RESULTS Of 1144 events, rank order VISTR mortality following (possible-to-definite) TRs, and associated TTDs, were led by: DHTR 33% [6-19], 1 death at 123d; TRALI 32% [15-54], 6 deaths: 3d [2-20]; BaCon 21% [14-31], 17 deaths: 10d [3-28]; TACO 18% [12-26], 23 deaths: 16d [6-28]; TAD 17% [11-26]: 18 deaths, 6d [3-12]. Higher-certainty TRs ranked similarly (DHTR 50% [9-91]; BaCon 29% [12-55], 4 deaths: 12d [3-22]; and TACO 25% [16-38], 15 deaths: 21d [6-28]). VISTR mortality after TACO or TRALI significantly exceeded ATR (3·3% [2·4-5·8], P < 0·00001) but was not different from UTR events (P = 0·3). CONCLUSIONS Only half of cardiopulmonary TRs constituted high certainty diagnoses. Nevertheless, cardiopulmonary TRs and suspected BaCon marked higher VISTR mortality with shorter TTDs. Short (<1 week) TTDs in TAD, BaCon or TRALI imply either contributing roles in death, treatment refractoriness and/or applicable TR susceptibilities in the dying.
Collapse
Affiliation(s)
- Mark J McVey
- Department of Anesthesia and Pain Medicine, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Medicine, SickKids, Toronto, ON, Canada.,Department of Physics, Ryerson University, Toronto, ON, Canada
| | - Robert Cohen
- Utilization, Efficacy, & Safety of Transfusion (QUEST) Research Program, University of Toronto Quality, Toronto, ON, Canada.,Transfusion Medicine and Tissue Bank, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Valerie Arsenault
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Pediatrics, CHU Sainte-Justine, Montreal, QC, Canada
| | - Alioska Escorcia
- Blood Transfusion Laboratory (Laboratory Medicine Program), University Health Network, Toronto, ON, Canada
| | - Farzana Tasmin
- Blood Transfusion Laboratory (Laboratory Medicine Program), University Health Network, Toronto, ON, Canada
| | - Jacob Pendergrast
- Utilization, Efficacy, & Safety of Transfusion (QUEST) Research Program, University of Toronto Quality, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Blood Transfusion Laboratory (Laboratory Medicine Program), University Health Network, Toronto, ON, Canada.,Department of Medicine (Medical Oncology & Hematology), University Health Network, Toronto, ON, Canada.,Department of Medicine, Division of Hematology, University of Toronto, Toronto, ON, Canada
| | - Lani Lieberman
- Utilization, Efficacy, & Safety of Transfusion (QUEST) Research Program, University of Toronto Quality, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Blood Transfusion Laboratory (Laboratory Medicine Program), University Health Network, Toronto, ON, Canada
| | - Yulia Lin
- Utilization, Efficacy, & Safety of Transfusion (QUEST) Research Program, University of Toronto Quality, Toronto, ON, Canada.,Transfusion Medicine and Tissue Bank, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Division of Hematology, University of Toronto, Toronto, ON, Canada
| | - Jeannie Callum
- Utilization, Efficacy, & Safety of Transfusion (QUEST) Research Program, University of Toronto Quality, Toronto, ON, Canada.,Transfusion Medicine and Tissue Bank, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Division of Hematology, University of Toronto, Toronto, ON, Canada
| | - Christine Cserti-Gazdewich
- Utilization, Efficacy, & Safety of Transfusion (QUEST) Research Program, University of Toronto Quality, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Blood Transfusion Laboratory (Laboratory Medicine Program), University Health Network, Toronto, ON, Canada.,Department of Medicine (Medical Oncology & Hematology), University Health Network, Toronto, ON, Canada.,Department of Medicine, Division of Hematology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Tanaka A, Yokohama A, Fujiwara SI, Fujii Y, Kaneko M, Ueda Y, Abe T, Kato Y, Hasegawa Y, Ikeda K, Fujino K, Matsumoto M, Makino S, Kino S, Takeshita A, Muroi K. Transfusion-associated circulatory overload and high blood pressure: A multicentre retrospective study in Japan. Vox Sang 2021; 116:785-792. [PMID: 33529383 DOI: 10.1111/vox.