1
|
Schmidt M, Ramirez-Arcos S, Stiller L, McDonald C. Current status of rapid bacterial detection methods for platelet components: A 20-year review by the ISBT Transfusion-Transmitted Infectious Diseases Working Party Subgroup on Bacteria. Vox Sang 2022; 117:983-988. [PMID: 35412655 DOI: 10.1111/vox.13283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 01/17/2022] [Accepted: 02/10/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Bacterial contamination of platelet components (PCs) poses a safety challenge for transfusion patients. Despite mitigation interventions, the residual risk of transfusion-transmitted bacterial infections remains predominant. PC safety can be improved either by pathogen reduction or by implementation of bacterial detection methods. Detection methodologies include culture methods and rapid detection methods. The current review focuses on currently available rapid detection methods. MATERIALS AND METHODS We reviewed published manuscripts since 2000 on rapid bacterial detection methods used for PC screening with result determination within 4 h. Methods meeting this criterion included Verax PGDprime, BacTx and nucleic amplification testing. The analytical and diagnostic sensitivity and specificity of these systems were assessed. RESULTS The analytical sensitivity between the different detection methods ranged between 50 and 100,000 CFU/ml. The sample volume used by these testing systems varies between 0.5 and 1.0 ml of PCs. A delay of at least 48 h before sampling enhances detectability. All rapid detection methods generate results in a timely manner, allowing testing to be performed before transfusion with optimal sensitivity. CONCLUSION Rapid detection methods improve PC safety regarding bacterial contamination. The assays are optimal for rapidly growing bacteria, which are more likely to cause septic transfusion reactions in patients. Because of the reduced diagnostic sensitivity, the sample collection should be late in shelf-life and ideally just before transfusion. The major benefit of these methods is that the test result can be obtained before releasing PCs for transfusion or to be used in combination with other screening methods applied early during PC storage.
Collapse
Affiliation(s)
| | - Sandra Ramirez-Arcos
- Department of Microbiology, Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Microbiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lea Stiller
- German Red Cross, Institute Frankfurt, Frankfurt, Germany
| | | | | |
Collapse
|
3
|
Spindler-Raffel E, Benjamin RJ, McDonald CP, Ramirez-Arcos S, Aplin K, Bekeredjian-Ding I, de Korte D, Gabriel C, Gathof B, Hanschmann KM, Hourfar K, Ingram C, Jacobs MR, Keil SD, Kou Y, Lambrecht B, Marcelis J, Mukhtar Z, Nagumo H, Niekerk T, Rojo J, Marschner S, Satake M, Seltsam A, Seifried E, Sharafat S, Störmer M, Süßner S, Wagner SJ, Yomtovian R. Enlargement of the WHO international repository for platelet transfusion-relevant bacteria reference strains. Vox Sang 2017; 112:713-722. [PMID: 28960367 DOI: 10.1111/vox.12548] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Interventions to prevent and detect bacterial contamination of platelet concentrates (PCs) have reduced, but not eliminated the sepsis risk. Standardized bacterial strains are needed to validate detection and pathogen reduction technologies in PCs. Following the establishment of the First International Reference Repository of Platelet Transfusion-Relevant Bacterial Reference Strains (the 'repository'), the World Health Organization (WHO) Expert Committee on Biological Standardisation (ECBS) endorsed further repository expansion. MATERIALS AND METHODS Sixteen bacterial strains, including the four repository strains, were distributed from the Paul-Ehrlich-Institut (PEI) to 14 laboratories in 10 countries for enumeration, identification and growth measurement on days 2, 4 and 7 after low spiking levels [10-25 colony-forming units (CFU)/PC bag]. Spore-forming (Bacillus cereusPEI-B-P-07-S, Bacillus thuringiensisPEI-B-P-57-S), Gram-negative (Enterobacter cloacaePEI-B-P-43, Morganella morganiiPEI-B-P-74, PEI-B-P-91, Proteus mirabilisPEI-B-P-55, Pseudomonas fluorescensPEI-B-P-77, Salmonella choleraesuisPEI-B-P-78, Serratia marcescensPEI-B-P-56) and Gram-positive (Staphylococcus aureusPEI-B-P-63, Streptococcus dysgalactiaePEI-B-P-71, Streptococcus bovisPEI-B-P-61) strains were evaluated. RESULTS Bacterial viability was conserved after transport to the participating laboratories with one exception (M. morganiiPEI-B-P-74). All other strains showed moderate-to-excellent growth. Bacillus cereus, B. thuringiensis, E. coli, K. pneumoniae, P. fluorescens, S. marcescens, S. aureus and S. dysgalactiae grew to >106 CFU/ml by day 2. Enterobacter cloacae, P. mirabilis, S. epidermidis, S. bovis and S. pyogenes achieved >106 CFU/ml at day 4. Growth of S. choleraesuis was lower and highly variable. CONCLUSION The WHO ECBS approved all bacterial strains (except M. morganiiPEI-B-P-74 and S. choleraesuisPEI-B-P-78) for repository enlargement. The strains were stable, suitable for spiking with low CFU numbers, and proliferation was independent of the PC donor.
