1
|
Hetta HF, Elsaghir A, Sijercic VC, Akhtar MS, Gad SA, Moses A, Zeleke MS, Alanazi FE, Ahmed AK, Ramadan YN. Mesenchymal stem cell therapy in diabetic foot ulcer: An updated comprehensive review. Health Sci Rep 2024; 7:e2036. [PMID: 38650719 PMCID: PMC11033295 DOI: 10.1002/hsr2.2036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Background Diabetes has evolved into a worldwide public health issue. One of the most serious complications of diabetes is diabetic foot ulcer (DFU), which frequently creates a significant financial strain on patients and lowers their quality of life. Up until now, there has been no curative therapy for DFU, only symptomatic relief or an interruption in the disease's progression. Recent studies have focused attention on mesenchymal stem cells (MSCs), which provide innovative and potential treatment candidates for several illnesses as they can differentiate into various cell types. They are mostly extracted from the placenta, adipose tissue, umbilical cord (UC), and bone marrow (BM). Regardless of their origin, they show comparable features and small deviations. Our goal is to investigate MSCs' therapeutic effects, application obstacles, and patient benefit strategies for DFU therapy. Methodology A comprehensive search was conducted using specific keywords relating to DFU, MSCs, and connected topics in the databases of Medline, Scopus, Web of Science, and PubMed. The main focus of the selection criteria was on English-language literature that explored the relationship between DFU, MSCs, and related factors. Results and Discussion Numerous studies are being conducted and have demonstrated that MSCs can induce re-epithelialization and angiogenesis, decrease inflammation, contribute to immunological modulation, and subsequently promote DFU healing, making them a promising approach to treating DFU. This review article provides a general snapshot of DFU (including clinical presentation, risk factors and etiopathogenesis, and conventional treatment) and discusses the clinical progress of MSCs in the management of DFU, taking into consideration the side effects and challenges during the application of MSCs and how to overcome these challenges to achieve maximum benefits. Conclusion The incorporation of MSCs in the management of DFU highlights their potential as a feasible therapeutic strategy. Establishing a comprehensive understanding of the complex relationship between DFU pathophysiology, MSC therapies, and related obstacles is essential for optimizing therapy outcomes and maximizing patient benefits.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative MedicineFaculty of Pharmacy, University of TabukTabukSaudi Arabia
- Department of Medical Microbiology and ImmunologyFaculty of Medicine, Assiut UniversityAssiutEgypt
| | - Alaa Elsaghir
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| | | | | | - Sayed A. Gad
- Faculty of Medicine, Assiut UniversityAssiutEgypt
| | | | - Mahlet S. Zeleke
- Menelik II Medical and Health Science College, Kotebe Metropolitan UniversityAddis AbabaEthiopia
| | - Fawaz E. Alanazi
- Department of Pharmacology and ToxicologyFaculty of Pharmacy, University of TabukTabukSaudi Arabia
| | | | - Yasmin N. Ramadan
- Department of Microbiology and ImmunologyFaculty of Pharmacy, Assiut UniversityAssiutEgypt
| |
Collapse
|
2
|
Ngo HT, Dang VT, Nguyen NHT, Bui ANT, Van Pham P. Comparison of cytotoxic potency between freshly cultured and freshly thawed cytokine-induced killer cells from human umbilical cord blood. Cell Tissue Bank 2023; 24:139-152. [PMID: 35792988 DOI: 10.1007/s10561-022-10022-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 06/19/2022] [Indexed: 11/29/2022]
Abstract
Immune cell therapy has been incorporated into cancer therapy over the past few years. Chimeric antigen receptor T cells (Car-T cells) transplantation is a novel and promising therapy for cancer treatment and introduces a new age of immune cell therapy. However, the expensive nature of genetic modification procedures limits the accessibility of Car-T cells for cancer treatment. Cytokine-induced killer cells (CIKs) can kill the target cells in an MHC-non-restricted manner; these cells can be developed to "off-the-shelf" immune cell products for cancer treatment. However, the anti-tumor potency of freshly thawed CIKs is not well documented. This study aimed to fill this gap, evaluating the anti-tumor potency of freshly thawed CIKs compared to that of freshly cultured CIKs. CIKs were produced from the human umbilical cord blood in accordance with published