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/23/2020] [Accepted: 12/05/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Transfusion-associated circulatory overload (TACO) is an adverse reaction associated with a high risk of mortality. The actual incidence of TACO and hypertension associated with transfusion in Japan is unknown. METHODS A multicentre retrospective observational study was conducted across 23 institutions during the 1-year period of 2016. Patients were included if they developed TACO or their blood pressure (either systolic or diastolic) increased by at least 30 mmHg during the transfusion. TACO was confirmed by the primary physicians and transfusion medicine teams and recorded in the data on passive surveillance, and additional data were extracted from electronic medical records. RESULTS In our patient cohort of 31 384 patients who underwent transfusion, the incidence of TACO and hypertension was 0·03% and 0·2%, respectively. However, 43% of the participating institutions didn't report any cases. When comparing risk factors between the TACO and hypertension groups, there were significant differences in comorbidities, such as abnormal findings on chest x-ray. Significant differences between the two groups were observed post-transfusion pulse rate, body temperature and oxygen saturation (P < 0·01). In the group of patients with hypertension, the level of BNP increased significantly after transfusion in 45% (5/11) of the patients. We identified 4 patients in the hypertension group who met the new ISBT's TACO criteria. CONCLUSION Our study suggests that more attention should be given to TACO in Japan, particularly in terms of improving surveillance systems. For the early diagnosis of TACO, it is crucial to carefully monitor vital signs including blood pressure.
Collapse
Affiliation(s)
- Asashi Tanaka
- Department of Clinical Laboratory Medicine and Department of Transfusion Medicine, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| | - Akihiko Yokohama
- Division of Blood Transfusion Service, Gunma University Hospital, Gunma, Japan
| | - Shin-Ichiro Fujiwara
- Division of Cell Transplantation and Transfusion, Jichi Medical University Hospital, Tochigi, Japan
| | - Yasuhiko Fujii
- Department of Transfusion Medicine, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Makoto Kaneko
- Division of Cell Transplantation and Transfusion, University of Yamanashi Hospital, Yamanashi, Japan
| | - Yasunori Ueda
- Department of Hematology and Oncology, Kurashiki Central Hospital, Okayama, Japan
| | - Takashi Abe
- Department of Hematology, Niigata City General Hospital, Niigata, Japan
| | - Yoko Kato
- Division of Transfusion and Cell Therapy, The Jikei University Hospital, Tokyo, Japan
| | - Yuichi Hasegawa
- Department of Transfusion Medicine, University of Tsukuba Hospital, Ibaraki, Japan
| | - Kazuhiko Ikeda
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Keizo Fujino
- Department of Transfusion Medicine, Osaka City University Hospital, Osaka, Japan
| | | | - Shigeyoshi Makino
- Department of Transfusion Medicine, Toranomon Hospital, Tokyo, Japan
| | - Shuichi Kino
- Hokkaido Block Blood Center Japanese Red Cross, Hokkaido, Japan
| | - Akihiro Takeshita
- Transfusion and Cell Therapy, Hamamatsu University School of Medicine, Shizuokoa, Japan
| | - Kazuo Muroi
- Division of Cell Transplantation and Transfusion, Jichi Medical University Hospital, Tochigi, Japan
| |
Collapse
|
13
|
HaemoKBS: A knowledge-based system for real-time, continuous categorisation of adverse reactions in blood recipients. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2020.04.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Grey S, Bolton-Maggs P. Pulmonary complications of transfusion: Changes, challenges, and future directions. Transfus Med 2020; 30:442-449. [PMID: 32924216 DOI: 10.1111/tme.12709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 11/27/2022]
Abstract
The pulmonary complications of transfusion (TACO, TRALI and TAD) are the leading cause of transfusion-related mortality and major morbidity. Advance in this area is essential in improving transfusion safety. This review describes the drivers for change in haemovigilance practice, the influence of recent key publications and future directions.
