1
|
Pan MD, Arbe MF, Salamone GV, Glikin GC, Finocchiaro LME, Villaverde MS. Loss of viability and impairment of the cell cycle by combining metabolic modulators in canine and feline melanoma cells. Res Vet Sci 2025; 191:105691. [PMID: 40373651 DOI: 10.1016/j.rvsc.2025.105691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025]
Abstract
Despite encouraging advances during the last decade, clinical management of malignant human, canine and feline melanoma continues to be a challenge. Thus, new therapeutic development is required. One of the hallmarks of cancer is metabolic rearrangement, including increased glucose metabolism. This metabolic alteration seems to be involved not only in cell proliferation but also in drug resistance, thus offering potential therapeutic targets. The aim of the present work was to investigate the in vitro effects of a combination of metformin (MET, an antidiabetic drug and OXPHOS inhibitor), 2-deoxyglucose (2DG, an HK inhibitor) and 6-aminonicotinamide (6AN, a G6PDH inhibitor) on two melanoma cell lines, Sc (canine) and Dc (feline) derived from spontaneous tumors. We found that both 2DG and MET treatment significantly decreased the cell viability of both cell lines (p < 0.05) in a concentration-dependent manner, whereas 6AN as monotherapy only significantly affected Sc. In addition, the effect of MET was significantly potentiated (p < 0.05) by the combination with both 2DG and 6AN in both cell lines. MET/2DG and MET/6AN significantly affected the cell cycle and increased the percentage of the subG0 population. These results support further studies to investigate the potential use of these metabolic drugs in a veterinary clinical setting.
Collapse
Affiliation(s)
- Melisa Denise Pan
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Oncología Dr. Ángel Roffo, Unidad de Transferencia Genética, Ciudad Autónoma Buenos Aires, Argentina
| | - Maria Florencia Arbe
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Oncología Dr. Ángel Roffo, Unidad de Transferencia Genética, Ciudad Autónoma Buenos Aires, Argentina
| | - Gabriela Veronica Salamone
- Instituto de Medicina Experimental (IMEX - CONICET) - Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Gerardo Claudio Glikin
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Oncología Dr. Ángel Roffo, Unidad de Transferencia Genética, Ciudad Autónoma Buenos Aires, Argentina
| | - Liliana María Elena Finocchiaro
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Oncología Dr. Ángel Roffo, Unidad de Transferencia Genética, Ciudad Autónoma Buenos Aires, Argentina
| | - Marcela Solange Villaverde
- Universidad de Buenos Aires, Facultad de Medicina, Instituto de Oncología Dr. Ángel Roffo, Unidad de Transferencia Genética, Ciudad Autónoma Buenos Aires, Argentina.
| |
Collapse
|
2
|
Repurposing Drugs in Small Animal Oncology. Animals (Basel) 2022; 13:ani13010139. [PMID: 36611747 PMCID: PMC9817697 DOI: 10.3390/ani13010139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Repurposing drugs in oncology consists of using off-label drugs that are licensed for various non-oncological medical conditions to treat cancer. Repurposing drugs has the advantage of using drugs that are already commercialized, with known mechanisms of action, proven safety profiles, and known toxicology, pharmacokinetics and pharmacodynamics, and posology. These drugs are usually cheaper than new anti-cancer drugs and thus more affordable, even in low-income countries. The interest in repurposed anti-cancer drugs has led to numerous in vivo and in vitro studies, with some promising results. Some randomized clinical trials have also been performed in humans, with certain drugs showing some degree of clinical efficacy, but the true clinical benefit for most of these drugs remains unknown. Repurposing drugs in veterinary oncology is a very new concept and only a few studies have been published so far. In this review, we summarize both the benefits and challenges of using repurposed anti-cancer drugs; we report and discuss the most relevant studies that have been previously published in small animal oncology, and we suggest potential drugs that could be clinically investigated for anti-cancer treatment in dogs and cats.