protocols. CIKs were cryopreserved in xeno-free cryomedium that contains 5% DMSO, 10% human serum in phosphate buffer saline at - 86 °C. These cells were thawed and immediately utilized in assays (called freshly thawed CIKs) with freshly cultured cells are control. The expression of the surface markers of CIKs, cytokine production, and in vitro anti-tumor cytotoxic cells of freshly thawed CIKs were evaluated and compared to freshly cultured CIKs. Additionally, the freshly thawed CIKs were injected into the breast of tumor-bearing mice to assess the anti-tumor potency in vivo. The results obtained in freshly thawed CIKs and freshly cultured CIKs demonstrated that the expression of CD3, and CD56 were comparable in both cases. The production of TNF-α, IFN-γ, and IL-10 was slightly reduced in freshly thawed cells compared to the freshly cultured cells. The in vitro lysis toward MCF-7 cancer cells was similar between freshly thawed and freshly cultured CIKs. Moreover, the freshly thawed CIKs displayed anti-breast tumor activity in the breast tumor-bearing mice. The volume of tumors significantly reduced in the mice grafted with freshly thawed CIKs while, conversely, the tumor volume in mice of the placebo group gradually increased. This study substantiated that freshly thawed CIKs preserved their anti-tumor potency in both in vitro and in vivo conditions. The results initially revealed the great potential of UCB-CIKs for "off-the-shelf" CIK product manufacturing. However, further studies on the effects of cryomedia, freezing rate, and thawing procedure should be undertaken before freshly thawed off-the-shelf UCB-CIKs are utilized in clinical trials.
Collapse
Affiliation(s)
- Hieu Trong Ngo
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam.,Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Vy Thanh Dang
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam.,Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Nguyen Ho-Thao Nguyen
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam.,Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Anh Nguyen-Tu Bui
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam.,Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam
| | - Phuc Van Pham
- Stem Cell Institute, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam. .,Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Viet Nam. .,Laboratory of Stem Cell Research and Application, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam. .,Laboratory of Cancer Research, University of Science Ho Chi Minh City, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
3
|
Baranovskii DS, Klabukov ID, Arguchinskaya NV, Yakimova AO, Kisel AA, Yatsenko EM, Ivanov SA, Shegay PV, Kaprin AD. Adverse events, side effects and complications in mesenchymal stromal cell-based therapies. Stem Cell Investig 2022; 9:7. [PMID: 36393919 PMCID: PMC9659480 DOI: 10.21037/sci-2022-025] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/28/2022] [Indexed: 07/22/2023]
Abstract
Numerous clinical studies have shown a wide clinical potential of mesenchymal stromal cells (MSCs) application. However, recent experience has accumulated numerous reports of adverse events and side effects associated with MSCs therapy. Furthermore, the strategies and methods of MSCs therapy did not change significantly in recent decades despite the clinical impact and awareness of potential complications. An extended understanding of limitations could lead to a wider clinical implementation of safe cell therapies and avoid harmful approaches. Therefore, our objective was to summarize the possible negative effects observed during MSCs-based therapies. We were also aimed to discuss the risks caused by weaknesses in cell processing, including isolation, culturing, and storage. Cell processing and cell culture could dramatically influence cell population profile, change protein expression and cell differentiation paving the way for future negative effects. Long-term cell culture led to accumulation of chromosomal abnormalities. Overdosed antibiotics in culture media enhanced the risk of mycoplasma contamination. Clinical trials reported thromboembolism and fibrosis as the most common adverse events of MSCs therapy. Their delayed manifestation generally depends on the patient's individual phenotype and requires specific awareness during the clinical trials with obligatory inclusion in the patient' informed consents. Finally we prepared the safety checklist, recommended for clinical specialists before administration or planning of MSCs therapy.
