1
|
Pozy E, Brown AC. Transfusion biomaterials for hemostasis. J Thromb Haemost 2025; 23:790-803. [PMID: 39675569 DOI: 10.1016/j.jtha.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/17/2024]
Abstract
Bleeding is a leading cause of trauma deaths and surgical complications. Excessive bleeding has traditionally been treated with the transfusion of donated blood. However, the complicated logistics of sourcing and storing donated blood increases the cost and reduces the accessibility of treatment, particularly as rates of blood donation decline. Advances in biomaterials for targeted drug delivery have presented the opportunity for alternative synthetic injectable hemostats. Among these leading technologies are lipid and polymeric particles and polymer platforms that bind to ligands present at wound sites and amplify hemostatic pathways. As leading hemostatic biomaterials advance toward clinical application, we review current preclinical research models and findings as well as future research directions for next-generation biomaterial injectable hemostatic technologies.
Collapse
Affiliation(s)
- Ethan Pozy
- Joint Department of Biomedical Engineering of University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606, USA
| | - Ashley C Brown
- Joint Department of Biomedical Engineering of University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA; Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
2
|
Asif M, Haider SU, Liu Z, Stansbury LG, Hess JR. Evolving patterns of first blood product use in trauma in the era of hemorrhage control resuscitation. Transfusion 2025; 65:255-259. [PMID: 39688334 DOI: 10.1111/trf.18100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND We reviewed trauma blood use at our US regional trauma center 2011-2022-including PROPPR trial participation 2012-2014 and initiation of whole blood availability in 2019-to assess the implementation of early coagulation support in acute trauma care. STUDY DESIGN/METHODS We identified all acute trauma patients recorded by our Trauma Registry as arriving at our large US regional Level 1 trauma center from April 6, 2011 (Blood Bank opening) through December 2022. Patient cohort data were then linked directly to Blood Bank final-product-issue date/time data to identify patients receiving any blood product in the first 24 h of care and then, specifically, at least one unit of Red Blood Cells (RBC), Plasma, or Whole Blood (WB). Results were binned as: "RBC first," "Plasma first," "Both at the same time," or "WB first." RESULTS Over the study period, 73,634 acute trauma patients received care, and 12,927 received at least one unit of a blood product. The proportion receiving plasma or a combination of plasma and RBCs as the initial transfusion increased after 2015 from 33% to 66%, while the proportion receiving packed RBCs alone decreased from 57% to about 18%. Since its introduction in 2019, the use of WB as the first product has grown to 20%. CONCLUSIONS This retrospective cohort study documents the increasing use of plasma and now WB as initial products issued in trauma resuscitation, reflecting acceptance of coagulation support as the standard of care and the use of hemostatic resuscitation protocols.
Collapse
Affiliation(s)
- Maryam Asif
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Safee U Haider
- Shaikh Khalifa bin Zayed al Nahyan Medical and Dental College, Shaikh Zayed Medical Complex, Lahore, Pakistan
| | - Zhinan Liu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Lynn G Stansbury
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - John R Hess
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Lewin A, McGowan E, Ou-Yang J, Boateng LA, Dinardo CL, Mandal S, Almozain N, Ribeiro J, Sasongko SL. The future of blood services amid a tight balance between the supply and demand of blood products: Perspectives from the ISBT Young Professional Council. Vox Sang 2024; 119:505-513. [PMID: 38272856 DOI: 10.1111/vox.13590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/07/2023] [Accepted: 12/29/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND AND OBJECTIVES Blood services manage the increasingly tight balance between the supply and demand of blood products, and their role in health research is expanding. This review explores the themes that may define the future of blood banking. MATERIALS AND METHODS We reviewed the PubMed database for articles on emerging/new blood-derived products and the utilization of blood donors in health research. RESULTS In high-income countries (HICs), blood services may consider offering these products: whole blood, cold-stored platelets, synthetic blood components, convalescent plasma, lyophilized plasma and cryopreserved/lyophilized platelets. Many low- and middle-income countries (LMICs) aim to establish a pool of volunteer, non-remunerated blood donors and wean themselves off family replacement donors; and many HICs are relaxing the deferral criteria targeting racial and sexual minorities. Blood services in HICs could achieve plasma self-sufficiency by building plasma-dedicated centres, in collaboration with the private sector. Lastly, blood services should expand their involvement in health research by establishing donor cohorts, conducting serosurveys, studying non-infectious diseases and participating in clinical trials. CONCLUSION This article provides a vision of the future for blood services. The introduction of some of these changes will be slower in LMICs, where addressing key operational challenges will likely be prioritized.
