1
|
Phelp PG, van Wonderen SF, Vlaar APJ, Kapur R, Klanderman RB. Developments in Transfusion Medicine: Pulmonary Transfusion Reactions and Novel Blood Cell Labeling Techniques. Anesth Analg 2024:00000539-990000000-00947. [PMID: 39270303 DOI: 10.1213/ane.0000000000007136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Staying updated on advancements in transfusion medicine is crucial, especially in critical care and perioperative setting, where timely and accurate transfusions can be lifesaving therapeutic interventions. This narrative review explores the landscape of transfusion-related adverse events, focusing on pulmonary transfusion reactions such as transfusion-associated circulatory overload (TACO) and transfusion-related acute lung injury (TRALI). TACO and TRALI are the leading causes of transfusion-related morbidity and mortality; however, specific treatments are lacking. Understanding the current incidence, diagnostic criteria, pathogenesis, treatment, and prevention strategies can equip clinicians to help reduce the incidence of these life-threatening complications. The review discusses emerging pathogenic mechanisms, including the possible role of inflammation in TACO and the mechanisms of reverse TRALI and therapeutic targets for TACO and TRALI, emphasizing the need for further research to uncover preventive and treatment modalities. Despite advancements, significant gaps remain in our understanding of what occurs during transfusions, highlighting the necessity for improved monitoring methods. To address this, the review also presents novel blood cell labeling techniques in transfusion medicine used for improving monitoring, quality assessment, and as a consequence, potentially reducing transfusion-related complications. This article aims to provide an update for anesthesiologists, critical care specialists, and transfusion medicine professionals regarding recent advancements and developments in the field of transfusion medicine.
Collapse
Affiliation(s)
- Philippa G Phelp
- From the Department of Laboratory of Experimental Intensive Care and Anesthesiology
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Stefan F van Wonderen
- From the Department of Laboratory of Experimental Intensive Care and Anesthesiology
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Alexander P J Vlaar
- From the Department of Laboratory of Experimental Intensive Care and Anesthesiology
- Department of Intensive Care, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Rick Kapur
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Robert B Klanderman
- From the Department of Laboratory of Experimental Intensive Care and Anesthesiology
- Department of Anesthesiology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Bulle EB, Klanderman RB, de Wissel MB, Roelofs JJ, Veelo DP, van den Brom CE, Kapur R, Vlaar AP. The effect of plasma transfusion in an experimental two-hit animal model of transfusion-associated circulatory overload with heart failure. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2023; 21:218-226. [PMID: 36346876 PMCID: PMC10159801 DOI: 10.2450/2022.0141-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/11/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Transfusion-associated circulatory overload (TACO) is a leading cause of transfusion-related morbidity and mortality. TACO follows a two-hit pathophysiology, where comorbidities like cardiac or renal failure act as the first hit followed by blood transfusion as a second hit. Observational studies suggest that plasma transfusion is more likely to cause TACO than other blood products. We conducted a randomized animal study to gather evidence that plasma transfusion can induce TACO. MATERIAL AND METHODS As a first hit a large myocardial infarction was created in male Wistar rats. Then animals were randomized to receive 4 units of solvent/ detergent-treated pooled plasma (SDP), fresh frozen plasma (FFP), a colloid control (albumin 5%) or a crystalloid fluid control (Ringer's lactate) (n=10 per group). The primary outcome was the difference between pre- and post-transfusion left-ventricular end diastolic pressure (ΔLVEDP). Secondary outcomes were markers for acute lung injury; lung wet/dry weight ratio, PaO2/FiO2 ratio and pulmonary histological assessment. RESULTS Pre-transfusion characteristics were similar between groups. ΔLVEDP increased significantly after transfusion with SDP (7.7 mmHg; 4.5-10.5) and albumin (13.0 mmHg; 6.5-15.2), but not after FFP (7.9 mmHg, 1.1; 11.3) compared to infusion with Ringer's lactate (0.6 mmHg; 0.4-2.2), p=0.007, p=0.0005 and p=0.14 respectively. There were no significant differences in ΔLVEDP between groups receiving SDP, FFP or albumin. There was no increase in acute lung injury in any group compared to other groups. DISCUSSION Circulatory overload, measured as ΔLVEDP, was induced after transfusion of SDP or albumin, but not after infusion of Ringer's lactate. These results show that the effect of plasma transfusion on ΔLVEDP differs from fluid overload induced by crystalloid infusion. Colloid osmotic pressure may be an important component in the development of TACO and should be a target for future research.