Collapse
Affiliation(s)
- Denis S. Baranovskii
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
- Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Ilya D. Klabukov
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
- Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Obninsk Institute for Nuclear Power Engineering of the National Research Nuclear University MEPhI, Obninsk, Russia
| | - Nadezhda V. Arguchinskaya
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Anna O. Yakimova
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Anastas A. Kisel
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Elena M. Yatsenko
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Sergei A. Ivanov
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Peter V. Shegay
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
| | - Andrey D. Kaprin
- National Medical Research Radiological Center of the Ministry of Health of the Russian Federation, Obninsk, Russia
- Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| |
Collapse
|
4
|
Non-toxic freezing media to retain the stem cell reserves in adipose tissues. Cryobiology 2020; 96:137-144. [PMID: 32687840 DOI: 10.1016/j.cryobiol.2020.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 07/01/2020] [Accepted: 07/16/2020] [Indexed: 01/10/2023]
Abstract
Subcutaneous adipose tissue is a rich source of stromal vascular fraction (SVF) and adipose-derived stromal/stem cells (ASCs) that are inherently multipotent and exhibit regenerative properties. In current practice, lipoaspirate specimens harvested from liposuction surgeries are routinely discarded as a biohazard waste due to a lack of simple, cost effective, and validated cryopreservation protocols. The aim of this study is to develop a xenoprotein-free cryoprotective agent cocktail that will allow for short-term (up to 6 months) preservation of lipoaspirate tissues suitable for fat grafting and/or stromal/stem cell isolation when stored at achievable temperatures (-20 °C or -80 °C). Lipoaspirates donated by three consenting healthy donors undergoing elective cosmetic liposuction surgeries were suspended in five freezing media (FM1: 10% DMSO and 35% BSA; FM2: 2% DMSO and 43% BSA; FM3: 10% DMSO and 35% lipoaspirate saline; FM4: 2% DMSO and 6% HSA; and FM5: 40% lipoaspirate saline and 10% PVP) all suspended in 1X DMEM/F12 and frozen using commercially available freezers (-20 °C or -80 °C) and stored at least for a 1 month. After 1 month of freezing storage, SVF cells and ASCs were isolated from the frozen-thawed lipoaspirates by digestion with collagenase type I. Cell viability was evaluated by fluorescence microscopy after staining with acridine orange and ethidium bromide. The SVF isolated from lipoaspirates frozen at -80 °C retained comparable cell viability with the tested freezing media (FM2, FM3, FM4) comparable with the conventional DMSO and animal serum media (FM1), whereas the FM5 media resulted in lower viability. In contrast, tissues frozen and stored at -20 °C did not yield live SVF cells after thawing and collagenase digestion. The surface marker expression (CD90, CD29, CD34, CD146, CD31, and CD45) of ASCs from frozen lipoaspirates at -80 °C in different cryoprotectant media were also evaluated and no significant differences were found between the groups. The adipogenic and osteogenic differentiation potential were studied by histochemical staining and gene expression by qRT-PCR. Oil Red O staining for adipogenesis revealed that the CPA media FM1, FM4 and FM5 displayed robust differentiation. Alizarin Red S staining for osteogenesis revealed that FM1 and FM4 media displayed superior differentiation in comparison to other tested media. Measurement of adipogenic and osteogenic gene expression by qRT-PCR provided similar outcomes and indicated that FM4 CPA media comparable with FM1 for adipogenesis and osteogenesis.