Collapse
Affiliation(s)
- Antoine Lewin
- Medical Affairs and Innovation, Héma-Québec, Montreal, Quebec, Canada
- Medicine faculty and health science, Sherbrooke University, Sherbrooke, Quebec, Canada
| | - Eunike McGowan
- Research and Development, Australian Red Cross Lifeblood, Brisbane, Australia
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | | | - Lilian Antwi Boateng
- Department of Medical Diagnostics, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Immunohaematology laboratory, University Health Services, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Saikat Mandal
- Medical Oncology, Hull York Medical School, University of Hull, Hull, UK
| | - Nour Almozain
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Jannison Ribeiro
- Centro de Hematologia e Hemoterapia do Ceará - Hemoce, Fortaleza, Brazil
- Instituto Pró-Hemo Saúde - IPH, Fortaleza, Brazil
| | - Syeldy Langi Sasongko
- Department of Public and Occupational Health, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Sheffield WP, Singh K, Beckett A, Devine DV. Prehospital Freeze-Dried Plasma in Trauma: A Critical Review. Transfus Med Rev 2024; 38:150807. [PMID: 38114340 DOI: 10.1016/j.tmrv.2023.150807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
Major traumatic hemorrhage is now frequently treated by early hemostatic resuscitation on hospital arrival. Prehospital hemostatic resuscitation could therefore improve outcomes for bleeding trauma patients, but there are logistical challenges. Freeze-dried plasma (FDP) offers indisputable logistical advantages over conventional blood products, such as long shelf life, stability at ambient temperature, and rapid reconstitution without specialized equipment. We sought high level, randomized, controlled evidence of FDP clinical efficacy in trauma. A structured systematic search of MEDLINE/PubMed was carried out and identified 52 relevant English language publications. Three studies involving 607 patients met our criteria: Resuscitation with Blood Products in Patients with Trauma-related Hemorrhagic Shock receiving Prehospital Care (RePHILL, n = 501); Prehospital Lyophilized Plasma Transfusion for Trauma-Induced Coagulopathy in Patients at Risk for Hemorrhagic Shock (PREHO-PLYO, n = 150); and a pilot Australian trial (n = 25). RePHILL found no effect of FDP plus packed red blood cells (PRBC) concentrate transfusion versus saline on mortality. PREHO-PLYO found no effect of FDP versus saline on International Normalized Ratio (INR) at hospital arrival. The pilot trial found that study of PRBC versus PRBC plus FDP was feasible during long air transport times to an Australian trauma centre. Further research is required to determine under what conditions FDP might provide prehospital benefit to trauma patients.
Collapse
Affiliation(s)
- William P Sheffield
- Medical Affairs and Innovation, Canadian Blood Services, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Kanwal Singh
- Trauma Surgery, Critical Care Medicine and Acute Care Surgery, St. Michael's Hospital, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Beckett
- Trauma Surgery, Critical Care Medicine and Acute Care Surgery, St. Michael's Hospital, Toronto, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Canadian Forces Health Services, Ottawa, Ontario, Canada
| | - Dana V Devine
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
5
|
Schubert P, Culibrk B, Bhakta V, Closas T, Sheffield WP, Devine DV, McTaggart K. Minimal impact of anticoagulant on in vitro whole blood quality throughout a 35-day cold-storage regardless of leukoreduction timing. Transfusion 2022; 62 Suppl 1:S98-S104. [PMID: 35748674 DOI: 10.1111/trf.16977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND There is increasing interest in leukoreduced whole blood (WB) as a transfusion product for trauma patients. In some jurisdictions, few leukoreduced filters are approved or appropriate for WB leukoreduction and quality information is therefore limited. This study assessed the impact of filtration timing of WB collected in CPDA-1 versus CPD on in vitro quality. STUDY DESIGN AND METHODS WB was collected in CPDA-1 or CPD and leukoreduction filtered either after 3-8 h (early) or 18-24 h (late) from stop bleed time. In vitro quality was assessed after filtration and throughout 5 weeks of storage at 4°C. Cell count and hemoglobin levels were determined by hematology analyzer, platelet activation and responsiveness to ADP by surface expression of P-selectin by flow cytometry, hemolysis by HemoCue, and metabolic parameters by blood gas analyzer. Hemostatic properties were assessed by rotational thromboelastometry. Plasma protein activities and clotting times were determined by automated coagulation. RESULTS Although there were some data points which showed statistically significant differences associated with anticoagulant choices or the filtration timing, no general trend in inferiority/performance could be discerned. After 35 days' storage, only clotting time, alpha angle and factor II in the early filtration arm comparing anticoagulants and prothrombin time and factor II in the CPDA-1 study arm comparing filtration timing showed a significant difference. CONCLUSION In vitro WB quality seems to be independent on the choice of anticoagulant and filtration timing supporting WB hold-times to up to 24 h, increasing operational flexibility for transfusion services.
