1
|
Brandhorst D, Brandhorst H, Acreman S, Johnson PRV. The ischaemic preconditioning paradox and its implications for islet isolation from heart-beating and non heart-beating donors. Sci Rep 2022; 12:19321. [PMID: 36369239 PMCID: PMC9652462 DOI: 10.1038/s41598-022-23862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of ischaemia can severely damage procured donor organs for transplantation. The pancreas, and pancreatic islets in particular, is one of the most sensitive tissues towards hypoxia. The present study was aimed to assess the effect of hypoxic preconditioning (HP) performed ex-vivo in islets isolated from heart-beating donor (HBD) and non heart-beating donor (NHBD) rats. After HP purified islets were cultured for 24 h in hypoxia followed by islet characterisation. Post-culture islet yields were significantly lower in sham-treated NHBD than in HBD. This difference was reduced when NHBD islets were preconditioned. Similar results were observed regarding viability, apoptosis and in vitro function. Reactive oxygen species generation after hypoxic culture was significantly enhanced in sham-treated NHBD than in HBD islets. Again, this difference could be diminished through HP. qRT-PCR revealed that HP decreases pro-apoptotic genes but increases HIF-1 and VEGF. However, the extent of reduction and augmentation was always substantially higher in preconditioned NHBD than in HBD islets. Our findings indicate a lower benefit of HBD islets from HP than NHBD islets. The ischaemic preconditioning paradox suggests that HP should be primarily applied to islets from marginal donors. This observation needs evaluation in human islets.
Collapse
Affiliation(s)
- Daniel Brandhorst
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.
| | - Heide Brandhorst
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Samuel Acreman
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Paul R V Johnson
- Research Group for Islet Transplantation, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| |
Collapse
|
2
|
Tahbaz M, Yoshihara E. Immune Protection of Stem Cell-Derived Islet Cell Therapy for Treating Diabetes. Front Endocrinol (Lausanne) 2021; 12:716625. [PMID: 34447354 PMCID: PMC8382875 DOI: 10.3389/fendo.2021.716625] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin injection is currently the main therapy for type 1 diabetes (T1D) or late stage of severe type 2 diabetes (T2D). Human pancreatic islet transplantation confers a significant improvement in glycemic control and prevents life-threatening severe hypoglycemia in T1D patients. However, the shortage of cadaveric human islets limits their therapeutic potential. In addition, chronic immunosuppression, which is required to avoid rejection of transplanted islets, is associated with severe complications, such as an increased risk of malignancies and infections. Thus, there is a significant need for novel approaches to the large-scale generation of functional human islets protected from autoimmune rejection in order to ensure durable graft acceptance without immunosuppression. An important step in addressing this need is to strengthen our understanding of transplant immune tolerance mechanisms for both graft rejection and autoimmune rejection. Engineering of functional human pancreatic islets that can avoid attacks from host immune cells would provide an alternative safe resource for transplantation therapy. Human pluripotent stem cells (hPSCs) offer a potentially limitless supply of cells because of their self-renewal ability and pluripotency. Therefore, studying immune tolerance induction in hPSC-derived human pancreatic islets will directly contribute toward the goal of generating a functional cure for insulin-dependent diabetes. In this review, we will discuss the current progress in the immune protection of stem cell-derived islet cell therapy for treating diabetes.
Collapse
Affiliation(s)
- Meghan Tahbaz
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Eiji Yoshihara
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, United States
- David Geffen School of Medicine at University of California, Los Angeles, CA, United States
- *Correspondence: Eiji Yoshihara,
| |
Collapse
|
3
|
NLRP3 Inflammasome is Activated in Rat Pancreatic Islets by Transplantation and Hypoxia. Sci Rep 2020; 10:7011. [PMID: 32332867 PMCID: PMC7181690 DOI: 10.1038/s41598-020-64054-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/10/2020] [Indexed: 01/14/2023] Open
Abstract
Hypoxia, IL-1β production and oxidative stress are involved in islet graft dysfunction and destruction. However, the link between these events has not yet been determined in transplanted islets. The goal of this study was to determine whether NLRP3 inflammasome is responsible for IL-1β production and if it is activated by hypoxia-induced oxidative stress in transplanted islets. Rat islets were transplanted under the kidney capsule of immunodeficient mice. At different times post-transplantation, blood samples were collected and islet grafts harvested. Rat islets were also incubated in vitro either under normoxia or hypoxia for 24 h, in the absence or presence of inhibitors of NLRP3 inflammasome (CASP1 inhibitor) or oxidative stress (NAC). NLRP3, CASP1, IL1B, BBC3 pro-apoptotic and BCL2 anti-apoptotic genes in transplanted and in vitro incubated islets were then studied using real time PCR. IL-1β released in the blood and in the supernatant was quantified by ELISA. Cell death was analysed by propidium iodide and Annexin-V staining. NLRP3, CASP1 and BBC3 in transplanted rat islets and IL-1β in blood transiently increased during the first days after transplantation. In islets incubated under hypoxia, NRLP3, IL1B and CASP1 and IL-1β released in supernatant increased compared to islets incubated under normoxia. These effects were prevented by the inhibition of NLRP3 inflammasome by CASP1 or oxidative stress by NAC. However, these inhibitors did not prevent hypoxia-induced rat islet death. These data show that NLRP3 inflammasome in rat islets is transiently activated after their transplantation and induced through oxidative stress in vitro. However, NRLP3 inflammasome inhibition does not protect islet cells against hypoxia.