Collapse
|
3
|
Munday JS, Odom T, Dittmer KE, Wetzel S, Hillmer K, Tan ST. Multimodal Blockade of the Renin-Angiotensin System Is Safe and Is a Potential Cancer Treatment for Cats. Vet Sci 2022; 9:vetsci9080411. [PMID: 36006326 PMCID: PMC9413835 DOI: 10.3390/vetsci9080411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary As activation of the renin-angiotensin system (RAS) promotes cancer cell growth, medications that inhibit RAS activation could reduce cancer progression. However, studies in people in which RAS has been inhibited by a single treatment have not been consistently beneficial, possibly as RAS can be activated by many different cellular pathways. Multiple treatments have been used to more consistently block RAS in people, but such multimodal treatments have never previously been evaluated in veterinary species. In the present study, the safety of multimodal RAS inhibition using a combination of five treatments was assessed in six cats with cancer. Cats were treated for 8 weeks and none of the cats developed low blood pressure, evidence of kidney or liver disease, or significant adverse effects. Of the six cats enrolled in the study, one cat was withdrawn from the study due to difficulties administering the medications and another cat died of an unrelated cause. Two cats were euthanatized due to cancer progression during the study period while two cats completed the 8-week treatment period. The study showed that a multimodal blockade of RAS has the potential to be a safe and cost-effective treatment for cancer in cats. Abstract The role of the renin-angiotensin system (RAS) in cancer growth and progression is well recognized in humans. However, studies on RAS inhibition with a single agent have not shown consistent anticancer effects, potentially due to the neoplastic cells utilizing alternative pathways for RAS activation. To achieve more complete RAS inhibition, multimodal therapy with several medications that simultaneously block multiple steps in the RAS has been developed for use in humans. In the present study, the safety of multimodal RAS inhibition using atenolol, benazepril, metformin, curcumin, and meloxicam was assessed in six cats with squamous cell carcinomas. Cats were treated for 8 weeks, with blood pressure measured and blood sampled five times during the treatment period. None of the cats developed hypotension, azotemia, or increased serum liver enzyme concentrations. The packed cell volume of one cat decreased to just below the reference range during treatment. One cat was reported to have increased vomiting, although this occurred infrequently. One cat was withdrawn from the study due to difficulties administering the medications, and another cat died of an unrelated cause. Two cats were euthanatized during the study period due to cancer progression. Two cats completed the 8-week study period. One was subsequently euthanized due to cancer progression while the other cat is still alive 32 weeks after entering the study and is still receiving the multimodal blockade of the RAS. This is the first evaluation of multimodal blockade of the RAS in veterinary species. The study showed that the treatment is safe, with only mild adverse effects observed in two treated cats. Due to the small number of cats, the efficacy of treatment could not be evaluated. However, evidence from human studies suggests that a multimodal blockade of RAS could be a safe and cost-effective treatment option for cancer in cats.
Collapse
Affiliation(s)
- John S. Munday
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
- Correspondence:
| | - Thomas Odom
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | - Keren E. Dittmer
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | - Sarah Wetzel
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | | | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 7184, New Zealand
| |
Collapse
|
4
|
Comparison of the gamma-Pareto convolution with conventional methods of characterising metformin pharmacokinetics in dogs. J Pharmacokinet Pharmacodyn 2019; 47:19-45. [PMID: 31865474 PMCID: PMC7040082 DOI: 10.1007/s10928-019-09666-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/23/2019] [Indexed: 12/25/2022]
Abstract
A model was developed for long term metformin tissue retention based upon temporally inclusive models of serum/plasma concentration (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ C $$\end{document}C) having power function tails called the gamma-Pareto type I convolution (GPC) model and was contrasted with biexponential (E2) and noncompartmental (NC) metformin models. GPC models of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ C $$\end{document}C have a peripheral venous first arrival of drug-times parameter, early \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ C $$\end{document}C peaks and very slow washouts of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ C $$\end{document}C. The GPC, E2 and NC models were applied to a total of 148 serum samples drawn from 20 min to 72 h following bolus intravenous metformin in seven healthy mongrel dogs. The GPC model was used to calculate area under the curve (AUC), clearance (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ CL $$\end{document}CL), and functions of time, f(t), for drug mass remaining (M), apparent volume of distribution (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V_{d}$$\end{document}Vd), as well as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t_{1/2}\ f(t)$$\end{document}t1/2f(t) for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ C $$\end{document}C, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ M $$\end{document}M and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V_{d}$$\end{document}Vd. The GPC models of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ C $$\end{document}C yielded metformin \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ CL $$\end{document}CL-values that were 84.8% of total renal plasma flow (RPF) as estimated from meta-analysis. The GPC \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ CL $$\end{document}CL-values were significantly less than the corresponding NC and E2 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ CL $$\end{document}CL-values of 104.7% and 123.7% of RPF, respectively. The GPC plasma/serum only model predicted 78.9% drug \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ M $$\end{document}M average urinary recovery at 72 h; similar to prior human urine drug \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ M $$\end{document}M collection results. The GPC model \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t_{1/2}$$\end{document}t1/2 of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ M $$\end{document}M, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ C $$\end{document}C and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V_d$$\end{document}Vd, were asymptotically proportional to elapsed time, with a constant limiting \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t_{1/2}$$\end{document}t1/2 ratio of M/C averaging 7.0 times, a result in keeping with prior simultaneous \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ C $$\end{document}C and urine \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ M $$\end{document}M collection studies and exhibiting a rate of apparent volume growth of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V_d$$\end{document}Vd that achieved limiting constant values. A simulated constant average drug mass multidosing protocol exhibited increased \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$V_d$$\end{document}Vd and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$t_{1/2}$$\end{document}t1/2 with elapsing time, effects that have been observed experimentally during same-dose multidosing. The GPC heavy-tailed models explained multiple documented phenomena that were unexplained with lighter-tailed models.