Collapse
Affiliation(s)
- Esther B. Bulle
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Robert B. Klanderman
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Marit B. de Wissel
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Joris J.T.H. Roelofs
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, University of Amsterdam, Amsterdam, the Netherlands
| | - Denise P. Veelo
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Charissa E. van den Brom
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Anesthesiology, Amsterdam UMC, VU University, Amsterdam, the Netherlands
| | - Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Alexander P.J. Vlaar
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Bulle EB, Klanderman RB, de Wissel MB, Roelofs JJTH, Veelo DP, van den Brom CE, Kapur R, Vlaar APJ. Can volume-reduced plasma products prevent transfusion-associated circulatory overload in a two-hit animal model? Vox Sang 2023; 118:185-192. [PMID: 36599701 DOI: 10.1111/vox.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND OBJECTIVES Transfusion-associated circulatory overload (TACO) is a pulmonary transfusion complication and a leading cause of transfusion-related morbidity and mortality. Volume overload and rising hydrostatic pressure as a consequence of transfusion are seen as the central pathway leading to TACO. A possible preventative measure for TACO could be the use of low-volume blood products like volume-reduced lyophilized plasma. We hypothesize that volume-reduced lyophilized plasma decreases circulatory overload leading to a reduced pulmonary capillary pressure and can therefore be an effective strategy to prevent TACO. MATERIALS AND METHODS A validated two-hit animal model in rats with heart failure was used. Animals were randomized to receive 4 units of either solvent-detergent pooled plasma (SDP) as control, standard volume lyophilized plasma (LP-S) or hyperoncotic volume-reduced lyophilized plasma (LP-VR). The primary outcome was the difference between pre-transfusion and post-transfusion left ventricular end-diastolic pressure (ΔLVEDP). Secondary outcomes included markers for acute lung injury. RESULTS LVEDP increased in all randomization groups following transfusion. The greatest elevation was seen in the group receiving LP-VR (+11.9 mmHg [5.9-15.6]), but there were no significant differences when compared to groups receiving either LP-S (+6.3 mmHg [2.9-13.4], p = 0.29) or SDP (+7.7 mmHg [4.5-10.5], p = 0.55). There were no significant differences in markers for acute lung injury, such as pulmonary wet/dry weight ratios, lung histopathology scores or PaO2 /FiO2 ratio between the three groups. CONCLUSION Transfusion with hyperoncotic volume-reduced plasma did not attenuate circulatory overload compared to standard volume plasma and was therefore not an effective preventative strategy for TACO in this rat model.
