1
|
Zhang D, Zhang X, Yang L, Zhao Y, Hu X. Exploring the relationship between red blood cell levels and emotional regulation through the miR191-Riok3-Mxi1 pathway. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2024; 11:101-110. [DOI: 10.1016/j.jtcms.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
2
|
Vardaki MZ, Georg Schulze H, Serrano K, Blades MW, Devine DV, F B Turner R. Assessing the quality of stored red blood cells using handheld Spatially Offset Raman spectroscopy with multisource correlation analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121220. [PMID: 35395462 DOI: 10.1016/j.saa.2022.121220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
In this work we employ Spatially Offset Raman Spectroscopy (SORS) to non-invasively identify storage-related changes in red blood cell concentrate (RCC) in-situ within standard plastic transfusion bags. To validate the measurements, we set up a parallel study comparing both bioanalytical data (obtained by blood-gas analysis, hematology analysis and spectrophotometric assays), and Raman spectrometry data from the same blood samples. We then employ Multisource Correlation Analysis (MuSCA) to correlate the different types of data in RCC. Our analysis confirmed a strong correlation of glucose, methemoglobin and oxyhemoglobin with their respective bioassay values in RCC units. Finally, by combining MuSCA with k-means clustering, we assessed changes in all Raman wavenumbers during cold storage in both RCC Raman data from the current study and parallel RCC supernatant Raman data previously acquired from the same units. Direct RCC quality monitoring during storage, would help to establish a basis for improved inventory management of blood products in blood banks and hospitals based on analytical data.
Collapse
Affiliation(s)
- Martha Z Vardaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - H Georg Schulze
- Monte do Tojal, Caixa Postal 128, Hortinhas, Terena 7250-069, Portugal
| | - Katherine Serrano
- Department of Pathology and Laboratory Medicine, The University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6 T 2B5, Canada; Centre for Blood Research, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6 T 1Z3, Canada; Centre for Innovation, Canadian Blood Services
| | - Michael W Blades
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6 T 1Z1, Canada
| | - Dana V Devine
- Department of Pathology and Laboratory Medicine, The University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6 T 2B5, Canada; Centre for Blood Research, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6 T 1Z3, Canada; Centre for Innovation, Canadian Blood Services
| | - Robin F B Turner
- Michael Smith Laboratories, The University of British Columbia, 2185 East Mall, Vancouver, BC V6 T 1Z4, Canada; Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6 T 1Z1, Canada; Department of Electrical and Computer Engineering, The University of British Columbia, 2332 Main Mall, Vancouver, BC V6 T 1Z4, Canada
| |
Collapse
|
3
|
Vardaki MZ, Schulze HG, Serrano K, Blades MW, Devine DV, Turner RFB. Non-invasive monitoring of red blood cells during cold storage using handheld Raman spectroscopy. Transfusion 2021; 61:2159-2168. [PMID: 33969894 DOI: 10.1111/trf.16417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/02/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND The current best practices allow for the red blood cells (RBCs) to be stored for prolonged periods in blood banks worldwide. However, due to the individual-related variability in donated blood and RBCs continual degradation within transfusion bags, the quality of stored blood varies considerably. There is currently no method for assessing the blood product quality without compromising the sterility of the unit. This study demonstrates the feasibility of monitoring storage lesion of RBCs in situ while maintaining sterility using an optical approach. STUDY DESIGN AND METHODS A handheld spatially offset Raman spectroscopy (RS) device was employed to non-invasively monitor hemolysis and metabolic changes in 12 red cell concentrate (RCC) units within standard sealed transfusion bags over 7 weeks of cold storage. The donated blood was analyzed in parallel by biochemical (chemical analysis, spectrophotometry, hematology analysis) and RS measurements, which were then correlated through multisource correlation analysis. RESULTS Raman bands of lactate (857 cm-1 ), glucose (787 cm-1 ), and hemolysis (1003 cm-1 ) were found to correlate strongly with bioanalytical data over the length of storage, with correlation values 0.98 (95% confidence interval [CI]: 0.86-1.00; p = .0001), 0.95 (95% CI: 0.71-0.99; p = .0008) and 0.97 (95% CI: 0.79-1.00; p = .0004) respectively. DISCUSSION This study demonstrates the potential of collecting information on the clinical quality of blood units without breaching the sterility using Raman technology. This could significantly benefit quality control of RCC units, patient safety and inventory management in blood banks and hospitals.
Collapse
Affiliation(s)
- Martha Z Vardaki
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hans Georg Schulze
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Katherine Serrano
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada.,Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Michael W Blades
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Dana V Devine
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.,Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada.,Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Robin F B Turner
- Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|