1
|
Raviola S, Griffante G, Iannucci A, Chandel S, Lo Cigno I, Lacarbonara D, Caneparo V, Pasquero S, Favero F, Corà D, Trisolini E, Boldorini R, Cantaluppi V, Landolfo S, Gariglio M, De Andrea M. Human cytomegalovirus infection triggers a paracrine senescence loop in renal epithelial cells. Commun Biol 2024; 7:292. [PMID: 38459109 PMCID: PMC10924099 DOI: 10.1038/s42003-024-05957-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen causing severe diseases in immunosuppressed individuals. To replicate its double-stranded DNA genome, HCMV induces profound changes in cellular homeostasis that may resemble senescence. However, it remains to be determined whether HCMV-induced senescence contributes to organ-specific pathogenesis. Here, we show a direct cytopathic effect of HCMV on primary renal proximal tubular epithelial cells (RPTECs), a natural setting of HCMV disease. We find that RPTECs are fully permissive for HCMV replication, which endows them with an inflammatory gene signature resembling the senescence-associated secretory phenotype (SASP), as confirmed by the presence of the recently established SenMayo gene set, which is not observed in retina-derived epithelial (ARPE-19) cells. Although HCMV-induced senescence is not cell-type specific, as it can be observed in both RPTECs and human fibroblasts (HFFs), only infected RPTECs show downregulation of LAMINB1 and KI67 mRNAs, and enhanced secretion of IL-6 and IL-8, which are well-established hallmarks of senescence. Finally, HCMV-infected RPTECs have the ability to trigger a senescence/inflammatory loop in an IL-6-dependent manner, leading to the development of a similar senescence/inflammatory phenotype in neighboring uninfected cells. Overall, our findings raise the intriguing possibility that this unique inflammatory loop contributes to HCMV-related pathogenesis in the kidney.
Collapse
Affiliation(s)
- Stefano Raviola
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Gloria Griffante
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Andrea Iannucci
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Shikha Chandel
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Irene Lo Cigno
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Lacarbonara
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Valeria Caneparo
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
| | - Selina Pasquero
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Francesco Favero
- Bioinformatics Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Bioinformatics Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Corà
- Bioinformatics Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Bioinformatics Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Elena Trisolini
- Pathology Unit, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Santo Landolfo
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy
| | - Marisa Gariglio
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy
- Molecular Virology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Marco De Andrea
- Intrinsic Immunity Unit, CAAD - Center for Translational Research on Autoimmune and Allergic Disease, University of Eastern Piedmont, Novara, Italy.
- Viral Pathogenesis Unit, Department of Public Health and Pediatric Sciences, University of Turin, Medical School, Turin, Italy.
| |
Collapse
|
2
|
Romejko K, Markowska M, Niemczyk S. The Review of Current Knowledge on Neutrophil Gelatinase-Associated Lipocalin (NGAL). Int J Mol Sci 2023; 24:10470. [PMID: 37445650 DOI: 10.3390/ijms241310470] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a 25-kDa protein that is secreted mostly by immune cells such as neutrophils, macrophages, and dendritic cells. Its production is stimulated in response to inflammation. The concentrations of NGAL can be measured in plasma, urine, and biological fluids such as peritoneal effluent. NGAL is known mainly as a biomarker of acute kidney injury and is released after tubular damage and during renal regeneration processes. NGAL is also elevated in chronic kidney disease and dialysis patients. It may play a role as a predictor of the progression of renal function decreases with complications and mortality due to kidney failure. NGAL is also useful in the diagnostic processes of cardiovascular diseases. It is highly expressed in injured heart tissue and atherosclerostic plaque; its serum concentrations correlate with the severity of heart failure and coronary artery disease. NGAL increases inflammatory states and its levels rise in arterial hypertension, obesity, diabetes, and metabolic complications such as insulin resistance, and is also involved in carcinogenesis. In this review, we present the current knowledge on NGAL and its involvement in different pathologies, especially its role in renal and cardiovascular diseases.
Collapse
Affiliation(s)
- Katarzyna Romejko
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland
| | - Magdalena Markowska
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland
| | - Stanisław Niemczyk
- Department of Internal Diseases, Nephrology and Dialysis, Military Institute of Medicine-National Research Institute, 128 Szaserów Street, 04-141 Warsaw, Poland
| |
Collapse
|
3
|
Tabernero G, Pescador M, Ruiz Ferreras E, Morales AI, Prieto M. Evaluation of NAG, NGAL, and KIM-1 as Prognostic Markers of the Initial Evolution of Kidney Transplantation. Diagnostics (Basel) 2023; 13:diagnostics13111843. [PMID: 37296695 DOI: 10.3390/diagnostics13111843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Kidney transplantation is the best option for end-stage chronic kidney disease. Transplant viability is conditioned by drugs' nephrotoxicity, ischemia-reperfusion damage, or acute rejection. An approach to improve graft survival is the identification of post-transplant renal function prognostic biomarkers. Our objective was to study three early kidney damage biomarkers (N-acetyl-d-glucosaminidase, NAG; neutrophil gelatinase-associated lipocalin, NGAL; and kidney injury molecule-1, KIM-1) in the initial period after transplantation and to identify possible correlations with main complications. We analysed those biomarkers in urine samples from 70 kidney transplant patients. Samples were taken on days 1, 3, 5, and 7 after intervention, as well as on the day that renal function stabilised (based on serum creatinine). During the first week after transplant, renal function improved based on serum creatinine evolution. However, increasing levels of biomarkers at different times during that first week could indicate tubular damage or other renal pathology. A relationship was found between NGAL values in the first week after transplantation and delayed graft function. In addition, higher NAG and NGAL, and lower KIM-1 values predicted a longer renal function stabilisation time. Therefore, urinary NAG, NGAL, and KIM-1 could constitute a predictive tool for kidney transplant complications, contributing to improve graft survival rates.