Collapse
Affiliation(s)
- Peter Schubert
- Medical Affairs and Innovation, Canadian Blood Services, Vancouver, Canada.,Center for Blood Research, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Brankica Culibrk
- Medical Affairs and Innovation, Canadian Blood Services, Vancouver, Canada.,Center for Blood Research, Vancouver, Canada
| | - Varsha Bhakta
- Medical Affairs and Innovation, Canadian Blood Services, Hamilton, Canada
| | - Tatiana Closas
- Medical Affairs and Innovation, Canadian Blood Services, Vancouver, Canada
| | - William P Sheffield
- Medical Affairs and Innovation, Canadian Blood Services, Hamilton, Canada.,Department Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| | - Dana V Devine
- Medical Affairs and Innovation, Canadian Blood Services, Vancouver, Canada.,Center for Blood Research, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Ken McTaggart
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Canada
| |
Collapse
|
6
|
Meshkin D, Yazer MH, Dunbar NM, Spinella PC, Leeper CM. Low titer Group O whole blood utilization in pediatric trauma resuscitation: A National Survey. Transfusion 2022; 62 Suppl 1:S63-S71. [PMID: 35748128 DOI: 10.1111/trf.16979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/12/2022] [Accepted: 01/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Renewed interest in low titer group O whole blood (LTOWB) transfusion has led to increased utilization in adult trauma centers; little is known regarding LTOWB use in pediatric centers. STUDY DESIGN AND METHODS A survey of LTOWB utilization at American pediatric level 1 trauma centers. RESULTS Responses were received from 43/72 (60%) centers. These institutions were primarily urban (84%) and pediatric-specific (58%). There were 16% (7/43) centers using LTOWB, 7% (3/43) imminently initiating an LTOWB program, 47% (20/43) with interest but no current plan to develop a LTOWB program, and 30% (13/43) with no immediate interest in an LTOWB program. For the hospitals actively or imminently using LTOWB, 70% (3/10) have a minimum recipient weight criterion, 60% (6/10) have a minimum age criterion, and 70% (7/10) restrict the maximum volume transfused. Before the patient's RhD type becomes known, 30% (3/10) use RhD negative LTOWB for males and females, 40% (4/10) use RhD positive LTOWB for males and RhD negative LTOWB for females, 20% (2/10) use RhD positive LTOWB for males and RhD negative RBCs for females, and 10% (1/10) use RhD positive LTOWB for both males and females. Maximum LTOWB storage duration was 14-35 days and units nearing expiration were used for non-trauma patients (40%), processed to RBC (40%), and/or discarded (40%). The most common barriers to implementation were concerns about inventory management (37%), wastage (35%), infrequent use (33%), cost (21%) and unclear efficacy (14%). CONCLUSION LTOWB utilization is increasing in pediatric level 1 trauma centers in the United States.
Collapse
Affiliation(s)
- Dana Meshkin
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mark H Yazer
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Nancy M Dunbar
- Department of Pathology, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Philip C Spinella
- Department of Surgery and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Christine M Leeper
- Department of Surgery and Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Stanworth SJ, Dowling K, Curry N, Doughty H, Hunt BJ, Fraser L, Narayan S, Smith J, Sullivan I, Green L. A guideline for the haematological management of major haemorrhage: a British Society for Haematology Guideline. Br J Haematol 2022; 198:654-667. [PMID: 35687716 DOI: 10.1111/bjh.18275] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Simon J Stanworth
- Transfusion Medicine, NHS Blood and Transplant, Oxford, UK.,Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Radcliffe Department of Medicine, University of Oxford, and NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Kerry Dowling
- Transfusion Laboratory Manager, Southampton University Hospitals NHS Foundation Trust, Southampton, UK
| | - Nikki Curry
- Department of Haematology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.,Radcliffe Department of Medicine, University of Oxford, and NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Heidi Doughty
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.,NIHR Surgical Reconstruction and Microbiology Research Centre, Birmingham, UK
| | - Beverley J Hunt
- Department of Haematology, Guy's and St Thomas's Hospital, London, UK
| | - Laura Fraser
- Transfusion Practitioner, NHS Lanarkshire, University Hospital Wishaw, Wishaw, UK.,National Services Scotland/Scottish National Blood Transfusion, Edinburgh, UK
| | - Shruthi Narayan
- Medical director, Serious Hazards of Transfusion, Manchester, UK
| | - Juliet Smith
- Lead Transfusion Practitioner, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Ian Sullivan