Collapse
|
5
|
Marinelli Busilacchi E, Costantini A, Mancini G, Bencivenga R, Olivieri J, Battaglini G, Velletri L, Viola N, Butini L, Capelli D, Poloni A, Olivieri A. A novel method to evaluate prethawing viability of cryopreserved CD34+ hematopoietic stem cells for autologous transplantation. Transfusion 2020; 60:1529-1535. [PMID: 32488938 DOI: 10.1111/trf.15825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cryopreservation of CD34+ hematopoietic stem cells (HSCs) is associated with variable loss of viability. Although postfreezing CD34+ cell viability can be assessed on the sampling tube (bag tail) directly connected to the main bag (mother bag), results often underestimate the actual viability observed when the mother bag is thawed and reinfused. We assessed a novel method to measure postfreezing CD34+ cell viability, based on small bag (minibag) samples; results were compared with those obtained on the corresponding mother bags and bag tails. STUDY DESIGN AND METHODS Sixty-one apheresis procedures of 42 patients undergoing autologous HSC transplant were analyzed. Viable CD34+ cells were quantified with flow cytometry before controlled rate freezing (ICE-CUBE14M system, SY-LAB- IceCube, SIAD), after 10 days of storage (mini-bag and bag tail), and before reinfusion (aliquot from a thawed mother bag). Results were compared using Student's t test and Spearman's rho correlation test. RESULTS The mean CD34+ cell viability before cryopreservation was 99.3% (confidence interval [CI], 98.94-99.65%); the mean amount of CD34+ cells, white blood cells and neutrophils in the mother bag was 0.8 ± 1.1 × 109 /L, 63.4 ± 23.5 × 109 /L, and 25.7 ± 15.5 × 109 /L, respectively. Mother bags postthawing CD34+ cell viability was 72.3% (CI, 67.74-76.85%; p < 0.01 compared to prefreezing); no difference was observed with respect to minibags (73.7%; CI, 69.80-77.59%; p = NS), whereas significantly lower values were found for bag tails (58.6%; CI, 54.19-63.00%; p < 0.01 vs. both mini- and mother bags). CONCLUSION Compared to bag tails, minibags represent a more accurate tool to measure the CD34+ cell viability of the apheresis mother bag prior to reinfusion; in addition, minibags may could be of help for case-by-case calculation of the amount of apheresis to be infused to patients undergoing autologous HSC transplant.
Collapse
Affiliation(s)
- Elena Marinelli Busilacchi
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy.,Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Andrea Costantini
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy.,Servizio di Immunologia Clinica, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Giorgia Mancini
- Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Rossella Bencivenga
- Servizio di Medicina Trasfusionale, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Jacopo Olivieri
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari "Carlo Melzi", Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Giovanna Battaglini
- Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Laura Velletri
- Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Nadia Viola
- Servizio di Immunologia Clinica, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Luca Butini
- Servizio di Immunologia Clinica, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Debora Capelli
- Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Antonella Poloni
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy.,Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Attilio Olivieri
- Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, Ancona, Italy.,Clinica di Ematologia, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| |
Collapse
|
6
|
Rogulska O, Tykhvynska O, Revenko O, Grischuk V, Mazur S, Volkova N, Vasyliev R, Petrenko A, Petrenko Y. Novel Cryopreservation Approach Providing Off-the-Shelf Availability of Human Multipotent Mesenchymal Stromal Cells for Clinical Applications. Stem Cells Int 2019; 2019:4150690. [PMID: 31885604 PMCID: PMC6907044 DOI: 10.1155/2019/4150690] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/21/2019] [Accepted: 10/14/2019] [Indexed: 12/19/2022] Open
Abstract
Cryopreservation is the only established method to provide long-term storage and fast availability of cellular product for therapeutic applications. The overwhelming majority of cryopreservation media contain toxic concentrations of dimethyl sulfoxide (DMSO) limiting the possibility for the direct administration of cryopreserved cells to the patients. Here, we propose a novel approach for nontoxic xeno-free cryopreservation of human multipotent mesenchymal stromal cells (MSCs) aimed at ensuring high viability, ready-to-use availability, and localized delivery of the cell-based graft into damaged tissues. For MSC cryopreservation, we applied sucrose pretreatment procedure and xeno-free cryoprotective medium containing human platelet-poor blood plasma (PPP), sucrose, and nontoxic concentration of DMSO. Using the combination of PPP, 0.2 M sucrose, and 1% DMSO, the recovery rate of cryopreserved MSCs reached 73% of the values obtained for noncryopreserved cells. Moreover, the presence of PPP in the cryoprotective medium provided the possibility to create a ready-to-use 3D hydrogel for the localized delivery and additional support of MSCs in vivo. In a proof-of-concept study, we assessed the regenerative capacity of cryopreserved MSCs in a full-thickness wound model in mice. The positive impact of MSCs within 3D gel on wound healing rates was confirmed by morphometric and histological examinations. Our results demonstrate the possibility to apply cryopreserved cells immediately after thawing using a cryoprotective medium as the vehicle solution.