Collapse
|
5
|
Barrella N, Eisenberg B, Simpson SN. Hypoglycemia and severe lactic acidosis in a dog following metformin exposure. Clin Case Rep 2017; 5:2097-2104. [PMID: 29225865 PMCID: PMC5715605 DOI: 10.1002/ccr3.1255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/01/2017] [Accepted: 10/06/2017] [Indexed: 01/18/2023] Open
Abstract
Hypoglycemia and lactic acidosis are rare complications with metformin use in humans. As metformin is not commonly used in veterinary medicine, severe adverse effects secondary to exposure are not known. Awareness of potentially life-threatening complications with metformin exposure is an important addition to the veterinary literature.
Collapse
Affiliation(s)
- Nicole Barrella
- Massachusetts Veterinary Referral HospitalWoburnMassachusetts01801USA
- Present address:
Bulger Veterinary HospitalNorth AndoverMassachusetts01845USA
| | - Beth Eisenberg
- Massachusetts Veterinary Referral HospitalWoburnMassachusetts01801USA
| | - Stephanie Nicole Simpson
- Massachusetts Veterinary Referral HospitalWoburnMassachusetts01801USA
- Present address:
VCA Roberts Animal HospitalHanoverMassachusetts02339USA
| |
Collapse
|
6
|
Arbe MF, Fondello C, Agnetti L, Álvarez GM, Tellado MN, Glikin GC, Finocchiaro LME, Villaverde MS. Inhibition of bioenergetic metabolism by the combination of metformin and 2-deoxyglucose highly decreases viability of feline mammary carcinoma cells. Res Vet Sci 2017; 114:461-468. [PMID: 28802138 DOI: 10.1016/j.rvsc.2017.07.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 06/19/2017] [Accepted: 07/31/2017] [Indexed: 01/05/2023]
Abstract
Feline mammary carcinoma (FMC) is a highly aggressive pathology that has been proposed as an interesting model of breast cancer disease, especially for the hormone refractory subgroup. Recently, cancer cell metabolism has been described as a hallmark of cancer cells. Here, we investigate the effects and mechanism of metabolic modulation by metformin (MET, anti-diabetic drug), 2-deoxyglucose (2DG, hexokinase inhibitor) or a combination of both drugs, MET/2DG on two established FMC cells lines: AlRB (HER2 (3+) and Ki67<5%) and AlRATN (HER2 (-) and Ki67>15%). We found that treatments significantly decreased both FMC cells viability by up to 80%. AlRB resulted more sensitive to 2DG than AlRATN (IC50: 3.15 vs 6.32mM, respectively). The combination of MET/2DG potentiated the effects of the individually added drugs on FMC cells. In addition, MET/2DG caused an increased in intracellular oxidants, autophagic vesicles and completely inhibited colony formation. Conversely, only MET significantly altered plasma membrane integrity, presented late apoptotic/necrotic cells and increased both glucose consumption and lactate concentration. Our results support further studies to investigate the potential use of this metabolic modulation approach in a clinical veterinary setting.
Collapse
Affiliation(s)
- María Florencia Arbe
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Chiara Fondello
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Lucrecia Agnetti
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Gabriel Martín Álvarez
- Cátedra de Química Biológica, Facultad de Veterinaria, Universidad de Buenos, Ciudad Autónoma de Buenos Aires, Argentina
| | - Matías Nicolás Tellado
- Cátedra de Química Biológica, Facultad de Veterinaria, Universidad de Buenos, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gerardo Claudio Glikin
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Liliana María Elena Finocchiaro
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina
| | - Marcela Solange Villaverde
- Unidad de Transferencia Genética, Instituto de Oncología Dr. Ángel Roffo, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma Buenos Aires, Argentina.
| |
Collapse
|