Collapse
Affiliation(s)
- Sharran Grey
- Lancashire Haematology Centre, Blackpool Teaching Hospitals NHS Foundation Trust, North Lancashire, UK.,Serious Hazards of Transfusion, Manchester Blood Centre, Manchester, UK
| | - Paula Bolton-Maggs
- Serious Hazards of Transfusion, Manchester Blood Centre, Manchester, UK.,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
15
|
Roubinian NH, Chowdhury D, Hendrickson JE, Triulzi DJ, Gottschall JL, Looney MR, Matthay MA, Kor DJ, Brambilla D, Kleinman SH, Murphy EL. NT-proBNP levels in the identification and classification of pulmonary transfusion reactions. Transfusion 2020; 60:2548-2556. [PMID: 32905629 DOI: 10.1111/trf.16059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Consensus definitions for transfusion-related acute lung injury (TRALI) and transfusion-associated circulatory overload (TACO) have recently been revised; however, pulmonary transfusion reactions remain difficult to diagnose. We hypothesized that N-terminal pro-brain natriuretic peptide (NT-proBNP) levels could have utility in the identification and classification of pulmonary transfusion reactions. STUDY DESIGN AND METHODS We performed a secondary analysis of a case-control study of pulmonary transfusion reactions at four academic hospitals. We evaluated clinical data and measured NT-proBNP levels prior to and following transfusion in patients with TACO (n = 160), transfused acute respiratory distress syndrome (ARDS) [n = 51], TRALI [n = 12], TACO/TRALI [n = 7], and controls [n = 335]. We used Wilcoxon Rank-Sum tests to compare NT-proBNP levels, and classification and regression tree (CART) algorithms to produce a ranking of covariates in order of relative importance for differentiating TACO from transfused controls. RESULTS Pre-transfusion NT-proBNP levels were elevated in cases of transfused ARDS and TACO (both P < .001) but not TRALI (P = .31) or TACO/TRALI (P = .23) compared to transfused controls. Pre-transfusion NT-proBNP levels were higher in cases of transfused ARDS or TRALI with a diagnosis of sepsis compared to those without (P < .05 for both). CART analyses resulted in similar differentiation of patients with TACO from transfused controls for models utilizing either NT-proBNP levels (AUC 0.83) or echocardiogram results (AUC 0.80). CONCLUSIONS NT-proBNP levels may have utility in the classification of pulmonary transfusion reactions. Prospective studies are needed to test the predictive utility of pre-transfusion NT-proBNP in conjunction with other clinical factors in identifying patients at risk of pulmonary transfusion reactions.
Collapse
Affiliation(s)
- Nareg H Roubinian
- Kaiser Permanente Division of Research, Oakland, California, USA.,Vitalant Research Institute, San Francisco, California, USA.,University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | | - Mark R Looney
- University of California, San Francisco, San Francisco, California, USA
| | - Michael A Matthay
- University of California, San Francisco, San Francisco, California, USA
| | | | | | | | - Edward L Murphy
- Vitalant Research Institute, San Francisco, California, USA.,University of California, San Francisco, San Francisco, California, USA
| | | |
Collapse
|
16
|
Bolcato M, Russo M, Trentino K, Isbister J, Rodriguez D, Aprile A. Patient blood management: The best approach to transfusion medicine risk management. Transfus Apher Sci 2020; 59:102779. [DOI: 10.1016/j.transci.2020.102779] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/24/2020] [Accepted: 04/05/2020] [Indexed: 02/07/2023]
|
17
|
Huang DT, Ramirez P. Biomarkers in the ICU: less is more? Yes. Intensive Care Med 2020; 47:94-96. [PMID: 32347324 DOI: 10.1007/s00134-020-06049-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/09/2020] [Indexed: 01/11/2023]
Affiliation(s)
- David T Huang
- CRISMA (Clinical Research, Investigation, and Systems Modeling of Acute Illness) Center, University of Pittsburgh, Pittsburgh, PA, USA. .,MACRO (Multidisciplinary Acute Care Research Organization) Center, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Critical Care Medicine, University of Pittsburgh, 606B Scaife Hall, 3550 Terrace Street, Pittsburgh, PA, 15261, USA. .,Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Paula Ramirez
- Department of Critical Care Medicine, Hospital Universitario Y Politécnico La Fe, Av Fernando Abril Martorell 106, 46026, Valencia, Spain. .,Centro de Investigación Biomédica en Red-Enfermedades Respiratorias (CibeRes, CB06/06/0028), Carlos III Research Institute, Madrid, Spain.