Collapse
Affiliation(s)
- Olena Rogulska
- Department of Biochemistry, Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61015 Kharkiv, Ukraine
| | - Olga Tykhvynska
- Department of Biochemistry, Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61015 Kharkiv, Ukraine
| | - Olena Revenko
- Department of Biochemistry, Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61015 Kharkiv, Ukraine
| | - Viktor Grischuk
- Department of Biochemistry, Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61015 Kharkiv, Ukraine
| | - Svitlana Mazur
- Department of Biochemistry, Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61015 Kharkiv, Ukraine
| | - Natalia Volkova
- Department of Biochemistry, Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61015 Kharkiv, Ukraine
| | - Roman Vasyliev
- State Institute of Genetic and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kiev 04114, Ukraine
| | - Alexander Petrenko
- Department of Biochemistry, Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61015 Kharkiv, Ukraine
| | - Yuriy Petrenko
- Department of Biochemistry, Institute for Problems of Cryobiology and Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61015 Kharkiv, Ukraine
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine AS CR v.v.i, Videnska 1083, 14220 Prague, Czech Republic
| |
Collapse
|
7
|
Leukapheresis cell concentration adjustment required for a successful recovery of HSC after cryopreservation. Cryobiology 2019; 92:21-25. [PMID: 31563591 DOI: 10.1016/j.cryobiol.2019.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
The recovering of an adequate number of hematopoietic stem cells after cryopreservation is considered pivotal for successful transplantation. Various factors could influence the recovery of HSC following processing and cryopreservation. Therefore, leukapheresis product from thirty patients was cryopreserved in 10% DMSO in cryopreservation bags for their autologous bone marrow transplantation, and 2 ml were cryopreserved in cryovials for post-thaw viability assessment by flow cytometry. The percentage of viable HSCs recovered post-cryopreservation in leukapheresis product was significantly influenced by the concentration of the total nucleated cells cryopreserved per volume. Patients receiving a higher rate of viable HSCs resulted in earlier engraftment of both neutrophils and platelets, so they have been discharged earlier from the hospital. Furthermore, Storage temperature and duration played a role in the recovery of these cells and for the support of the findings, age of the patient at the time of collection did not show any impact on the recovery of this HSC post-cryopreservation. In conclusion, various influencing factors must be taken into consideration during the cryopreservation of HSCs, especially for poor mobilizing patients with a low number of collected hematopoietic stem cells.
Collapse
|
8
|
Lecchi L, Giovanelli S, Gagliardi B, Pezzali I, Ratti I, Marconi M. An update on methods for cryopreservation and thawing of hemopoietic stem cells. Transfus Apher Sci 2016; 54:324-36. [DOI: 10.1016/j.transci.2016.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Cryopreservation in Closed Bag Systems as an Alternative to Clean Rooms for Preparations of Peripheral Blood Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 951:67-76. [PMID: 27837555 DOI: 10.1007/978-3-319-45457-3_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Autologous and allogeneic stem cell transplantation (SCT) represents a therapeutic option widely used for hematopoietic malignancies. One important milestone in the development of this treatment strategy was the development of effective cryopreservation technologies resulting in a high quality with respect to cell viability as well as lack of contamination of the graft.Stem cell preparations have been initially performed within standard laboratories as it is routinely still the case in many countries. With the emergence of cleanrooms, manufacturing of stem cell preparations within these facilities has become a new standard mandatory in Europe. However, due to high costs and laborious procedures, novel developments recently emerged using closed bag systems as reliable alternatives to conventional cleanrooms. Several hurdles needed to be overcome including the addition of the cryoprotectant dimethylsulfoxide (DMSO) as a relevant manipulation. As a result of the development, closed bag systems proved to be comparable in terms of product quality and patient outcome to cleanroom products. They also comply with the strict regulations of good manufacturing practice.With closed systems being available, costs and efforts of a cleanroom facility may be substantially reduced in the future. The process can be easily extended for other cell preparations requiring minor modifications as donor lymphocyte preparations. Moreover, novel developments may provide solutions for the production of advanced-therapy medicinal products in closed systems.
Collapse
|