Collapse
Affiliation(s)
- Guadalupe Tabernero
- Toxicology Unit, Universidad de Salamanca, 37007 Salamanca, Spain
- Department of Nephrology, University Hospital, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Moisés Pescador
- Toxicology Unit, Universidad de Salamanca, 37007 Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
- RICORS2040-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Ana I Morales
- Toxicology Unit, Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
- RICORS2040-Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marta Prieto
- Toxicology Unit, Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain
- RICORS2040-Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
The Most Promising Biomarkers of Allogeneic Kidney Transplant Rejection. J Immunol Res 2022; 2022:6572338. [PMID: 35669103 PMCID: PMC9167141 DOI: 10.1155/2022/6572338] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022] Open
Abstract
Clinical transplantology is a constantly evolving field of medicine. Kidney transplantation has become standard clinical practice, and it has a significant impact on reducing mortality and improving the quality of life of patients. Allogenic transplantation induces an immune response, which may lead to the rejection of the transplanted organ. The gold standard for evaluating rejection of the transplanted kidney by the recipient's organism is a biopsy of this organ. However, due to the high invasiveness of this procedure, alternative diagnostic methods are being sought. Therefore, the biomarkers may play an essential predictive role in transplant rejection. A review of the most promising biomarkers for early diagnosis and prognosis prediction of allogenic kidney transplant rejection summarizes novel data on neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), C-X-C motif chemokine 10 (CXCL-10), cystatin C (CysC), osteopontin (OPN), and clusterin (CLU) and analyses the dynamics of changes of the biomarkers mentioned above in kidney diseases and the mechanism of rejection of the transplanted kidney.
Collapse
|
5
|
Chemokine Profiles Are Affected in Serum of Patients with Acute Rejection of Kidney Allograft. Mediators Inflamm 2021; 2021:5513690. [PMID: 33776571 PMCID: PMC7979290 DOI: 10.1155/2021/5513690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Kidney allograft transplantation improved the prognosis and quality of life of patients with end-stage renal diseases but the occurrence of acute rejection represents a limitation of the final outcome. Noninvasive biomarkers are needed as well as further advancements in the understanding of immune mechanisms of reaction to the allograft. Our study of 138 patients focused on one-year monitoring of serum concentrations of 12 chemokines regulating the recruitment of different immune cells into transplanted allograft and on in vitro regulation of the same chemokines release by interactions of renal proximal epithelial cells with monocyte/macrophage cell line stimulated with TNF alpha. In a group of 44 patients with acute rejection, higher serum pretransplant levels of CXCL1, CXCL5, CXCL6, CCL2, CCL21, and particularly CXCL10 and CX3CL1(both p < 0.001) were found suggesting their higher proinflammatory status as compared to subjects with the uncomplicated outcome. In samples collected at the day of biopsy positive for acute rejection, chemokines CXCL9 and CXCL11 attracting preferentially Th1 lymphocytes were found to be upregulated. In our in vitro model with TNF alpha induction, renal proximal epithelial cells seemed to be a more potent source of chemokines attracting neutrophils as compared to monocyte/macrophage cell line but the coculture of these cells potentiated release of neutrophilic chemokines CXCL5 and CXCL6. Similar augmentation of chemokine production was found also in the case of CCL2. On the other hand, adding of monocytes/macrophages to a culture of renal epithelial cells suppressed the release of CXCL10 and CXCL11 attracting T lymphocytes. We assume from our data that in kidney allograft transplantation, chemokines attracting neutrophils, T lymphocytes, and monocytes are induced simultaneously and measurement some of them in combination might be used as biomarkers of acute rejection. Mutual cell-cell interactions of immune cells with renal parenchyma seem to be important for fine regulation of chemokine release.