| |
Collapse
|
18
|
Wiersum-Osselton JC, Whitaker B, Grey S, Land K, Perez G, Rajbhandary S, Andrzejewski C, Bolton-Maggs P, Lucero H, Renaudier P, Robillard P, Santos M, Schipperus M. Revised international surveillance case definition of transfusion-associated circulatory overload: a classification agreement validation study. LANCET HAEMATOLOGY 2019; 6:e350-e358. [PMID: 31080132 DOI: 10.1016/s2352-3026(19)30080-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Transfusion-associated circulatory overload (TACO) is a major cause of transfusion-related morbidity and mortality in countries with well developed transfusion services. The International Society of Blood Transfusion, the International Haemovigilance Network, and AABB (formerly American Association of Blood Banks), have developed and validated a revised definition of TACO. METHODS International Haemovigilance Network-member haemovigilance systems (Australia, Austria, Denmark, Finland, Greece, India, Ireland, Italy, Japan, Malta, Netherlands, New Zealand, Norway, Slovenia, United Kingdom and United States) provided cases of respiratory complications categorised by their systems, including clinical parameters listed in the 2017 draft definition (part 1). Individual transfusion professionals were then invited to assess 24 case descriptions according to the draft definition (part 2). Positive and negative agreement and inter-rater agreement (κ) were calculated. Based on validation results, cases were reanalysed and slight adjustments made to yield the final 2018 TACO definition. FINDINGS In part 1, 16 (44%) of 36 haemovigilance systems provided 178 cases, including 126 TACO cases. By use of the 2018 definition, 96 (76%) of 126 cases of TACO were in positive agreement. 19 (37%) of 52 cases were recognised as non-TACO respiratory complications. In part 2 (47 experts from 20 countries), moderate all-case agreement (κ=0·43) and TACO-specific agreement (κ=0·54) were observed. Excluding cases missing some clinical information (eg, N terminal pro-brain natriuretic peptide, distinctive chest x-ray findings, and relationship with existing respiratory co-morbidities like pneumonia and chronic obstructive pulmonary disease) improved all-case agreement to κ=0·50 (moderate) and κ=0·65 (good) for TACO cases. INTERPRETATION The two-part validation exercise showed that the revised 2018 TACO surveillance case definition captures 76% of cases endorsed as TACO by participating haemovigilance systems. This definition can become the basis for internationally consistent surveillance reporting and contribute towards increased awareness and mitigation of TACO. Further research will require reporting more complete clinical information to haemovigilance systems and should focus on improved distinction between TACO and other transfusion respiratory complications. FUNDING International Society of Blood Transfusion, International Haemovigilance Network, and AABB.
Collapse
Affiliation(s)
- Johanna C Wiersum-Osselton
- Transfusion and Transplantation Reactions in Patients Hemovigilance and Biovigilance Office, Leiden, Netherlands
| | - Barbee Whitaker
- Office of Biostatistics and Epidemiology, US Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, MD, USA
| | - Sharran Grey
- Bolton National Health Service Foundation Trust, Greater Manchester, UK; Serious Hazards of Transfusion, Manchester Blood Centre, Manchester, UK
| | | | | | | | - Chester Andrzejewski
- System Blood Banking and Transfusion/Apheresis Medicine Services, Department of Pathology, University of Massachusetts Medical School-Baystate, Baystate Health/Baystate Medical Center, Springfield, MA, USA
| | | | - Harriet Lucero
- The Christie National Health Service Foundation Trust, Manchester, UK
| | - Philippe Renaudier
- Service d'Hématologie, Hôpital Pierre Zobda-Quitman, Fort-de-France, Cedex, Martinique
| | | | - Matilde Santos
- Instituto Português de Sangue e da Transplantação, Lisbon, Portugal
| | - Martin Schipperus
- Transfusion and Transplantation Reactions in Patients Hemovigilance and Biovigilance Office, Leiden, Netherlands; Haga Teaching Hospital, Leyweg, The Hague, Netherlands
| |
Collapse
|
19
|