Collapse
Affiliation(s)
- Esther B Bulle
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Robert B Klanderman
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marit B de Wissel
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, University of Amsterdam, Amsterdam, The Netherlands
| | - Denise P Veelo
- Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Charissa E van den Brom
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam UMC, VU University, Amsterdam, The Netherlands
| | - Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander P J Vlaar
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Abergel H, Bidder M, Ashkenazi I, Reytman L, Alfici R, Krausz MM. Fresh Frozen Plasma Increases Hemorrhage in Blunt Traumatic Brain Injury and Uncontrolled Hemorrhagic Shock. Rambam Maimonides Med J 2023; 14:RMMJ.10489. [PMID: 36719667 PMCID: PMC9888485 DOI: 10.5041/rmmj.10489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Blunt traumatic brain injury (bTBI) and uncontrolled hemorrhagic shock (UCHS) are common causes of mortality in polytrauma. We studied the influence of fresh frozen plasma (FFP) resuscitation in a rat model with both bTBI and UCHS before achieving hemorrhage control. METHODS The bTBI was induced by an external weight drop (200 g) onto the bare skull of anesthetized male Lewis (Lew/SdNHsd) rats; UCHS was induced by resection of two-thirds of the rats' tails. Fifteen minutes following trauma, bTBI+UCHS rats underwent resuscitation with FFP or lactated Ringer's solution (LR). Eight groups were evaluated: (1) Sham; (2) bTBI; (3) UCHS; (4) UCHS+FFP; (5) UCHS+LR; (6) bTBI+UCHS; (7) bTBI+UCHS+FFP; and (8) bTBI+UCHS+LR. Bleeding volume, hematocrit, lactate, mean arterial pressure (MAP), heart rate, and mortality were measured. RESULTS The study included 97 rats that survived the immediate trauma. Mean blood loss up to the start of resuscitation was similar among UCHS only and bTBI+UCHS rats (P=0.361). Following resuscitation, bleeding was more extensive in bTBI+UCHS+FFP rats (5.2 mL, 95% confidence interval [CI] 3.7, 6.6) than in bTBI+UCHS+LR rats (2.5 mL, 95% CI 1.2, 3.8) and bTBI+UCHS rats (1.9 mL, 95% CI 0, 3.9) (P=0.005). Overall mortality increased if bleeding was above 4.5 mL (92.3% versus 8%; P<0.001). Mortality was 83.3% (10/12) in bTBI+UCHS+FFP rats, 41.7% (5/12) in bTBI+UCHS+LR rats, and 64.3% (9/14) in bTBI+UCHS rats. CONCLUSION The bTBI did not exacerbate bleeding in rats undergoing UCHS. Compared to LR, FFP resuscitation was associated with a significantly increased blood loss in bTBI+UCHS rats.
Collapse
Affiliation(s)
- Hilla Abergel
- Surgical Research Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
- Technion–Israel Institute of Technology, Haifa, Israel
| | - Miri Bidder
- Surgical Research Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
- Technion–Israel Institute of Technology, Haifa, Israel
| | - Itamar Ashkenazi
- Surgical Research Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
- Technion–Israel Institute of Technology, Haifa, Israel
| | - Leonid Reytman
- Surgical Research Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
- Technion–Israel Institute of Technology, Haifa, Israel
- Department of Anesthesiology, Hillel Yaffe Medical Center, Hadera, Israel
| | - Ricardo Alfici
- Surgical Research Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
- Technion–Israel Institute of Technology, Haifa, Israel
- Clinical Professor Emeritus, Department of General Surgery, Hillel Yaffe Medical Center, Hadera, Israel
| | - Michael M. Krausz
- Surgical Research Laboratory, Hillel Yaffe Medical Center, Hadera, Israel
- Technion–Israel Institute of Technology, Haifa, Israel
- Professor Emeritus, Department of General Surgery, Hillel Yaffe Medical Center, Hadera, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
5
|
Klanderman RB, Bosboom JJ, Veelo DP, Roelofs JJTH, de Korte D, van Bruggen R, Vogt L, van Buul JD, Hollmann MW, Vroom MB, Juffermans NP, Geerts BF, Vlaar APJ. Prophylactic furosemide to prevent transfusion-associated circulatory overload: a randomized controlled study in rats. Sci Rep 2022; 12:12127. [PMID: 35840620 PMCID: PMC9287390 DOI: 10.1038/s41598-022-16465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
Transfusion-associated circulatory overload (TACO) is the leading cause of transfusion related morbidity and mortality. The only treatment is empirical use of furosemide. Our aim was to investigate if furosemide can prevent TACO. A randomized controlled trial was performed using a previously validated two-hit rat model for TACO. Volume incompliance was induced (first hit) in anemic, anesthetized Lewis rats. Rats were randomized to placebo, low-dose (5 mg kg-1) or high-dose (15 mg kg-1) furosemide-administered prior to transfusion (second-hit) and divided over two doses. Primary outcome was change in left-ventricular end-diastolic pressure (∆LVEDP) pre- compared to post-transfusion. Secondary outcomes included changes in preload, afterload, contractility and systemic vascular resistance, as well as pulmonary outcomes. Furosemide treated animals had a significantly lower ∆LVEDP compared to placebo (p = 0.041), a dose-response effect was observed. ∆LVEDP in placebo was median + 8.7 mmHg (IQR 5.9-11), + 3.9 (2.8-5.6) in the low-dose and 1.9 (- 0.6 to 5.6) in the high-dose group. The effect of furosemide became apparent after 15 min. While urine output was significantly higher in furosemide treated animals (p = 0.03), there were no significant changes in preload, afterload, contractility or systemic vascular resistance. Furosemide rapidly and dose-dependently decreases the rise in hydrostatic pulmonary pressure following transfusion, essential for preventing TACO.