Collapse
|
6
|
Wlodek E, Kirkpatrick RB, Andrews S, Noble R, Schroyer R, Scott J, Watson CJE, Clatworthy M, Harrison EM, Wigmore SJ, Stevenson K, Kingsmore D, Sheerin NS, Bestard O, Stirnadel-Farrant HA, Abberley L, Busz M, DeWall S, Birchler M, Krull D, Thorneloe KS, Weber A, Devey L. A pilot study evaluating GSK1070806 inhibition of interleukin-18 in renal transplant delayed graft function. PLoS One 2021; 16:e0247972. [PMID: 33684160 PMCID: PMC7939287 DOI: 10.1371/journal.pone.0247972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/11/2020] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Delayed graft function (DGF) following renal transplantation is a manifestation of acute kidney injury (AKI) leading to poor long-term outcome. Current treatments have limited effectiveness in preventing DGF. Interleukin-18 (IL18), a biomarker of AKI, induces interferon-γ expression and immune activation. GSK1070806, an anti-IL18 monoclonal antibody, neutralizes activated (mature) IL18 released from damaged cells following inflammasome activation. This phase IIa, single-arm trial assessed the effect of a single dose of GSK1070806 on DGF occurrence post donation after circulatory death (DCD) kidney transplantation. METHODS The 3 mg/kg intravenous dose was selected based on prior studies and physiologically based pharmacokinetic (PBPK) modeling, indicating the high likelihood of a rapid and high level of IL18 target engagement when administered prior to kidney allograft reperfusion. Utilization of a Bayesian sequential design with a background standard-of-care DGF rate of 50% based on literature, and confirmed via extensive registry data analyses, enabled a statistical efficacy assessment with a minimal sample size. The primary endpoint was DGF frequency, defined as dialysis requirement ≤7 days post transplantation (except for hyperkalemia). Secondary endpoints included safety, pharmacokinetics and pharmacodynamic biomarkers. RESULTS GSK1070806 administration was associated with IL18-GSK1070806 complex detection and increased total serum IL18 levels due to IL18 half-life prolongation induced by GSK1070806 binding. Interferon-γ-induced chemokine levels declined or remained unchanged in most patients. Although the study was concluded prior to the Bayesian-defined stopping point, 4/7 enrolled patients (57%) had DGF, exceeding the 50% standard-of-care rate, and an additional two patients, although not reaching the protocol-defined DGF definition, demonstrated poor graft function. Six of seven patients experienced serious adverse events (SAEs), including two treatment-related SAEs. CONCLUSION Overall, using a Bayesian design and extensive PBPK dose modeling with only a small sample size, it was deemed unlikely that GSK1070806 would be efficacious in preventing DGF in the enrolled DCD transplant population. TRIAL REGISTRATION NCT02723786.
Collapse
Affiliation(s)
- E. Wlodek
- GlaxoSmithKline, Clinical Unit Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - R. B. Kirkpatrick
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - S. Andrews
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - R. Noble
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - R. Schroyer
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - J. Scott
- JMS Statistics Ltd, Pinner, United Kingdom
| | - C. J. E. Watson
- University of Cambridge and the NIHR Cambridge Biomedical Research Centre and the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation at the University of Cambridge, Cambridge, United Kingdom
| | - M. Clatworthy
- University of Cambridge and the NIHR Cambridge Biomedical Research Centre and the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation at the University of Cambridge, Cambridge, United Kingdom
| | | | - S. J. Wigmore
- Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - K. Stevenson
- Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - D. Kingsmore
- Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - N. S. Sheerin
- Newcastle Biomedical Research Centre and the NIHR Blood and Transplant Research Unit in Organ Donation and Transplantation, Newcastle University, Newcastle, United Kingdom
| | - O. Bestard
- L’Hospitalet de Llobregat, Bellvitge University Hospital, Kidney Transplant Unit, Barcelona, Spain
| | | | - L. Abberley
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - M. Busz
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - S. DeWall
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - M. Birchler
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - D. Krull
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - K. S. Thorneloe
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - A. Weber
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| | - L. Devey
- GlaxoSmithKline, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
7
|
Tajima S, Fu R, Shigematsu T, Noguchi H, Kaku K, Tsuchimoto A, Okabe Y, Masuda S. Urinary Human Epididymis Secretory Protein 4 as a Useful Biomarker for Subclinical Acute Rejection Three Months after Kidney Transplantation. Int J Mol Sci 2019; 20:ijms20194699. [PMID: 31546745 PMCID: PMC6801851 DOI: 10.3390/ijms20194699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
Kidney transplantation is the treatment of choice for patients with advanced chronic kidney disease (CKD) and end stage renal disease (ESRD). However, acute rejection (AR) is a common complication in kidney transplantation and is associated with reduced graft survival. Current diagnosis of AR relies mainly on clinical monitoring including serum creatinine, proteinuria, and confirmation by histopathologic assessment in the biopsy specimen of graft kidney. Although an early protocol biopsy is indispensable for depicting the severity of pathologic lesions in subclinical acute rejection (subAR), it is not acceptable in some cases and cannot be performed because of its invasive nature. Therefore, we examined the detection of noninvasive biomarkers that are closely related to the pathology of subAR in protocol biopsies three months after kidney transplantation. In this study, the urinary level of microtubule-associated protein 1 light chain 3 (LC3), monocyte chemotactic protein-1 (MCP-1), liver-type fatty acid-binding protein (L-FABP), neutrophil gelatinase-associated lipocalin (NGAL), and human epididymis secretory protein 4 (HE4) were measured three months after kidney transplantation. Urine samples of 80 patients undergoing kidney transplantation between August 2014 to September 2016, were prospectively collected after three months. SubAR was observed in 11 patients (13.8%) in protocol biopsy. The urinary levels of LC3, MCP-1, NGAL, and HE4 were significantly higher in patients with subAR than in those without, while those of L-FABP did not differ between the two groups. Multivariate regression models, receiver-operating characteristics (ROC), and areas under ROC curves (AUC) were used to identify predicted values of subAR. Urinary HE4 levels were able to better identify subAR (AUC = 0.808) than the other four urinary biomarkers. In conclusion, urinary HE4 is increased in kidney transplant recipients of subAR three months after kidney transplantation, suggesting that HE4 has the potential to be used as a novel clinical biomarker for predicting subAR.