Collapse
|
4
|
Messner F, Yu Y, Etra JW, Krendl FJ, Berchtold V, Bösmüller C, Brandacher G, Oberhuber R, Scheidl S, Maglione M, Öfner D, Schneeberger S, Margreiter C. Donor cardiac arrest and cardiopulmonary resuscitation: impact on outcomes after simultaneous pancreas-kidney transplantation - a retrospective study. Transpl Int 2020; 33:657-666. [PMID: 32027055 PMCID: PMC7318239 DOI: 10.1111/tri.13591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/12/2019] [Accepted: 02/03/2020] [Indexed: 01/16/2023]
Abstract
Donor cardiac arrest and cardiopulmonary resuscitation (CACPR) has been considered critically because of concerns over hypoperfusion and mechanical trauma to the donor organs. We retrospectively analyzed 371 first simultaneous pancreas–kidney transplants performed at the Medical University of Innsbruck between 1997 and 2017. We evaluated short‐ and long‐term outcomes from recipients of organs from donors with and without a history of CACPR. A total of 63 recipients received a pancreas and kidney graft from a CACPR donor. At 1, and 5‐years, patient survival was similar with 98.3%, and 96.5% in the CACPR and 97.0%, and 90.2% in the non‐CACPR group (log rank P = 0.652). Death‐censored pancreas graft survival was superior in the CACPR group with 98.3%, and 91.4% compared to 86.3%, and 77.4% (log rank P = 0.028) in the non‐CACPR group, which remained statistically significant even after adjustment [aHR 0.49 (95% CI 0.24–0.98), P = 0.044]. Similar relative risks for postoperative complications Clavien Dindo > 3a, pancreatitis, abscess, immunologic complications, delayed pancreas graft function, and relative length of stay were observed for both groups. Donors with a history of CACPR are, in the current practice, safe for transplantation. Stringent donor selection and short CPR durations may allow for outcomes surpassing those of donors without CACPR.
Collapse
Affiliation(s)
- Franka Messner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Yifan Yu
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Joanna W Etra
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Felix J Krendl
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Valeria Berchtold
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Bösmüller
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerald Brandacher
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Scheidl
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Manuel Maglione
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Margreiter
- Department of Visceral, Transplant and Thoracic Surgery, Center of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Delaune V, Toso C, Kahler-Quesada A, Slits F, Gex Q, Kaya G, Lavallard V, Orci LA, Peloso A, Lacotte S. Antibody-induced NKG2D blockade in a rat model of intraportal islet transplantation leads to a deleterious reaction. Transpl Int 2020; 33:675-688. [PMID: 32003082 DOI: 10.1111/tri.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 01/28/2020] [Indexed: 11/30/2022]
Abstract
Intraportal islet transplantation is plagued by an acute destruction of transplanted islets. Amongst the first responders, NK cells and macrophages harbour an activating receptor, NKG2D, recognizing ligands expressed by stressed cells. We aimed to determine whether islet NKG2D ligand expression increases with culture time, and to analyse the impact of antibody-induced NKG2D blockade in islet transplantation. NKG2D-ligand expression was analysed in rat and human islets. Syngeneic marginal mass intraportal islet transplantations were performed in rats: control group, recipients transplanted with NKG2D-recombinant-treated islets (recombinant group), and recipients treated with a mouse anti-rat anti-NKG2D antibody and transplanted with recombinant-treated islets (antibody-recombinant group). Islets demonstrated increased gene expression of NKG2D ligands with culture time. Blockade of NKG2D on NK cells decreased in vitro cytotoxicity against islets. Recipients from the control and recombinant groups showed similar metabolic results; conversely, treatment with the antibody resulted in lower diabetes reversal. The antibody depleted circulating and liver NK cells in recipients, who displayed increased macrophage infiltration of recipient origin around the transplanted islets. In vitro blockade of NKG2D ligands had no impact on early graft function. Systemic treatment of recipients with an anti-NKG2D antibody was deleterious to the islet graft, possibly through an antibody-dependent cell-mediated cytotoxicity reaction.
Collapse
Affiliation(s)
- Vaihere Delaune
- Divisions of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland.,Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Toso
- Divisions of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland.,Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Arianna Kahler-Quesada
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Florence Slits
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Quentin Gex
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gürkan Kaya
- Division of Dermatology and Venereology, Department of Internal Medicine Specialties, Geneva University Hospitals, Geneva, Switzerland
| | - Vanessa Lavallard
- Cell Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lorenzo Annibale Orci
- Divisions of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland.,Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andrea Peloso
- Divisions of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals, Geneva, Switzerland.,Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Stéphanie Lacotte
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|