1
|
Tamošiūnas M, Maciulevičius M, Maļiks R, Dupļevska D, Viškere D, Matīse-van Houtana I, Kadiķis R, Cugmas B, Raišutis R. Raman spectral band imaging for the diagnostics and classification of canine and feline cutaneous tumors. Vet Q 2025; 45:1-17. [PMID: 40200718 PMCID: PMC11983524 DOI: 10.1080/01652176.2025.2486771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025] Open
Abstract
This study introduces Raman imaging technique for diagnosing skin cancer in veterinary oncology patients (dogs and cats). Initially, Raman spectral bands (with specificity to certain molecular structures and functional groups) were identified in formalin-fixed samples of mast cell tumors and soft tissue sarcomas, obtained through routine veterinary biopsy submissions. Then, a custom-built Raman macro-imaging system featuring an intensified CCD camera (iXon Ultra 888, Andor, UK), tunable narrow-band Semrock (USA) optical filter compartment was used to map the spectral features at 1437 cm-1 and 1655 cm-1 in ex vivo tissue. This approach enabled wide-field (cm2), rapid (within seconds), and safe (< 400 mW/cm2) imaging conditions, supporting accurate diagnosis of tissue state. The findings indicate that machine learning classifiers - particularly support vector machine (SVM) and decision tree (DT) - effectively distinguished between soft tissue sarcoma, mastocytoma and benign tissues using Raman spectral band imaging data. Additionally, combining Raman macro-imaging with residual near-infrared (NIR) autofluorescence as a bimodal imaging technique enhanced diagnostic performance, reaching 85 - 95% in accuracy, sensitivity, specificity, and precision - even with a single spectral band (1437 cm-1 or 1655 cm-1). In conclusion, the proposed bi-modal imaging is a pioneering method for veterinary oncology science, offering to improve the diagnostic accuracy of malignant tumors.
Collapse
Affiliation(s)
- Mindaugas Tamošiūnas
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Rīga, Latvia
| | | | - Romans Maļiks
- Institute of Electronics and Computer Science, Riga, Latvia
| | | | - Daira Viškere
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Rīga, Latvia
| | | | | | - Blaž Cugmas
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Rīga, Latvia
| | - Renaldas Raišutis
- Ultrasound Research Institute, Kaunas University of Technology, Kaunas, Lithuania
- Department of Electrical Power Systems, Faculty of Electrical and Electronics Engineering, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
2
|
Pereira AI, Franco-Gonçalo P, Leite P, Ribeiro A, Alves-Pimenta MS, Colaço B, Loureiro C, Gonçalves L, Filipe V, Ginja M. Artificial Intelligence in Veterinary Imaging: An Overview. Vet Sci 2023; 10:vetsci10050320. [PMID: 37235403 DOI: 10.3390/vetsci10050320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Artificial intelligence and machine learning have been increasingly used in the medical imaging field in the past few years. The evaluation of medical images is very subjective and complex, and therefore the application of artificial intelligence and deep learning methods to automatize the analysis process would be very beneficial. A lot of researchers have been applying these methods to image analysis diagnosis, developing software capable of assisting veterinary doctors or radiologists in their daily practice. This article details the main methodologies used to develop software applications on machine learning and how veterinarians with an interest in this field can benefit from such methodologies. The main goal of this study is to offer veterinary professionals a simple guide to enable them to understand the basics of artificial intelligence and machine learning and the concepts such as deep learning, convolutional neural networks, transfer learning, and the performance evaluation method. The language is adapted for medical technicians, and the work already published in this field is reviewed for application in the imaging diagnosis of different animal body systems: musculoskeletal, thoracic, nervous, and abdominal.