Collapse
Affiliation(s)
- Soichiro Tajima
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Rao Fu
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Tomohiro Shigematsu
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Hiroshi Noguchi
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Keizo Kaku
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Akihiro Tsuchimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Yasuhiro Okabe
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
- Department of Pharmacy, International University of Health and Welfare Narita Hospital, Minami-Aoyama, Minato-ku, Tokyo 107-0062, Japan.
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, International University of Health and Welfare Narita Hospital, Minami-Aoyama, Minato-ku, Tokyo 107-0062, Japan.
| |
Collapse
|
8
|
Archdekin B, Sharma A, Gibson IW, Rush D, Wishart DS, Blydt-Hansen TD. Non-invasive differentiation of non-rejection kidney injury from acute rejection in pediatric renal transplant recipients. Pediatr Transplant 2019; 23:e13364. [PMID: 30719822 DOI: 10.1111/petr.13364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/11/2018] [Accepted: 12/21/2018] [Indexed: 12/19/2022]
Abstract
Acute kidney injury (AKI) is a major concern in pediatric kidney transplant recipients, where non-alloimmune causes must be distinguished from rejection. We sought to identify a urinary metabolite signature associated with non-rejection kidney injury (NRKI) in pediatric kidney transplant recipients. Urine samples (n = 396) from 60 pediatric transplant participants were obtained at time of kidney biopsy and quantitatively assayed for 133 metabolites by mass spectrometry. Metabolite profiles were analyzed via projection on latent structures discriminant analysis. Mixed-effects regression identified laboratory and clinical predictors of NRKI and distinguished NRKI from T cell-mediated rejection (CMR), antibody-mediated rejection (AMR), and mixed CMR/AMR. Urine samples (n = 199) without rejection were split into NRKI (n = 26; ΔSCr ≥25%), pre-NRKI (n = 35; ΔSCr ≥10% and <25%), and no NRKI (n = 138; ΔSCr <10%) groups. The NRKI discriminant score (dscore) distinguished between NRKI and no NRKI (AUC = 0.86; 95% CI = 0.79-0.94), confirmed by leave-one-out cross-validation (AUC = 0.79; 95% CI = 0.68-0.89). The NRKI dscore also distinguished between NRKI and pre-NRKI (AUC = 0.82; 95% CI = 0.71-0.93). In a linear mixed-effects regression model to account for repeated measures, the NRKI dscore was independent of concurrent rejection, but there was a non-statistical trend for higher dscores with rejection severity. A second exploratory classifier developed to distinguish NRKI from clinical rejection had similar test characteristics (AUC = 0.81, 95% CI = 0.70-0.92, confirmed by LOOCV). This study demonstrates the potential of a urine metabolite classifier to detect NRKI in pediatric kidney transplant patients and non-invasively discriminate NRKI from rejection.
