1
|
Cai L, Zhang B. Identification of Inflammatory Gene in the Congenital Heart Surgery Patients following Cardiopulmonary Bypass via the Way of WGCNA and Machine Learning Algorithms. DISEASE MARKERS 2023; 2023:5493415. [PMID: 39281206 PMCID: PMC11401684 DOI: 10.1155/2023/5493415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/24/2022] [Indexed: 09/18/2024]
Abstract
Performing cardiopulmonary bypass (CPB) to reduce ischemic injury during surgery is a common approach to cardiac surgery. However, this procedure can lead to systemic inflammation and multiorgan dysfunction. Therefore, elucidating the molecular mechanisms of CPB-induced inflammatory cytokine release is essential as a critical first step in identifying new targets for therapeutic intervention. The GSE143780 dataset which is mRNA sequencing from total circulating leukocytes of the neonatorum was downloaded from the Gene Expression Omnibus (GEO) database. A total of 21 key module genes were obtained by analyzing the intersection of differentially expressed gene (DEG) and gene coexpression network analysis (WGCNA), and then, 4 genes (TRAF3IP2-AS1, PPARGC1B, CD4, and PDLIM5) were further confirmed after the least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) screening and were used as hub genes for CPB-induced inflammatory cytokine release in patients with congenital heart defects. The enrichment analysis revealed 21 key module genes mainly related to the functions of developmental cell growth, regulation of monocyte differentiation, regulation of myeloid leukocyte differentiation, ERK1 and ERK2 cascade, volume-sensitive anion channel activity, and estrogen receptor binding. The result of gene set enrichment analysis (GSEA) showed that the hub genes were related to different physiological functions of cells. The ceRNA network established for hub genes includes 3 hub genes (PPARGC1B, CD4, and PDLIM5), 55 lncRNAs, and 34 miRNAs. In addition, 4 hub genes have 215 potential therapeutic agents. Finally, expression validation of the four hub genes revealed that they were all significantly low expressed in the surgical samples than before.
Collapse
Affiliation(s)
- Liang Cai
- Department of Anesthesiology in Cardiovascular Institute, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Bingdong Zhang
- Department of Anesthesiology in Cardiovascular Institute, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Zhang T, Deng D, Huang S, Fu D, Wang T, Xu F, Ma L, Ding Y, Wang K, Wang Y, Zhao W, Chen X. A retrospect and outlook on the neuroprotective effects of anesthetics in the era of endovascular therapy. Front Neurosci 2023; 17:1140275. [PMID: 37056305 PMCID: PMC10086253 DOI: 10.3389/fnins.2023.1140275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Studies on the neuroprotective effects of anesthetics were carried out more than half a century ago. Subsequently, many cell and animal experiments attempted to verify the findings. However, in clinical trials, the neuroprotective effects of anesthetics were not observed. These contradictory results suggest a mismatch between basic research and clinical trials. The Stroke Therapy Academic Industry Roundtable X (STAIR) proposed that the emergence of endovascular thrombectomy (EVT) would provide a proper platform to verify the neuroprotective effects of anesthetics because the haemodynamics of patients undergoing EVT is very close to the ischaemia–reperfusion model in basic research. With the widespread use of EVT, it is necessary for us to re-examine the neuroprotective effects of anesthetics to guide the use of anesthetics during EVT because the choice of anesthesia is still based on team experience without definite guidelines. In this paper, we describe the research status of anesthesia in EVT and summarize the neuroprotective mechanisms of some anesthetics. Then, we focus on the contradictory results between clinical trials and basic research and discuss the causes. Finally, we provide an outlook on the neuroprotective effects of anesthetics in the era of endovascular therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiangdong Chen
- *Correspondence: Xiangdong Chen, ; orcid.org/0000-0003-3347-2947
| |
Collapse
|
3
|
Urits I, Jones MR, Orhurhu V, Sikorsky A, Seifert D, Flores C, Kaye AD, Viswanath O. A Comprehensive Update of Current Anesthesia Perspectives on Therapeutic Hypothermia. Adv Ther 2019; 36:2223-2232. [PMID: 31301055 PMCID: PMC6822844 DOI: 10.1007/s12325-019-01019-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Indexed: 12/16/2022]
Abstract
Normal thermal regulation is a result of the integration of afferent sensory, central control, and efferent responses to temperature change. Therapeutic hypothermia (TH) is a technique utilized during surgery to protect vital organs from ischemia; however, in doing so leads to other physiological changes. Indications for inducing hypothermia have been described for neuroprotection, coronary artery bypass graft (CABG) surgery, surgical repair of thoracoabdominal and intracranial aneurysms, pulmonary thromboendarterectomy, and arterial switch operations in neonates. Initially it was thought that induced hypothermia worked exclusively by a temperature-dependent reduction in metabolism causing a decreased demand for oxygen and glucose. Induced hypothermia exerts its neuroprotective effects through multiple underlying mechanisms including preservation of the integrity and survival of neurons through a reduction of extracellular levels of excitatory neurotransmitters dopamine and glutamate, therefore reducing central nervous system hyperexcitability. Risks of hypothermia include increased infection risk, altered drug pharmacokinetics, and systemic cardiovascular changes. Indications for TH include ischemia-inducing surgeries and diseases. Two commonly used methods are used to induce TH, surface cooling and endovascular cooling. Core body temperature monitoring is essential during induction of TH and rewarming, with central venous temperature as the gold standard. The aim of this review is to highlight current literature discussing perioperative considerations of TH including risks, benefits, indications, methods, and monitoring.
