1
|
Sainath PB, Ramaiyan V. Weak D phenotype in transfusion medicine and obstetrics: Challenges and opportunities. World J Exp Med 2025; 15:102345. [DOI: 10.5493/wjem.v15.i2.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 03/04/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025] Open
Abstract
The Rh blood group system, especially the D antigen, is crucial in transfusion medicine and obstetrics. Weak D phenotypes, caused by mutations in the Rhesus D antigen (RhD) blood group (RHD) gene, result in reduced antigen expression, posing challenges in serological testing and clinical management. Variability in detection methods leads to inconsistent results, making accurate classification difficult. Molecular techniques like polymerase chain reaction and DNA sequencing have significantly improved the identification of weak D variants, offering more reliable transfusion strategies and reducing the risk of alloimmunization. However, challenges such as lack of standardized protocols, cost constraints, and population-specific variations remain. In obstetrics, proper management of pregnant women with weak D is essential to prevent hemolytic disease of the fetus and newborn. Non-invasive prenatal testing using cell-free fetal DNA shows promise in predicting RhD incompatibility and minimizing unnecessary Rh immune globulin administration. Future advancements in high-throughput genotyping and discovery of novel RHD alleles could enhance RhD testing accuracy and efficiency. Standardizing RHD genotyping and adopting genotype-based management strategies for Rh immune globulin therapy and red blood cell transfusions will improve patient safety and clinical outcomes. This review examines the molecular basis, challenges, and future prospects in weak D phenotype management.
Collapse
Affiliation(s)
- Prasanna Bharathi Sainath
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nādu, India
| | - Velmurugan Ramaiyan
- Department of Pharmacy, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nādu, India
| |
Collapse
|
3
|
Clausen FB. Antenatal RHD screening to guide antenatal anti-D immunoprophylaxis in non-immunized D- pregnant women. Immunohematology 2024; 40:15-27. [PMID: 38739027 DOI: 10.2478/immunohematology-2024-004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
In pregnancy, D- pregnant women may be at risk of becoming immunized against D when carrying a D+ fetus, which may eventually lead to hemolytic disease of the fetus and newborn. Administrating antenatal and postnatal anti-D immunoglobulin prophylaxis decreases the risk of immunization substantially. Noninvasive fetal RHD genotyping, based on testing cell-free DNA extracted from maternal plasma, offers a reliable tool to predict the fetal RhD phenotype during pregnancy. Used as a screening program, antenatal RHD screening can guide the administration of antenatal prophylaxis in non-immunized D- pregnant women so that unnecessary prophylaxis is avoided in those women who carry a D- fetus. In Europe, antenatal RHD screening programs have been running since 2009, demonstrating high test accuracies and program feasibility. In this review, an overview is provided of current state-of-the-art antenatal RHD screening, which includes discussions on the rationale for its implementation, methodology, detection strategies, and test performance. The performance of antenatal RHD screening in a routine setting is characterized by high accuracy, with a high diagnostic sensitivity of ≥99.9 percent. The result of using antenatal RHD screening is that 97-99 percent of the women who carry a D- fetus avoid unnecessary prophylaxis. As such, this activity contributes to avoiding unnecessary treatment and saves valuable anti-D immunoglobulin, which has a shortage worldwide. The main challenges for a reliable noninvasive fetal RHD genotyping assay are low cell-free DNA levels, the genetics of the Rh blood group system, and choosing an appropriate detection strategy for an admixed population. In many parts of the world, however, the main challenge is to improve the basic care for D- pregnant women.
Collapse
Affiliation(s)
- Frederik B Clausen
- Laboratory of Blood Genetics, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
4
|
Clausen FB, Hellberg Å, Bein G, Bugert P, Schwartz D, Drnovsek TD, Finning K, Guz K, Haimila K, Henny C, O’Brien H, Orzinska A, Sørensen K, Thorlacius S, Wikman A, Denomme GA, Flegel WA, Gassner C, de Haas M, Hyland C, Ji Y, Lane WJ, Nogués N, Olsson ML, Peyrard T, van der Schoot CE, Weinstock C, Legler T. Recommendation for validation and quality assurance of non-invasive prenatal testing for foetal blood groups and implications for IVD risk classification according to EU regulations. Vox Sang 2022; 117:157-165. [PMID: 34155647 PMCID: PMC10686716 DOI: 10.1111/vox.13172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/20/2021] [Accepted: 06/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVES Non-invasive assays for predicting foetal blood group status in pregnancy serve as valuable clinical tools in the management of pregnancies at risk of detrimental consequences due to blood group antigen incompatibility. To secure clinical applicability, assays for non-invasive prenatal testing of foetal blood groups need to follow strict rules for validation and quality assurance. Here, we present a multi-national position paper with specific recommendations for validation and quality assurance for such assays and discuss their risk classification according to EU regulations. MATERIALS AND METHODS We reviewed the literature covering validation for in-vitro diagnostic (IVD) assays in general and for non-invasive foetal RHD genotyping in particular. Recommendations were based on the result of discussions between co-authors. RESULTS In relation to Annex VIII of the In-Vitro-Diagnostic Medical Device Regulation 2017/746 of the European Parliament and the Council, assays for non-invasive prenatal testing of foetal blood groups are risk class D devices. In our opinion, screening for targeted anti-D prophylaxis for non-immunized RhD negative women should be placed under risk class C. To ensure high quality of non-invasive foetal blood group assays within and beyond the European Union, we present specific recommendations for validation and quality assurance in terms of analytical detection limit, range and linearity, precision, robustness, pre-analytics and use of controls in routine testing. With respect to immunized women, different requirements for validation and IVD risk classification are discussed. CONCLUSION These recommendations should be followed to ensure appropriate assay performance and applicability for clinical use of both commercial and in-house assays.