Collapse
Affiliation(s)
- Robert B Klanderman
- Department of Intensive Care, Amsterdam , UMC-AMC, University of Amsterdam, Amsterdam, The Netherlands.
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC-AMC, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Anesthesiology, Amsterdam , UMC-AMC, University of Amsterdam, Amsterdam, The Netherlands.
| | - Joachim J Bosboom
- Department of Anesthesiology, Amsterdam , UMC-AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Denise P Veelo
- Department of Anesthesiology, Amsterdam , UMC-AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam UMC-AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk de Korte
- Department of Product and Process Development, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Liffert Vogt
- Department of Nephrology, Amsterdam UMC-AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Department of Molecular Hematology, Molecular Cell Biology Lab, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam, The Netherlands
| | - Markus W Hollmann
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC-AMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Anesthesiology, Amsterdam , UMC-AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Margreeth B Vroom
- Department of Intensive Care, Amsterdam , UMC-AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole P Juffermans
- Department of Intensive Care, Amsterdam , UMC-AMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC-AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Bart F Geerts
- Department of Anesthesiology, Amsterdam , UMC-AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander P J Vlaar
- Department of Intensive Care, Amsterdam , UMC-AMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam UMC-AMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Klanderman RB, Wijnberge M, Bosboom JJ, Roelofs JJTH, de Korte D, van Bruggen R, Hollmann MW, Vroom MB, Veelo DP, Juffermans NP, Geerts BF, Vlaar APJ. Differential effects of speed and volume on transfusion-associated circulatory overload: A randomized study in rats. Vox Sang 2022; 117:371-378. [PMID: 34396543 PMCID: PMC9291097 DOI: 10.1111/vox.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVES Transfusion-associated circulatory overload (TACO) is the primary cause of transfusion-related mortality. Speed and volume of transfusion are major risk factors. The aim of this study was to investigate the interaction of red blood cell (RBC) transfusion speed and volume on the development of TACO. MATERIALS AND METHODS A validated model for TACO in anaemic Lewis rats with an acute myocardial infarction was used. The effect on pulmonary hydrostatic pressure of one, two or four units of packed RBCs transfused in either 30 or 60 min was evaluated (3.3-26.6 ml·kg-1 ·hr-1 ). Pulmonary capillary pressure was measured as left ventricular end-diastolic pressure (LVEDP). Cardiac stress biomarkers atrial natriuretic-peptide (ANP) and N-terminal pro-brain natriuretic peptide (NT-proBNP) were measured 1-h post-transfusion. RESULTS Thirty animals were included (n = 5 per group). Transfusion of RBCs increased LVEDP in a volume-dependent manner (ΔLVEDP [mmHg]: -0.95, +0.50, +6.26, p < 0.001). Fast transfusion increased overall ΔLVEDP by +3.5 mmHg and up to +11.8 mmHg in the four units' group (p = 0.016). Doubling transfusion speed increased ΔLVEDP more than doubling volume in the larger volume groups. No difference in ANP or NT-proBNP were seen in high transfusion volume or groups. CONCLUSION Transfusion volume dose-dependently increased LVEDP, with speed of transfusion rapidly elevating LVEDP at higher transfusion volumes. ANP and NT-proBNP were not impacted by transfusion volume or speed in this model. TACO is seen as purely volume overload, however, this study emphasizes that limiting transfusion speed, as a modifiable risk factor, might aid in preventing TACO.