Collapse
Affiliation(s)
- Ana Inês Pereira
- Department of Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Pedro Franco-Gonçalo
- Department of Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| | - Pedro Leite
- Neadvance Machine Vision SA, 4705-002 Braga, Portugal
| | | | - Maria Sofia Alves-Pimenta
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Department of Animal Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Bruno Colaço
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
- Department of Animal Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Cátia Loureiro
- School of Science and Technology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Engineering, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Lio Gonçalves
- School of Science and Technology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Engineering, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Systems and Computer Engineering (INESC-TEC), Technology and Science, 4200-465 Porto, Portugal
| | - Vítor Filipe
- School of Science and Technology, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Department of Engineering, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Institute for Systems and Computer Engineering (INESC-TEC), Technology and Science, 4200-465 Porto, Portugal
| | - Mário Ginja
- Department of Veterinary Science, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 5000-801 Vila Real, Portugal
| |
Collapse
|
3
|
Bray J, Eward W, Breen M. Defining the relevance of surgical margins. Part two: Strategies to improve prediction of recurrence risk. Vet Comp Oncol 2023; 21:145-158. [PMID: 36745110 DOI: 10.1111/vco.12881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/03/2022] [Accepted: 02/03/2023] [Indexed: 02/07/2023]
Abstract
Due to the complex nature of tumour biology and the integration between host tissues and molecular processes of the tumour cells, a continued reliance on the status of the microscopic cellular margin should not remain our only determinant of the success of a curative-intent surgery for patients with cancer. Based on current evidence, relying on a purely cellular focus to provide a binary indication of treatment success can provide an incomplete interpretation of potential outcome. A more holistic analysis of the cancer margin may be required. If we are to move ahead from our current situation - and allow treatment plans to be more intelligently tailored to meet the requirements of each individual tumour - we need to improve our utilisation of techniques that either improve recognition of residual tumour cells within the surgical field or enable a more comprehensive interrogation of tumour biology that identifies a risk of recurrence. In the second article in this series on defining the relevance of surgical margins, the authors discuss possible alternative strategies for margin assessment and evaluation in the canine and feline cancer patient. These strategies include considering adoption of the residual tumour classification scheme; intra-operative imaging systems including fluorescence-guided surgery, optical coherence tomography and Raman spectroscopy; molecular analysis and whole transcriptome analysis of tissues; and the development of a biologic index (nomogram). These techniques may allow evaluation of individual tumour biology and the status of the resection margin in ways that are different to our current techniques. Ultimately, these techniques seek to better define the risk of tumour recurrence following surgery and provide the surgeon and patient with more confidence in margin assessment.
Collapse
Affiliation(s)
| | - Will Eward
- Orthopedic Surgical Oncologist, Duke Cancer Center, Durham, North Carolina, USA
| | - Matthew Breen
- Oscar J. Fletcher Distinguished Professor of Comparative Oncology Genetics, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Hennessey E, DiFazio M, Hennessey R, Cassel N. Artificial intelligence in veterinary diagnostic imaging: A literature review. Vet Radiol Ultrasound 2022; 63 Suppl 1:851-870. [PMID: 36468206 DOI: 10.1111/vru.13163] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/05/2022] [Accepted: 07/07/2022] [Indexed: 12/09/2022] Open
Abstract
Artificial intelligence in veterinary medicine is an emerging field. Machine learning, a subfield of artificial intelligence, allows computer programs to analyze large imaging datasets and learn to perform tasks relevant to veterinary diagnostic imaging. This review summarizes the small, yet growing body of artificial intelligence literature in veterinary imaging, provides necessary background to understand these papers, and provides author commentary on the state of the field. To date, less than 40 peer-reviewed publications have utilized machine learning to perform imaging-associated tasks across multiple anatomic regions in veterinary clinical and biomedical research. Major challenges in this field include collection and cleaning of sufficient image data, selection of high-quality ground truth labels, formation of relationships between veterinary and machine learning professionals, and closure of the gap between academic uses of artificial intelligence and currently available commercial products. Further development of artificial intelligence has the potential to help meet the growing need for radiological services through applications in workflow, quality control, and image interpretation for both general practitioners and radiologists.
Collapse
Affiliation(s)
- Erin Hennessey
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA.,Army Medical Department, Student Detachment, San Antonio, Texas, USA
| | - Matthew DiFazio
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Ryan Hennessey
- Department of Computer Science, College of Engineering, Kansas State University, Manhattan, Kansas, USA
| | - Nicky Cassel
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
5
|
Basran PS, Appleby RB. The unmet potential of artificial intelligence in veterinary medicine. Am J Vet Res 2022; 83:385-392. [PMID: 35353711 DOI: 10.2460/ajvr.22.03.0038] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Veterinary medicine is a broad and growing discipline that includes topics such as companion animal health, population medicine and zoonotic diseases, and agriculture. In this article, we provide insight on how artificial intelligence works and how it is currently applied in veterinary medicine. We also discuss its potential in veterinary medicine. Given the rapid pace of research and commercial product developments in this area, the next several years will pose challenges to understanding, interpreting, and adopting this powerful and evolving technology. Artificial intelligence has the potential to enable veterinarians to perform tasks more efficiently while providing new insights for the management and treatment of disorders. It is our hope that this will translate to better quality of life for animals and those who care for them.
Collapse
Affiliation(s)
- Parminder S Basran
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Ryan B Appleby
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|