Collapse
Affiliation(s)
- Frederik Banch Clausen
- Laboratory of Blood Genetics, Department of Clinical Immunology, Copenhagen University Hospital, Copenhagen, Denmark
- cfDNA subgroup from the International Society of Blood Transfusion (ISBT) Working Party on Red Cell Immunogenetics and Blood Group Terminology (RCIBGT), Amsterdam, The Netherlands
| | - Åsa Hellberg
- cfDNA subgroup from the International Society of Blood Transfusion (ISBT) Working Party on Red Cell Immunogenetics and Blood Group Terminology (RCIBGT), Amsterdam, The Netherlands
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Region Skåne, Sweden
| | - Gregor Bein
- Institute for Clinical Immunology and Transfusion Medicine, Justus-Liebig-University, Giessen, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Heidelberg University, Medical Faculty Mannheim, German Red Cross Blood Service Baden Württemberg – Hessen, Mannheim, Germany
| | - Dieter Schwartz
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Kirstin Finning
- National Health Service Blood and Transplant, International Blood Group Reference Laboratory, UK
| | - Katarzyna Guz
- Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | | | - Helen O’Brien
- Clinical Services and Research, Australian Red Cross Lifeblood, Brisbane, Australia
| | | | - Kirsten Sørensen
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Agneta Wikman
- Clinical Immunology and Transfusion Medicine Karolinska University Hospital and CLINTEC Karolinska Institutet, Stockholm, Sweden
| | - Gregory Andrew Denomme
- cfDNA subgroup from the International Society of Blood Transfusion (ISBT) Working Party on Red Cell Immunogenetics and Blood Group Terminology (RCIBGT), Amsterdam, The Netherlands
- Versiti Blood Research Institute and Diagnostic Laboratories, Milwaukee, Wisconsin, USA
| | - Willy Albert Flegel
- cfDNA subgroup from the International Society of Blood Transfusion (ISBT) Working Party on Red Cell Immunogenetics and Blood Group Terminology (RCIBGT), Amsterdam, The Netherlands
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Christoph Gassner
- cfDNA subgroup from the International Society of Blood Transfusion (ISBT) Working Party on Red Cell Immunogenetics and Blood Group Terminology (RCIBGT), Amsterdam, The Netherlands
- Institute for Translational Medicine, Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Masja de Haas
- cfDNA subgroup from the International Society of Blood Transfusion (ISBT) Working Party on Red Cell Immunogenetics and Blood Group Terminology (RCIBGT), Amsterdam, The Netherlands
- Department of Immunohaematology Diagnostic Services, Sanquin Diagnostic Services and Sanquin Research, Amsterdam, The Netherlands
- Department of Haematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Catherine Hyland
- cfDNA subgroup from the International Society of Blood Transfusion (ISBT) Working Party on Red Cell Immunogenetics and Blood Group Terminology (RCIBGT), Amsterdam, The Netherlands
- Clinical Services and Research, Australian Red Cross Lifeblood, Brisbane, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Yanli Ji
- cfDNA subgroup from the International Society of Blood Transfusion (ISBT) Working Party on Red Cell Immunogenetics and Blood Group Terminology (RCIBGT), Amsterdam, The Netherlands
- Guangzhou Blood Center, Institute of Clinical Blood Transfusion, Guangzhou, China
| | - William J. Lane
- cfDNA subgroup from the International Society of Blood Transfusion (ISBT) Working Party on Red Cell Immunogenetics and Blood Group Terminology (RCIBGT), Amsterdam, The Netherlands
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Núria Nogués
- cfDNA subgroup from the International Society of Blood Transfusion (ISBT) Working Party on Red Cell Immunogenetics and Blood Group Terminology (RCIBGT), Amsterdam, The Netherlands
- Immunohematology Laboratory, Blood and Tissue Bank, Barcelona, Spain
| | - Martin L. Olsson
- cfDNA subgroup from the International Society of Blood Transfusion (ISBT) Working Party on Red Cell Immunogenetics and Blood Group Terminology (RCIBGT), Amsterdam, The Netherlands
- Department of Clinical Immunology and Transfusion Medicine, Office for Medical Services, Region Skåne, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thierry Peyrard
- cfDNA subgroup from the International Society of Blood Transfusion (ISBT) Working Party on Red Cell Immunogenetics and Blood Group Terminology (RCIBGT), Amsterdam, The Netherlands
- Institut National de la Transfusion Sanguine, Centre National de Référence pour les Groupes Sanguins, Paris, France
| | - C. Ellen van der Schoot
- cfDNA subgroup from the International Society of Blood Transfusion (ISBT) Working Party on Red Cell Immunogenetics and Blood Group Terminology (RCIBGT), Amsterdam, The Netherlands
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
| | - Christof Weinstock
- cfDNA subgroup from the International Society of Blood Transfusion (ISBT) Working Party on Red Cell Immunogenetics and Blood Group Terminology (RCIBGT), Amsterdam, The Netherlands
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, and Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Tobias Legler