Collapse
Affiliation(s)
- Robert B. Klanderman
- Department of Intensive CareAmsterdam UMCAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
- Department of AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
| | - Marije Wijnberge
- Department of AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
| | | | | | - Dirk de Korte
- Department of Product and Process DevelopmentSanquin Blood Bank – AmsterdamAmsterdamThe Netherlands
- Department of Blood Cell ResearchSanquin Research and Landsteiner Laboratory – AmsterdamAmsterdamThe Netherlands
| | - Robin van Bruggen
- Department of Blood Cell ResearchSanquin Research and Landsteiner Laboratory – AmsterdamAmsterdamThe Netherlands
| | - Markus W. Hollmann
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
- Department of AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
| | | | - Denise P. Veelo
- Department of AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
| | - Nicole P. Juffermans
- Department of Intensive CareAmsterdam UMCAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
| | - Bart F. Geerts
- Department of AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
| | - Alexander P. J. Vlaar
- Department of Intensive CareAmsterdam UMCAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
| |
Collapse
|
7
|
Hiebert K, Eshar D. Potential implication of an incompatible major crossmatch between whole blood samples from two domestic rats (Rattus norvegicus domestica). J Exot Pet Med 2022. [DOI: 10.1053/j.jepm.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Bulle EB, Klanderman RB, Pendergrast J, Cserti-Gazdewich C, Callum J, Vlaar APJ. The recipe for TACO: A narrative review on the pathophysiology and potential mitigation strategies of transfusion-associated circulatory overload. Blood Rev 2021; 52:100891. [PMID: 34627651 DOI: 10.1016/j.blre.2021.100891] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022]
Abstract
Transfusion associated circulatory overload (TACO) is one of the leading causes of transfusion related morbidity and mortality. TACO is the result of hydrostatic pulmonary edema following transfusion. However, up to 50% of all TACO cases appear after transfusion of a single unit, suggesting other factors, aside from volume, play a role in its pathophysiology. TACO follows a two-hit model, in which the first hit is an existing disease or comorbidity that renders patients volume incompliant, and the second hit is the transfusion. First hit factors include, amongst others, cardiac and renal failure. Blood product factors, setting TACO apart from crystalloid overload, include colloid osmotic pressure effects, viscosity, pro-inflammatory mediators and storage lesion byproducts. Differing hemodynamic changes, glycocalyx injury, endothelial damage and inflammatory reactions can all contribute to developing TACO. This narrative review explores pathophysiological mechanisms for TACO, discusses related therapeutic and preventative measures, and identifies areas of interest for future research.
Collapse
Affiliation(s)
- Esther B Bulle
- Department of Intensive Care, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Laboratory for Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), University of Amsterdam, Amsterdam UMC, the Netherlands.
| | - Robert B Klanderman
- Department of Intensive Care, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Laboratory for Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), University of Amsterdam, Amsterdam UMC, the Netherlands.
| | - Jacob Pendergrast
- Laboratory Medicine Program, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| | - Christine Cserti-Gazdewich
- Laboratory Medicine Program, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| | - Jeannie Callum
- Department of Pathology and Molecular Medicine, Queen's University and Kingston Health Sciences Centre, Canada.
| | - Alexander P J Vlaar
- Department of Intensive Care, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands; Laboratory for Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), University of Amsterdam, Amsterdam UMC, the Netherlands.