Vlaar APJ, Toy P, Fung M, Looney MR, Juffermans NP, Bux J, Bolton-Maggs P, Peters AL, Silliman CC, Kor DJ, Kleinman S. A consensus redefinition of transfusion-related acute lung injury. Transfusion 2019; 59:2465-2476. [PMID: 30993745 PMCID: PMC6850655 DOI: 10.1111/trf.15311] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Transfusion-related acute lung injury (TRALI) is a serious complication of blood transfusion and is among the leading causes of transfusion-related morbidity and mortality in most developed countries. In the past decade, the pathophysiology of this potentially life-threatening syndrome has been increasingly elucidated, large cohort studies have identified associated patient conditions and transfusion risk factors, and preventive strategies have been successfully implemented. These new insights provide a rationale for updating the 2004 consensus definition of TRALI. STUDY DESIGN AND METHODS An international expert panel used the Delphi methodology to develop a redefinition of TRALI by modifying and updating the 2004 definition. Additionally, the panel reviewed issues related to TRALI nomenclature, patient conditions associated with acute respiratory distress syndrome (ARDS) and TRALI, TRALI pathophysiology, and standardization of reporting of TRALI cases. RESULTS In the redefinition, the term "possible TRALI" has been dropped. The terminology of TRALI Type I (without an ARDS risk factor) and TRALI Type II (with an ARDS risk factor or with mild existing ARDS) is proposed. Cases with an ARDS risk factor that meet ARDS diagnostic criteria and where respiratory deterioration over the 12 hours before transfusion implicates the risk factor as causative should be classified as ARDS. TRALI remains a clinical diagnosis and does not require detection of cognate white blood cell antibodies. CONCLUSIONS Clinicians should report all cases of posttransfusion pulmonary edema to the transfusion service so that further investigation can allow for classification of such cases as TRALI (Type I or Type II), ARDS, transfusion-associated circulatory overload (TACO), or TRALI or TACO cannot distinguish or an alternate diagnosis.
Collapse
Affiliation(s)
- Alexander P J Vlaar
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Academic Medical Center, Amsterdam, the Netherlands
| | - Pearl Toy
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Mark Fung
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont
| | - Mark R Looney
- Departments of Medicine and Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | - Nicole P Juffermans
- Department of Intensive Care Medicine, Academic Medical Center, Amsterdam, The Netherlands.,Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Academic Medical Center, Amsterdam, the Netherlands
| | - Juergen Bux
- Ruhr University Bochum, Bochum, Nordrhein-Westfalen, Germany
| | - Paula Bolton-Maggs
- Serious Hazards of Transfusion Office, Manchester Blood Centre, Manchester, United Kingdom
| | - Anna L Peters
- Division Vital Functions, Department of Anesthesiology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Christopher C Silliman
- School of Medicine, Pediatrics and Surgery, University of Colorado Denver, Denver, Colorado
| | - Daryl J Kor
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Steve Kleinman
- Department of Pathology, University British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Transfusion-Associated Circulatory Overload: A Clinical Perspective. Transfus Med Rev 2019; 33:69-77. [PMID: 30853167 DOI: 10.1016/j.tmrv.2019.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/20/2019] [Accepted: 01/26/2019] [Indexed: 01/28/2023]
Abstract
For 30 years, transfusion-associated circulatory overload (TACO) has been recognized as a serious transfusion complication. Currently, TACO is the leading cause of transfusion-related morbidity and mortality worldwide which occurs in 1% to 12% of at-risk populations. Despite an incomplete understanding of the underlying pathophysiology, TACO is defined as a collection of signs and symptoms of acute pulmonary edema due to circulatory overload occurring within 6 to 12 hours of transfusion. In the past decade, large observational cohort studies resulted in better insight into the associated transfusion risk factors leading to the development of TACO. In this clinical review, we critically analyze the pathogenesis of TACO, associated risk factors, clinical presentation, diagnostic modalities, and treatment options to guide clinicians with early detection of this syndrome and intervention to improve clinical outcomes. Future research should focus on better understanding of the pathogenesis to help advance the field of volume kinetics and endothelial barrier function.
Collapse
|