Collapse
Affiliation(s)
- Ben Archdekin
- Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Atul Sharma
- Department of Pediatrics and Child Health, Children's Hospital at Health Sciences Center, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ian W Gibson
- Department of Pathology, Health Sciences Center, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David Rush
- Department of Medicine, Health Sciences Center, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David S Wishart
- The Metabolomics Innovation Center, University of Alberta, Edmonton, Alberta, Canada
| | - Tom D Blydt-Hansen
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Fu R, Tajima S, Suetsugu K, Watanabe H, Egashira N, Masuda S. Biomarkers for individualized dosage adjustments in immunosuppressive therapy using calcineurin inhibitors after organ transplantation. Acta Pharmacol Sin 2019; 40:151-159. [PMID: 29950613 DOI: 10.1038/s41401-018-0070-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/10/2018] [Indexed: 01/10/2023]
Abstract
Calcineurin inhibitors (CNIs), such as cyclosporine A and tacrolimus, are widely used immunosuppressive agents for the prevention of post-transplantation rejection and have improved 1-year graft survival rates by up to 90%. However, CNIs can induce severe reactions, such as acute or chronic allograft nephropathy, hypertension, and neurotoxicity. Because CNIs have varied bioavailabilities, narrow therapeutic ranges, and individual propensities for toxic effects, therapeutic drug monitoring is necessary for all CNIs. Identifying the genetic polymorphisms in drug-metabolizing enzymes will help to determine personalized dosage regimens for CNIs, as CNIs are substrates for CYP3A5 and P-glycoprotein (P-gp, MDR1). CNIs are often concomitantly administered with voriconazole or proton pump inhibitors (PPIs), giving rise to drug interaction problems. Voriconazole and PPIs can increase the blood concentrations of CNIs, and both are primarily metabolized by CYP2C19. Thus, it is expected that interactions between CNIs and voriconazole or PPI would be affected by CYP2C19 and CYP3A5 polymorphisms. CNI-induced acute kidney injury (AKI) is a serious complication of transplantations. Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule 1 (KIM-1) are noninvasive urinary biomarkers that are believed to be highly sensitive to CNI-induced AKI. In this article, we review the adverse events and pharmacokinetics of CNIs and the biomarkers related to CNIs, including CYP3A5, CYP2C19, MDR1, NGAL, and KIM-1. We hope that these data will help to identify the optimal biomarkers for monitoring CNI-based immunosuppressive therapy after organ transplantation.
Collapse
|
10
|
Xu CX, Shi BY, Jin ZK, Hao JJ, Duan WL, Han F, Zhao YL, Ding CG, Xue WJ, Ding XM, Zheng J, Tian PX. Multiple-biomarkers provide powerful prediction of early acute renal allograft rejection by combination of serum fractalkine, IFN-γ and IP-10. Transpl Immunol 2018; 50:68-74. [PMID: 30081186 DOI: 10.1016/j.trim.2018.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023]
Abstract
Biomarkers are urgently required for predicting rejection so that anti-rejection treatment can be taken early to protect the allograft from irreversible damage. We hypothesized that the combination of circulating fractalkine, IFN-γ and IP-10 might serve as effective biomarkers for predicting early acute renal allograft rejection. We conducted a retrospective study of 87 subjects, who were classified into acute rejection group (ARG; n = 38) and non-rejection group (NRG; n = 49). Serum fractalkine, IFN-γ and IP-10 levels were measured by Luminex. The levels of fractalkine on day 0 and 7th day, IP-10 on 4th and 7th day, and IFN-γ on 7th day in ARG was significantly higher than that in NRG. Kaplan-Meier survival analysis highlighted the higher-levels groups of fractalkine on day 0, 4th and 7th day, IFN-γ on day 0, 1st, 4th, and 7th day and IP-10 on the 4th and 7th day in rejection-free survival probability were significantly lower than low-levels groups. ROC analyses highlight the superiority of fractalkine on day 0, IP-10 on day 0, 4th and 7th day, and IFN-γ on day 0, 1st and 7th day in prediction of acute rejection. We found the combination of fractalkine on day 0, IP-10 on 7th day and IFN-γ on 7th day had the highest AUC (0.866) for predicting rejection with a sensitivity of 86.8% and a specificity of 89.8%. Our findings demonstrated a more powerful prediction of early acute renal allograft rejection during the first month after transplantation by combination of multiple-biomarkers of fractalkine, IFN-γ and IP-10, and the results might help stratify the immunologic risk of acute allograft rejection in recipients.
Collapse
Affiliation(s)
- Cui-Xiang Xu
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China; Center of Shaanxi Provincial Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Bin-Ya Shi
- Department of Primary Medical Service, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Zhan-Kui Jin
- Department of Orthopaedics, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Jun-Jun Hao
- Department of Cardiac Surgery, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Wan-Li Duan
- Department of Urology, Shaanxi Provincial People's Hospital, Xi'an, People's Republic of China
| | - Feng Han
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China; Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yan-Long Zhao
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China; Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Cheng-Guang Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China; Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Wu-Jun Xue
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China; Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xiao-Ming Ding
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China; Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jin Zheng
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China; Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Pu-Xun Tian
- Department of Kidney Transplantation, Hospital of Nephropathy, First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, People's Republic of China; Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
11
|
Modarresi A, Nafar M, Sahraei Z, Salamzadeh J, Chaibakhsh S, Ziaie S, Parvin M, Panahi Y, Einollahi B. N-acetylcysteine decreases urinary level of neutrophil gelatinase-associated lipocalin in deceased-donor renal transplant recipients: a randomized clinical trial. Biomarkers 2018; 23:589-596. [PMID: 29683755 DOI: 10.1080/1354750x.2018.1468823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
CONTEXT Acute kidney injury (AKI) is a common complication after kidney transplantation (KT), especially in recipients from deceased donors. Urinary neutrophil gelatinase-associated lipocalin (u-NGAL) is an early and sensitive marker of AKI after transplantation. OBJECTIVES We assessed the renoprotective effect of N-acetylcysteine (NAC) on u-NGAL levels as an early prognostic marker of graft function immediately after transplantation. MATERIALS AND METHODS A double-blind, randomized, placebo-controlled trial was conducted on 70 deceased-donor KT recipients ( www.irct.ir , trial registration number: IRCT2014090214693N4). Patients received 600 mg oral NAC or placebo twice daily from day 0 to 5 and urine samples were taken before, and on the first and fifth days after transplantation. U-NGAL and early graft function were compared between the two groups. RESULTS NAC significantly reduced u-NGAL levels compared to placebo (p value = 0.02), while improvement in early graft function with NAC did not reach statistical significance. CONCLUSIONS This study showed that NAC administration in deceased-donor KT recipients can reduce tubular kidney injury, evidenced by u-NGAL measurements. Improvement in early graft function needs a larger sample size to reach a statistical conclusion.