| |
Collapse
|
9
|
van den Brink DP, Kleinveld DJB, Sloos PH, Thomas KA, Stensballe J, Johansson PI, Pati S, Sperry J, Spinella PC, Juffermans NP. Plasma as a resuscitation fluid for volume-depleted shock: Potential benefits and risks. Transfusion 2021; 61 Suppl 1:S301-S312. [PMID: 34057210 PMCID: PMC8361764 DOI: 10.1111/trf.16462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Daan P. van den Brink
- Department of Intensive Care MedicineAmsterdam UMCAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
| | - Derek J. B. Kleinveld
- Department of Intensive Care MedicineAmsterdam UMCAmsterdamThe Netherlands
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
- Department of Trauma SurgeryAmsterdam UMCAmsterdamThe Netherlands
| | - Pieter H. Sloos
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
- Department of Trauma SurgeryAmsterdam UMCAmsterdamThe Netherlands
| | | | - Jakob Stensballe
- Department of Anesthesia and Trauma Center, Centre of Head and OrthopedicsRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
- Department of Clinical immunologyRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Pär I. Johansson
- Department of Clinical immunologyRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
| | - Shibani Pati
- Department of Laboratory MedicineUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Jason Sperry
- Department of Surgery and Critical Care MedicineUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | | | - Nicole P. Juffermans
- Laboratory of Experimental Intensive Care and AnesthesiologyAmsterdam UMCAmsterdamThe Netherlands
- Department of Intensive CareOLVG HospitalAmsterdamThe Netherlands
| |
Collapse
|
10
|
McVey MJ, Cohen R, Arsenault V, Escorcia A, Tasmin F, Pendergrast J, Lieberman L, Lin Y, Callum J, Cserti-Gazdewich C. Frequency and timing of all-cause deaths in visits involving suspected transfusion reactions, and the significance of cardiopulmonary disturbances. Vox Sang 2021; 116:898-909. [PMID: 33634884 DOI: 10.1111/vox.13086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND/OBJECTIVES Transfusion reactions (TRs) may cause or contribute to death. Cardiopulmonary TRs are distressing, and collectively account for most transfusion fatalities, though the degree to which they alter survival more broadly is unclear. Deaths (and their timing) after TRs may provide further insights. MATERIALS/METHODS Adult (tri-hospital network) haemovigilance data (2013-2016) recorded referrals with conclusions ranging from unrelated to transfusion (UTR) to entities such as: septic TRs, serologic/haemolytic reactions, transfusion-associated circulatory overload (TACO), transfusion-associated dyspnoea (TAD), transfusion-related acute lung injury (TRALI), allergic transfusion reaction (ATR), and others. For (in- or out-patient) visits involving suspected TRs (VISTRs), all-cause mortalities (% [95% confidence interval]) and associated time-to-death (TTD) (median days, [interquartile range]) were compared. Diagnoses were defined inclusively (possible-to-definite) or strictly (probable-to-definite). RESULTS Of 1144 events, rank order VISTR mortality following (possible-to-definite) TRs, and associated TTDs, were led by: DHTR 33% [6-19], 1 death at 123d; TRALI 32% [15-54], 6 deaths: 3d [2-20]; BaCon 21% [14-31], 17 deaths: 10d [3-28]; TACO 18% [12-26], 23 deaths: 16d [6-28]; TAD 17% [11-26]: 18 deaths, 6d [3-12]. Higher-certainty TRs ranked similarly (DHTR 50% [9-91]; BaCon 29% [12-55], 4 deaths: 12d [3-22]; and TACO 25% [16-38], 15 deaths: 21d [6-28]). VISTR mortality after TACO or TRALI significantly exceeded ATR (3·3% [2·4-5·8], P < 0·00001) but was not different from UTR events (P = 0·3). CONCLUSIONS Only half of cardiopulmonary TRs constituted high certainty diagnoses. Nevertheless, cardiopulmonary TRs and suspected BaCon marked higher VISTR mortality with shorter TTDs. Short (<1 week) TTDs in TAD, BaCon or TRALI imply either contributing roles in death, treatment refractoriness and/or applicable TR susceptibilities in the dying.