- Department of Transfusion Medicine, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Sørensen K, Baevre MS, Tomter G, Llohn AH, Hagen KG, Espinosa A, Jacobsen B, Arsenovic MG, Sørvoll IH, Ulvahaug AN, Sundic T, Akkök ÇA. The Norwegian experience with nationwide implementation of fetal RHD genotyping and targeted routine antenatal anti-D prophylaxis. Transfus Med 2021; 31:314-321. [PMID: 33821537 DOI: 10.1111/tme.12772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/04/2021] [Accepted: 03/17/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To reduce the risk of RhD alloimmunization during the last trimester of pregnancy, a targeted routine antenatal anti-D prophylaxis (RAADP) programme was implemented in Norway in 2016. Here, we present and discuss our experience with the nationwide implementation of the programme, and report sample uptake and preliminary data of de novo anti-D in pregnancy. BACKGROUND The targeted RAADP was advised by the academic community and evaluated by the health authorities. A National Working Group has conducted the implementation in the transfusion services and contributed to organise the administration of the antenatal anti-D prophylaxis. Fetal RhD type is determined by non-invasive prenatal testing at gestational week 24, and anti-D prophylaxis is administrated at gestational week 28 only to women with RhD positive fetuses. METHODS We describe the implementation process of targeted RAADP in Norway. The sample uptake is calculated by comparing the number of fetal RHD screens with the expected number of samples. RESULTS The sample uptake shows regional variations: 88%-100% after 3 years. Promising decrease in de novo anti-D detected during pregnancy is observed. CONCLUSIONS Nationwide targeted RAADP is implemented and included in the Norwegian maternity care programme. Compliance to sample uptake should further improve in some regions. A remaining issue to fulfil is the documentation of the accuracy of the fetal RHD-typing at all sites. Post-natal prophylaxis will then be guided by the fetal RHD result. Dedicated registries will ensure data to evaluate the expected reduction in pregnancy-related RhD immunisations, which is the final success criterion of the programme.
Collapse
Affiliation(s)
- Kirsten Sørensen
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Mette S Baevre
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Geir Tomter
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Abid Hussain Llohn
- Department of Immunology and Transfusion Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Kristin G Hagen
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Aurora Espinosa
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Barbora Jacobsen
- Department of Immunology and Transfusion Medicine, St. Olav University Hospital, Trondheim, Norway
| | | | | | | | - Tatjana Sundic
- Department of Immunology and Transfusion Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Çiğdem Akalın Akkök
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Dezan MR, Peron AC, Oliveira TGM, Oliveira VB, Gomes CN, Salles NA, Rocha V, Mendrone-Júnior A, Dinardo CL. Using droplet digital PCR to screen for rare blood donors: Proof of principle. Transfus Apher Sci 2020; 59:102882. [PMID: 32741734 DOI: 10.1016/j.transci.2020.102882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/24/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022]
Abstract
BACKGROUND Digital droplet PCR (ddPCR) is a very sensitive high throughput genotyping methodology. To date, the use of ddPCR in immunohematology is restricted to fetal genotyping of red blood cell antigens. Our hypothesis is that this technology could be applied to screen for rare red blood cell genotypes, such as Di(b-). METHODS Nucleic acid of 3168 donors was extracted for viral screening routine in pools of 6, which were converted into three types of 48-donor pools: control pools (only DI*B/*B samples), pools with varying amount of DI*A/*B samples (n = 1-5) and a pool with one rare DI*A/*A sample. Pools were genotyped using ddPCR to detect and quantify DI*A and DI*B alleles. RESULTS DI*A allele was accurately detected in all pools containing Di(a + b+) samples and in the pool containing one Di(a + b-) sample. No copies were detected in the control pools (n = 60). The ratio between the number of DI*A and DI*B copies varied significantly between the pools and the triplicates. CONCLUSION The proposed ddPCR assay was accurate in identifying the rare DI*A allele in large pools of donors and can be applied to screen for Di(b-) phenotype. The strategy can potentially be extended to search for other rare RBC phenotypes.
Collapse
Affiliation(s)
| | | | | | | | | | - Nanci A Salles
- Fundação Pró-Sangue Hemocentro de São Paulo, São Paulo, Brazil
| | - Vanderson Rocha
- Fundação Pró-Sangue Hemocentro de São Paulo, São Paulo, Brazil; Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Disciplina de Hematologia, Universidade de São Paulo, São Paulo, Brazil; Churchill Hospital, NHSBT, Oxford University, Oxford, UK
| | | | - Carla Luana Dinardo
- Fundação Pró-Sangue Hemocentro de São Paulo, São Paulo, Brazil; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|