Collapse
Affiliation(s)
- Atieh Modarresi
- a Research Center for Rational Use of Drugs, Tehran University of Medical Sciences , Tehran , Iran
| | - Mohsen Nafar
- b Urology and Nephrology Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Zahra Sahraei
- c Department of Clinical Pharmacy, School of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Jamshid Salamzadeh
- c Department of Clinical Pharmacy, School of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Samira Chaibakhsh
- a Research Center for Rational Use of Drugs, Tehran University of Medical Sciences , Tehran , Iran.,d Department of Biostatistics , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Shadi Ziaie
- c Department of Clinical Pharmacy, School of Pharmacy , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Mahmoud Parvin
- b Urology and Nephrology Research Center, Shahid Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Yunes Panahi
- e Pharmacotherapy Department, Faculty of Pharmacy, Baqiyatollah University of Medical Sciences , Tehran , Iran
| | - Behzad Einollahi
- f Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
12
|
Maier HT, Ashraf MI, Denecke C, Weiss S, Augustin F, Messner F, Vallant N, Böcklein M, Margreiter C, Göbel G, Pratschke J, Öfner-Velano D, Aigner F. Prediction of delayed graft function and long-term graft survival by serum and urinary neutrophil gelatinase-associated lipocalin during the early postoperative phase after kidney transplantation. PLoS One 2018; 13:e0189932. [PMID: 29304176 PMCID: PMC5755755 DOI: 10.1371/journal.pone.0189932] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/05/2017] [Indexed: 11/18/2022] Open
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) has emerged as an early marker protein for kidney dysfunction in various clinical settings. In this prospective study we evaluated serial changes of serum and urinary NGAL within the first 7 days after kidney transplantation in 170 consecutive recipients. The main focus of this study was to assess the performance of serum and urinary NGAL in the prediction of delayed graft function (DGF) and two-year graft and patient survival. Serum and urine samples of 170 patients undergoing primary kidney transplantation from October 2010 to December 2012 were prospectively collected from day 0 to 7. NGAL was analyzed by ELISA. Multivariate regression models, receiver-operating characteristics (ROC), and areas under ROC curves (AUC) were used to identify predictors of DGF. DGF occurred in 52 patients (30.6%). Serum (AUC = 0.869) and urinary NGAL (AUC = 0.872) on postoperative day (POD) 2 could accurately predict DGF compared to serum creatinine (AUC = 0.619). Multivariate analyses revealed donor age, serum and urinary NGAL significantly associated with DGF (p<0.001). Recipient age was the only significant factor in a cox regression model influencing two-year graft and patient survival. In conclusion, serum and urinary NGAL are early predictors of DGF after kidney transplantation.
Collapse
Affiliation(s)
- Herbert Thomas Maier
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Muhammad Imtiaz Ashraf
- Daniel-Swarovski-Research Laboratory, Innsbruck Medical University, Innsbruck, Austria
- Charité Universitätsmedizin Berlin, Department of Surgery, Campus Virchow-Klinikum and Campus Mitte, Berlin, Germany
| | - Christian Denecke
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
- Charité Universitätsmedizin Berlin, Department of Surgery, Campus Virchow-Klinikum and Campus Mitte, Berlin, Germany
| | - Sascha Weiss
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
- Charité Universitätsmedizin Berlin, Department of Surgery, Campus Virchow-Klinikum and Campus Mitte, Berlin, Germany
| | - Florian Augustin
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Franka Messner
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Natalie Vallant
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Matthias Böcklein
- Daniel-Swarovski-Research Laboratory, Innsbruck Medical University, Innsbruck, Austria
| | - Christian Margreiter
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Georg Göbel
- Department of Medical Statistics, Informatics and Health Economics, Innsbruck Medical University, Innsbruck, Austria
| | - Johann Pratschke
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
- Charité Universitätsmedizin Berlin, Department of Surgery, Campus Virchow-Klinikum and Campus Mitte, Berlin, Germany
| | - Dietmar Öfner-Velano
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Felix Aigner
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
- Charité Universitätsmedizin Berlin, Department of Surgery, Campus Virchow-Klinikum and Campus Mitte, Berlin, Germany
- * E-mail:
| |
Collapse
|
13
|