Collapse
Affiliation(s)
- Mark J McVey
- Department of Anesthesia and Pain Medicine, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Medicine, SickKids, Toronto, ON, Canada.,Department of Physics, Ryerson University, Toronto, ON, Canada
| | - Robert Cohen
- Utilization, Efficacy, & Safety of Transfusion (QUEST) Research Program, University of Toronto Quality, Toronto, ON, Canada.,Transfusion Medicine and Tissue Bank, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Valerie Arsenault
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Pediatrics, CHU Sainte-Justine, Montreal, QC, Canada
| | - Alioska Escorcia
- Blood Transfusion Laboratory (Laboratory Medicine Program), University Health Network, Toronto, ON, Canada
| | - Farzana Tasmin
- Blood Transfusion Laboratory (Laboratory Medicine Program), University Health Network, Toronto, ON, Canada
| | - Jacob Pendergrast
- Utilization, Efficacy, & Safety of Transfusion (QUEST) Research Program, University of Toronto Quality, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Blood Transfusion Laboratory (Laboratory Medicine Program), University Health Network, Toronto, ON, Canada.,Department of Medicine (Medical Oncology & Hematology), University Health Network, Toronto, ON, Canada.,Department of Medicine, Division of Hematology, University of Toronto, Toronto, ON, Canada
| | - Lani Lieberman
- Utilization, Efficacy, & Safety of Transfusion (QUEST) Research Program, University of Toronto Quality, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Blood Transfusion Laboratory (Laboratory Medicine Program), University Health Network, Toronto, ON, Canada
| | - Yulia Lin
- Utilization, Efficacy, & Safety of Transfusion (QUEST) Research Program, University of Toronto Quality, Toronto, ON, Canada.,Transfusion Medicine and Tissue Bank, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Division of Hematology, University of Toronto, Toronto, ON, Canada
| | - Jeannie Callum
- Utilization, Efficacy, & Safety of Transfusion (QUEST) Research Program, University of Toronto Quality, Toronto, ON, Canada.,Transfusion Medicine and Tissue Bank, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, Division of Hematology, University of Toronto, Toronto, ON, Canada
| | - Christine Cserti-Gazdewich
- Utilization, Efficacy, & Safety of Transfusion (QUEST) Research Program, University of Toronto Quality, Toronto, ON, Canada.,Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada.,Blood Transfusion Laboratory (Laboratory Medicine Program), University Health Network, Toronto, ON, Canada.,Department of Medicine (Medical Oncology & Hematology), University Health Network, Toronto, ON, Canada.,Department of Medicine, Division of Hematology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Photia A, Traivaree C, Monsereenusorn C, Simthamnimit P, Rujkijyanont P. Clinical Usefulness of Furosemide to Prevent Volume Overload Among Children and Young Adults with Transfusion-Dependent Thalassemia: A Randomized, Open-Label, Crossover Study. J Blood Med 2020; 11:503-513. [PMID: 33402857 PMCID: PMC7778446 DOI: 10.2147/jbm.s285647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/01/2020] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Red blood cell transfusion is a key element of treatment among patients with transfusion-dependent thalassemia (TDT). Volume overload and HCC syndrome (hypertension, convulsion, and intracranial hemorrhage) are fatal complications related to transfusion. Furosemide has been widely used to prevent hypertension secondary to volume overload with unclear supportive evidence. This study aimed to evaluate the efficacy of furosemide to prevent volume overload among children and young adults diagnosed with TDT. METHODS Patients diagnosed with TDT were enrolled and randomized to receive either furosemide pretransfusion or no furosemide pretransfusion. After 3 weeks to 4 months of wash-out periods, those patients underwent the alternate regimens as per crossover design of the study. Clinical and laboratory parameters including blood pressure and NT-proBNP levels were measured before and after each transfusion. The difference of those parameters between two randomized groups and their potential associated factors were analyzed. RESULTS In all, 