Collapse
Affiliation(s)
| | | | - C P McDonald
- National Health Service Blood and Transplant, London, UK
| | | | - K Aplin
- National Health Service Blood and Transplant, London, UK
| | | | - D de Korte
- Sanquin Blood Supply Foundation, Amsterdam, The Netherlands
| | - C Gabriel
- Blood Centre Linz, Austrian Red Cross, Linz, Austria
| | - B Gathof
- Institute of Transfusion Medicine, University Hospital of Cologne, Cologne, Germany
| | | | - K Hourfar
- German Red Cross, Frankfurt/Main, Germany
| | - C Ingram
- Constantia Kloof, South African National Blood Service, Johannesburg, South Africa
| | - M R Jacobs
- Case Western Reserve University, Cleveland, OH, USA
| | - S D Keil
- Terumo BCT Biotechnologies, Lakewood, CO, USA
| | - Y Kou
- Canadian Blood Service, Ottawa, ON, Canada
| | - B Lambrecht
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - J Marcelis
- Elisabeth Hospital, Tilburg, The Netherlands
| | - Z Mukhtar
- Dow Safe Blood Transfusion Services, DUHS, Khi, Pakistan
| | - H Nagumo
- Japanese Red Cross, Tokyo, Japan
| | - T Niekerk
- Constantia Kloof, South African National Blood Service, Johannesburg, South Africa
| | - J Rojo
- Centro Nacional de la Transfusión Sanguínea, Mexico, Mexico
| | - S Marschner
- Terumo BCT Biotechnologies, Lakewood, CO, USA
| | - M Satake
- Japanese Red Cross, Tokyo, Japan
| | - A Seltsam
- German Red Cross Blood Service NSTOB, Springe, Germany
| | - E Seifried
- German Red Cross, Frankfurt/Main, Germany
| | - S Sharafat
- Dow University of Health Sciences, Khi, Pakistan
| | - M Störmer
- Institute of Transfusion Medicine, University Hospital of Cologne, Cologne, Germany
| | - S Süßner
- Blood Centre Linz, Austrian Red Cross, Linz, Austria
| | - S J Wagner
- Holland Laboratory, Transfusion Innovation Department, American Red Cross, Rockville, MD, USA
| | - R Yomtovian
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | | |
Collapse
|
4
|
McDonald C, Allen J, Brailsford S, Roy A, Ball J, Moule R, Vasconcelos M, Morrison R, Pitt T. Bacterial screening of platelet components by National Health Service Blood and Transplant, an effective risk reduction measure. Transfusion 2017; 57:1122-1131. [PMID: 28425610 DOI: 10.1111/trf.14085] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/19/2017] [Accepted: 01/19/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Bacterial contamination of blood components remains a major cause of sepsis in transfusion medicine. Between 2006 and 2010 in the 5 years before the introduction of bacterial screening of platelet (PLT) components by National Health Service Blood and Transplant (NHSBT), seven cases of PLT component-associated transmission of bacterial infection were recorded for 10 patients, three of which were fatal. STUDY DESIGN AND METHODS Sampling of individual PLT components was undertaken at 36 to 48 hours after donation and tested in the BacT/ALERT system with 8 mL inoculated into each of aerobic and anaerobic culture bottles. Bottles were incubated until the end of the 7-day shelf life and initial reactive bottles were examined for contamination. Bacterial screened time-expired PLTs were tested as in the screen method. RESULTS From February 2011 to September 2015, a total of 1,239,029 PLT components were screened. Initial-reactive, confirmed-positive, and false-positive rates were 0.37, 0.03, and 0.19%, respectively. False-negative cultures, all with Staphylococcus aureus, occurred on four occasions; three were visually detected before transfusion and one confirmed transmission resulted in patient morbidity. The NHSBT screening protocol effectively reduced the number of clinically adverse transfusion transmissions by 90% in this reporting period, compared to a similar time period before implementation. Delayed testing of 4515 time-expired PLT units after screening revealed no positives. CONCLUSION The implementation of bacterial screening of PLT components with the NHSBT BacT/ALERT protocol was an effective risk reduction measure and increased the safety of the blood supply.