Yang K, Adin C, Shen Q, Lee LJ, Yu L, Fadda P, Samogyi A, Ham K, Xu L, Gilor C, Ziouzenkova O. Aldehyde dehydrogenase 1 a1 regulates energy metabolism in adipocytes from different species. Xenotransplantation 2017; 24. [PMID: 28718514 DOI: 10.1111/xen.12318] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/09/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Survival and longevity of xenotransplants depend on immune function and ability to integrate energy metabolism between cells from different species. However, mechanisms for interspecies cross talk in energy metabolism are not well understood. White adipose tissue stores energy and is capable of mobilization and dissipation of energy as heat (thermogenesis) by adipocytes expressing uncoupling protein 1 (Ucp1). Both pathways are under the control of vitamin A metabolizing enzymes. Deficient retinoic acid production in aldehyde dehydrogenase 1 A1 (Aldh1a1) knockout adipocytes (KO) inhibits adipogenesis and increases thermogenesis. Here we test the role Aldh1a1 in regulation of lipid metabolism in xenocultures. METHODS Murine wide-type (WT) and KO pre-adipocytes were encapsulated into a poly-L-lysine polymer that allows exchange of humoral factors <32kD via nanopores. Encapsulated murine adipocytes were co-incubated with primary differentiated canine adipocytes. Then, expression of adipogenic and thermogenic genes in differentiated canine adipocytes was detected by real-time polymerase chain reaction (PCR). The regulatory factors in WT and KO cells were identified by comparison of secretome using proteomics and in transcriptome by gene microarray. RESULTS Co-culture of encapsulated mouse KO vs WT adipocytes increased expression of peroxisome proliferator-activated receptor gamma (Pparg), but reduced expression of its target genes fatty acid binding protein 4 (Fabp4), and adipose triglyceride lipase (Atgl) in canine adipocytes, suggesting inhibition of PPARγ activation. Co-culture with KO adipocytes also induced expression of Ucp1 in canine adipocytes compared to expression in WT adipocytes. Cumulatively, murine KO compared to WT adipocytes decreased lipid accumulation in canine adipocytes. Comparative proteomics revealed significantly higher levels of vitamin A carriers, retinol binding protein 4 (RBP4), and lipokalin 2 (LCN2) in KO vs WT adipocytes. CONCLUSIONS Our data demonstrate the functional exchange of regulatory factors between adipocytes from different species for regulation of energy balance. RBP4 and LCN2 appear to be involved in the transport of retinoids for regulation of lipid accumulation and thermogenesis in xenocultures. While the rarity of thermogenic adipocytes in humans and dogs precludes their use for autologous transplantation, our study demonstrates that xenotransplantation of engineered cells could be a potential solution for the reduction in obesity in dogs and a strategy for translation to patients.
Collapse
Affiliation(s)
- Kefeng Yang
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA.,Department of Nutrition, School of Medical, Shanghai Jiao Tong University, Shanghai, China
| | - Christopher Adin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Qiwen Shen
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA
| | - Ly James Lee
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Lianbo Yu
- Department of Statistics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Paolo Fadda
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Arpad Samogyi
- Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH, USA
| | - Kathleen Ham
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA
| | - Lu Xu
- Department of Human Sciences, The Ohio State University, Columbus, OH, USA.,Department of Minimally Invasive Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chen Gilor
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | | |
Collapse
|
14
|
Matz M, Lorkowski C, Fabritius K, Wu K, Rudolph B, Frischbutter S, Brakemeier S, Gaedeke J, Neumayer HH, Mashreghi MF, Budde K. The selective biomarker IL-8 identifies IFTA after kidney transplantation in blood cells. Transpl Immunol 2016; 39:18-24. [DOI: 10.1016/j.trim.2016.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/28/2016] [Accepted: 09/28/2016] [Indexed: 12/20/2022]
|
15
|
Acute kidney injury in children: Enhancing diagnosis with novel biomarkers. JOURNAL OF ACUTE DISEASE 2016. [DOI: 10.1016/j.joad.2016.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
16
|
Lohkamp LN, Öllinger R, Chatzigeorgiou A, Illigens BMW, Siepmann T. Intraoperative biomarkers in renal transplantation. Nephrology (Carlton) 2016; 21:188-199. [PMID: 26132511 DOI: 10.1111/nep.12556] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 12/11/2022]
Abstract
The emerging need for biomarkers in the management of renal transplantation is highlighted by the severity of related complications such as acute renal failure and ischaemia/reperfusion injury (IRI) and by the increasing efforts to identify novel markers of these events to predict and monitor delayed graft function (DGF) and long-term outcome. In clinical studies candidate markers such as kidney injury molecule-1, neutrophil gelatinase-associated lipocalin and interleukin-18 have been demonstrated to be valid biomarkers with high predictive value for DFG in a post-transplant setting. However, studies investigating biomarkers for early diagnosis of IRI and assumable DGF as well as identification of potential graft recipients at increased risk at the time point of transplantation lack further confirmation and translation into clinical practice. This review summarizes the current literature on the value of IRI biomarkers in outcome prediction following renal transplantation as well their capacity as surrogate end points from an intraoperative perspective.