30 patients undergoing 60 red blood cell transfusions were enrolled in the study. All were randomized and crossover was designed as receiving and not receiving furosemide pretransfusion. No transfusion reactions, symptoms of volume overload and HCC syndrome were observed. No statistically significant correlation was found between pretransfusion furosemide and the difference between pre- and posttransfusion systolic blood pressure (2 mmHg systolic blood pressure difference in pretransfusion furosemide and 1.5 mmHg in no pretransfusion furosemide; p-value = 0.721), as well as between pretransfusion furosemide and the difference between pre- and posttransfusion NT-proBNP levels (-3.8 pg/mL NT-proBNP level difference in pretransfusion furosemide and -2.4 pg/mL in no pretransfusion furosemide; p-value = 0.490). No significant correlation was also observed even in selected patients with high NT-proBNP levels (p-value = 0.262). Associated factors affecting the difference between pre- and posttransfusion NT-proBNP levels were analyzed, and none of those were affected concerning the difference in the levels. CONCLUSION Furosemide has been included in standard transfusion guidelines in many institutions. Our study provided important evidence of the unnecessary use of the drug in preventing volume overload particularly in pediatric and young adult patients with TDT. THAI CLINICAL TRIALS REGISTRY TCTR NUMBER TCTR20180209001. Registered 6 February 2018, https://www.clinicaltrials.in.th/.
Collapse
Affiliation(s)
- Apichat Photia
- Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
| | - Chanchai Traivaree
- Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
| | - Chalinee Monsereenusorn
- Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
| | | | - Piya Rujkijyanont
- Division of Hematology-Oncology, Department of Pediatrics, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
| |
Collapse
|
12
|
Juffermans NP, Aubron C, Duranteau J, Vlaar APJ, Kor DJ, Muszynski JA, Spinella PC, Vincent JL. Transfusion in the mechanically ventilated patient. Intensive Care Med 2020; 46:2450-2457. [PMID: 33180167 PMCID: PMC7658306 DOI: 10.1007/s00134-020-06303-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 12/20/2022]
Abstract
Red blood cell transfusions are a frequent intervention in critically ill patients, including in those who are receiving mechanical ventilation. Both these interventions can impact negatively on lung function with risks of transfusion-related acute lung injury (TRALI) and other forms of acute respiratory distress syndrome (ARDS). The interactions between transfusion, mechanical ventilation, TRALI and ARDS are complex and other patient-related (e.g., presence of sepsis or shock, disease severity, and hypervolemia) or blood product-related (e.g., presence of antibodies or biologically active mediators) factors also play a role. We propose several strategies targeted at these factors that may help limit the risks of associated lung injury in critically ill patients being considered for transfusion.
Collapse
Affiliation(s)
- Nicole P Juffermans
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam University Medical Centre, Location Academic Medical Centre, Amsterdam, The Netherlands
- Department of Intensive Care, OLVG Hospital, Amsterdam, The Netherlands
| | - Cécile Aubron
- Medical Intensive Care, Brest University Hospital, Université de Bretagne Occidentale, Brest, France
| | - Jacques Duranteau
- Department of Anesthesiology and Critical Care, Bicêtre, Hôpitaux Universitaires Paris Saclay, Université Paris Saclay, AP-HP, Le Kremlin Bicêtre, France
| | - Alexander P J Vlaar
- Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam University Medical Centre, Location Academic Medical Centre, Amsterdam, The Netherlands
- Department of Intensive Care, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Daryl J Kor
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jennifer A Muszynski
- Department of Pediatrics, Division of Critical Care Medicine, Nationwide Children's Hospital and the Ohio State University College of Medicine, Columbus, OH, USA
| | - Philip C Spinella
- Department of Pediatrics, Division of Critical Care Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.
| |
Collapse
|