Collapse
Affiliation(s)
- Ivan Urits
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Mark R Jones
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vwaire Orhurhu
- Department of Anesthesia, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Andrew Sikorsky
- Creighton University School of Medicine, Phoenix Regional Campus, Phoenix, AZ, USA
| | - Danica Seifert
- Creighton University School of Medicine, Phoenix Regional Campus, Phoenix, AZ, USA
| | - Catalina Flores
- Creighton University School of Medicine, Phoenix Regional Campus, Phoenix, AZ, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Omar Viswanath
- Valley Anesthesiology and Pain Consultants, Phoenix, AZ, USA
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
- Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
4
|
Jourdan G, Didier C, Chotard E, Jacques S, Verwaerde P. Heated intravenous fluids alone fail to prevent hypothermia in cats under general anaesthesia. J Feline Med Surg 2017; 19:1249-1253. [PMID: 28121211 PMCID: PMC11104181 DOI: 10.1177/1098612x16688990] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives The objective was to evaluate the clinical efficiacy of a constant rate infusion of heated fluid as the sole means of preventing intraoperative hypothermia in cats. Methods This randomised, prospective, clinical study was conducted at a university teaching veterinary hospital. Female cats (American Society of Anesthesiologists [ASA] grade I) undergoing elective surgery by laparotomy under general anaesthesia (acepromazine 0.05 mg/kg SC; morphine 0.2 mg/kg IV; propofol IV titrated, isoflurane 2% in 100% oxygen) were randomised in two groups. Both groups were infused with fluid (NaCl 0.9%, 5 ml/kg/h) either at room temperature (control group) or prewarmed at 43°C (warmed group) using an Astoflo Plus eco (Stihler Electronic) fluid heating device. No other heating device was used. Temperature, heart rate, respiratory rate and SpO2 were evaluated after induction (T0) and every 15 mins for 1 h (T15, T30, T45, T60). Mean arterial blood pressure was recorded every 30 mins (T0, T30 and T60). Results Thirty-four female cats (ASA grade I) were enrolled in the study. There was no difference in age, weight, propofol dose or room temperature (22.4 ± 1.1°C vs 22.0 ± 1.5°C; P = 0.363) between control and warmed groups, respectively. In both groups, oesophageal temperature significantly decreased during anaesthesia ( P <0.0001). The temperature decrease after 1 h was -3.6 ± 0.7°C in the warmed group and was not significantly different from the control group (-3.4 ± 0.7°C; P = 0.307). The slopes of the temperature decrease did not significantly differ between the two groups (-0.058 ± 0.013°C/min vs -0.060 ± 0.010°C/min for the control and warmed groups, respectively; P = 0.624). Conclusions and relevance This study provides clinical evidence that a constant rate infusion of heated fluid alone fails to prevent intraoperative hypothermia in cats. The low infusion rate (5 ml/kg/h) could partly explain the ineffectiveness of this active warming device in minimising or delaying the onset of intraoperative hypothermia.
Collapse
Affiliation(s)
- Geraldine Jourdan
- Department of Critical Care – Anesthesia, National School of Veterinary Medecine, Toulouse, France
| | - Caroline Didier
- Department of Critical Care – Anesthesia, National School of Veterinary Medecine, Toulouse, France
| | - Erwan Chotard
- Department of Critical Care – Anesthesia, National School of Veterinary Medecine, Toulouse, France
| | - Sandra Jacques
- Department of Critical Care – Anesthesia, National School of Veterinary Medecine, Toulouse, France
| | - Patrick Verwaerde
- Department of Critical Care – Anesthesia, National School of Veterinary Medecine, Toulouse, France
| |
Collapse
|
5
|
Tarahovsky YS, Fadeeva IS, Komelina NP, Khrenov MO, Zakharova NM. Antipsychotic inductors of brain hypothermia and torpor-like states: perspectives of application. Psychopharmacology (Berl) 2017; 234:173-184. [PMID: 27933367 DOI: 10.1007/s00213-016-4496-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/26/2016] [Indexed: 12/12/2022]
Abstract
Hypothermia and hypometabolism (hypometabothermia) normally observed during natural hibernation and torpor, allow animals to protect their body and brain against the damaging effects of adverse environment. A similar state of hypothermia can be achieved under artificial conditions through physical cooling or pharmacological effects directed at suppression of metabolism and the processes of thermoregulation. In these conditions called torpor-like states, the mammalian ability to recover from stroke, heart attack, and traumatic injuries greatly increases. Therefore, the development of therapeutic methods for different pathologies is a matter of great concern. With the discovery of the antipsychotic drug chlorpromazine in the 1950s of the last century, the first attempts to create a pharmacologically induced state of hibernation for therapeutic purposes were made. That was the beginning of numerous studies in animals and the broad use of therapeutic hypothermia in medicine. Over the last years, many new agents have been discovered which were capable of lowering the body temperature and inhibiting the metabolism. The psychotropic agents occupy a significant place among them, which, in our opinion, is not sufficiently recognized in the contemporary literature. In this review, we summarized the latest achievements related to the ability of modern antipsychotics to target specific receptors in the brain, responsible for the initiation of hypometabothermia.
Collapse
Affiliation(s)
- Yury S Tarahovsky
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290. .,Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290.
| | - Irina S Fadeeva
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290.,Institute of Theoretical and Experimental Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Natalia P Komelina
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Maxim O Khrenov
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| | - Nadezhda M Zakharova
- Institute of Cell Biophysics RAS, Pushchino, Moscow Region, Russian Federation, 142290
| |
Collapse
|