Collapse
Affiliation(s)
- Laura-Nanna Lohkamp
- Department of Neurosurgery with Pediatric Neurosurgery, Charité-University Medicine, Campus Virchow, Berlin, Germany
- Center for Clinical Research and Management Education, Division of Health Care Sciences, Dresden International University, Dresden, Germany
| | - Robert Öllinger
- Department for General, Visceral and Transplantation Surgery, Charité-University Medicine, Campus Virchow, Berlin, Germany
| | - Antonios Chatzigeorgiou
- Department of Clinical Pathobiochemistry, Medical Faculty Carl Gustav Carus Technische Universität Dresden, Dresden, Germany
- Paul-Langerhans Institute Dresden, German Center for Diabetes Research, Dresden, Germany
| | - Ben Min-Woo Illigens
- Center for Clinical Research and Management Education, Division of Health Care Sciences, Dresden International University, Dresden, Germany
- Department of Neurology, University Hospital Carl Gustav Carus Technische Universität Dresden, Dresden, Germany
| | - Timo Siepmann
- Center for Clinical Research and Management Education, Division of Health Care Sciences, Dresden International University, Dresden, Germany
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Crespo E, Bestard O. Biomarkers to assess donor-reactive T-cell responses in kidney transplant patients. Clin Biochem 2015; 49:329-37. [PMID: 26279496 DOI: 10.1016/j.clinbiochem.2015.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/23/2015] [Accepted: 08/09/2015] [Indexed: 02/07/2023]
Abstract
Different to antibody-mediated rejection (ABMR), T-cell mediated rejection (TCMR) still unpredictably occurs after kidney transplantation in a great part because of a poor immunologic evaluation of the cellular allogeneic immune response. However, in the last years, important efforts have focused on the development of novel and more sensitive assays to monitor T-cell alloimmune responses at different biological levels that may improve the understanding of the functional status of the cellular immune compartment in patients undergoing organ transplantation. In this direction, immune assays evaluating T-cell proliferation, intracellular ATP release, multiparameter flow cytometry, profiling T-cell receptor repertoires and measurements of frequencies of cytokine-producing T-cells using an IFN-γ enzyme-linked immunospot assay (IFN-γ ELISPOT) have been reported showing interesting associations between the cellular alloimmune response and kidney transplant outcomes. In summary, an important progress has been made in the assessment of alloreactive T-cell responses in the context of organ transplantation using novel immune assays at different biological levels. However, there is an urgent need for prospective, randomized clinical studies to validate these encouraging preliminary data to ultimately introduce them in current clinical practice for refining current immune-risk stratification in kidney transplantation.
Collapse
Affiliation(s)
- Elena Crespo
- Laboratory of Experimental Nephrology, IDIBELL, Barcelona, Spain
| | - Oriol Bestard
- Laboratory of Experimental Nephrology, IDIBELL, Barcelona, Spain; Kidney Transplant Unit, Nephrology Department, Bellvitge University Hospital, Barcelona University, Barcelona, Spain.
| |
Collapse
|
18
|
Ramirez-Sandoval JC, Herrington W, Morales-Buenrostro LE. Neutrophil gelatinase-associated lipocalin in kidney transplantation: A review. Transplant Rev (Orlando) 2015; 29:139-44. [PMID: 26071983 DOI: 10.1016/j.trre.2015.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/08/2015] [Accepted: 04/30/2015] [Indexed: 12/13/2022]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a protein expressed by kidney tubular cells in response to ischemia, but may also be an early indicator of immunological rejection, calcineurin inhibitor toxicity, obstructive nephropathy, subclinical tubulitis or infection. Although there is currently no evidence to support the routine serial measurement of blood or urinary NGAL to detect subclinical acute tubular injury, NGAL has the potential to provide useful information to those that care for kidney transplant recipients (KTRs). First, high urinary or serum NGAL concentrations shortly after transplantation are a predictor of delayed graft function and are associated with reduced graft function at one year. Secondly, among KTRs with previously stable graft function who then suffer acute graft dysfunction, a high urinary NGAL predicts graft loss at one year. If further refined, diagnostic tests based on NGAL levels may provide future useful clinical tools.
Collapse
Affiliation(s)
- Juan C Ramirez-Sandoval
- Department of Nephrology and Mineral Metabolism, National Institute of Medical Sciences and Nutrition Salvador, Zubirán, ZP 14000, Mexico City, Mexico
| | - William Herrington
- Oxford Kidney Unit, Oxford University Hospitals NHS Trust, Churchill Hospital, Headington, Oxford, OX3 7LJ, UK
| | - Luis E Morales-Buenrostro
- Department of Nephrology and Mineral Metabolism, National Institute of Medical Sciences and Nutrition Salvador, Zubirán, ZP 14000, Mexico City, Mexico.
| |
Collapse
|