Collapse
|
5
|
Loza-Correa M, Perkins H, Kumaran D, Kou Y, Qaisar R, Geelhood S, Ramirez-Arcos S. Noninvasive pH monitoring for bacterial detection in platelet concentrates. Transfusion 2016; 56:1348-55. [PMID: 27028108 DOI: 10.1111/trf.13557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/20/2016] [Accepted: 01/26/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Bacterial contamination of platelet concentrates (PCs) remains the prevalent posttransfusion infectious risk. The pH SAFE system, a noninvasive method used to measure pH of PC for quality control, was evaluated herein as a rapid method to detect bacterial contamination in PCs. STUDY DESIGN AND METHODS Pairs of ABO-D-matched apheresis and buffy coat PCs were pooled and split into two pH SAFE platelet bags. One of the bags served as the control unit, while the other was inoculated with one of nine clinically relevant bacteria (target concentration approx. 1 colony-forming units [CFUs]/mL). The pH of both PCs was measured over 7 days of storage at approximately 4-hour intervals during daytime. One-milliliter samples were taken at the testing points to determine bacterial concentration. RESULTS PCs with pH values of less than 6.6 or with a pH change over time (ΔpH/Δtime) greater or equal than 0.046 pH units/hr are suspected of being contaminated. pH decreased significantly during storage in all bacterially inoculated PC at concentrations of more than 10(7) CFUs/mL (p < 0.0001). A significant decrease in pH (p < 0.0001) was noticed as early as 28 hours in units with Bacillus cereus and as late as 125 hours in units containing Staphylococcus epidermidis. Interestingly, PCs containing Gram-negative species showed a decline in pH followed by a rebound. CONCLUSIONS The pH SAFE system allows for repeated, noninvasive pH screening during PC storage. A significant decrease in pH could serve as an indicator of clinically significant levels of bacterial contamination. Since differences in pH decline were observed among bacterial species, continuous pH monitoring in PCs is recommended.
Collapse
Affiliation(s)
| | | | | | - Yuntong Kou
- Canadian Blood Services, Ottawa, Ontario, Canada
| | - Ramie Qaisar
- Canadian Blood Services, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
7
|
Keil SD, Hovenga N, Gilmour D, Marschner S, Goodrich R. Treatment of Platelet Products with Riboflavin and UV Light: Effectiveness Against High Titer Bacterial Contamination. J Vis Exp 2015:e52820. [PMID: 26327141 PMCID: PMC4692557 DOI: 10.3791/52820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Contamination of platelet units by bacteria has long been acknowledged as a significant transfusion risk due to their post-donation storage conditions. Products are routinely stored at 22 °C on an agitating shaker, a condition that can promote bacterial growth. Although the total number of bacteria believed to be introduced into a platelet product is extremely low, these bacteria can multiply to a very high titer prior to transfusion, potentially resulting in serious adverse events. The aim of this study was to evaluate a riboflavin based pathogen reduction process against a panel of bacteria that have been identified as common contaminants of platelet products. This panel included the following organisms: S. epidermidis, S. aureus, S. mitis, S. pyogenes, S. marcescens, Y. enterocolitica, B. neotomae, B. cereus, E. coli, P. aeruginosa and K. pneumoniae. Each platelet unit was inoculated with a high bacterial load and samples were removed both before and after treatment. A colony forming assay, using an end point dilution scheme, was used to determine the pre-treatment and post-treatment bacterial titers. Log reduction was calculated by subtracting the post-treatment titer from the pre-treatment titer. The following log reductions were observed: S. epidermidis 4.7 log (99.998%), S. aureus 4.8 log (99.998%), S. mitis 3.7 log (99.98%), S. pyogenes 2.6 log (99.7%), S. marcescens 4.0 log (99.99%), Y. enterocolitica 3.3 log (99.95%), B. neotomae 5.4 log (99.9996%), B. cereus 2.6 log (99.7%), E. coli ≥5.4 log (99.9996%), P. aeruginosa 4.7 log (99.998%) and K. pneumoniae 2.8 log (99.8%). The results from this study suggest the process could help to lower the risk of severe adverse transfusion events associated with bacterial contamination.
Collapse
|