- Transfusion Laboratory Manager, Royal Cornwall Hospitals NHS Trust, Truro, UK
| | - Laura Green
- Transfusion Medicine, NHS Blood and Transplant, London, UK.,Barts Health NHS Trust, London, UK.,Blizzard Institute, Queen Mary University of London, London, UK
| | | |
Collapse
|
8
|
There and Back Again: The Once and Current Developments in Donor-Derived Platelet Products for Products for Hemostatic Therapy. Blood 2022; 139:3688-3698. [PMID: 35482959 DOI: 10.1182/blood.2021014889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/20/2022] [Indexed: 01/19/2023] Open
Abstract
Over 100 years ago, Duke transfused whole blood to a thrombocytopenic patient to raise the platelet count and prevent bleeding. Since then, platelet transfusions have undergone numerous modifications from whole blood-derived platelet-rich plasma to apheresis-derived platelet concentrates. Similarly, the storage time and temperature have changed. The mandate to store platelets for a maximum of 5-7 days at room temperature has been challenged by recent clinical trial data, ongoing difficulties with transfusion-transmitted infections, and recurring periods of shortages, further exacerbated by the COVID-19 pandemic. Alternative platelet storage approaches are as old as the first platelet transfusions. Cold-stored platelets may offer increased storage times (days) and improved hemostatic potential at the expense of reduced circulation time. Frozen (cryopreserved) platelets extend the storage time to years but require storage at -80 °C and thawing before transfusion. Lyophilized platelets can be powder-stored for years at room temperature and reconstituted within minutes in sterile water but are probably the least explored alternative platelet product to date. Finally, whole blood offers the hemostatic spectrum of all blood components but has challenges, such as ABO incompatibility. While we know more than ever before about the in vitro properties of these products, clinical trial data on these products are accumulating. The purpose of this review is to summarize the findings of recent preclinical and clinical studies on alternative, donor-derived platelet products.
Collapse
|
9
|
Whole blood for transfusion in sub-Saharan Africa. THE LANCET GLOBAL HEALTH 2022; 10:e303-e304. [DOI: 10.1016/s2214-109x(22)00033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/19/2022] Open
|
10
|
Ramirez-Arcos S, Kou Y, Kumaran D, Culibrk B, Stewart T, Schubert P, McTaggart K. Assessment of bacterial growth in leukoreduced cold-stored whole blood supports overnight hold at room temperature prior to filtration: A pilot study. Vox Sang 2022; 117:678-684. [PMID: 35014042 DOI: 10.1111/vox.13246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Whole blood (WB) transfusion has regained attention to treat trauma patients. We reported no significant changes in in vitro quality through 21 days of cold storage for leukoreduced WB (LCWB) when time to filtration was extended from 8 to 24 h from collection. This study evaluated the impact of extended WB-hold at room temperature (RT) prior to leukoreduction on proliferation of transfusion-relevant bacteria. MATERIALS AND METHODS WB units were spiked with suspensions of Klebsiella pneumoniae, Streptococcus pyogenes, Staphylococcus aureus and Listeria monocytogenes prepared in saline solution (SS) or trypticase soy broth (TSB) to a concentration of ~0.2 CFU/ml (N = 6). Spiked units were held at RT for 18-24 h before leukoreduction and cold-stored for 21 days. Bacterial growth was determined on days 2, 7, 14 and 21. In vitro quality of WB inoculated with unspiked diluents was assessed. RESULTS K. pneumoniae and S. pyogenes proliferated in WB prior to leukoreduction reaching concentrations ≤102 CFU/ml. These bacteria, however, did not proliferate during the subsequent cold storage. S. aureus did not survive in WB while L. monocytogenes reached a concentration of ~102 CFU/ml by day 21. LCWB in vitro quality was not affected by SS or TSB. CONCLUSION Extended WB-hold prior to leukoreduction allowed proliferation of bacteria able to resist immune clearance, although they did not grow to clinically significant levels. While L. monocytogenes proliferated in LCWB, clinically relevant concentrations were not reached by day 21. These data suggest that transfusing LCWB may not pose a significant bacterial contamination safety risk to transfusion patients.
Collapse
Affiliation(s)
- Sandra Ramirez-Arcos
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Yuntong Kou
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Dilini Kumaran
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Brankica Culibrk
- Medical Affairs and Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada
| | - Tamiko Stewart
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Peter Schubert
- Medical Affairs and Innovation, Canadian Blood Services, Vancouver, British Columbia, Canada
| | - Ken McTaggart
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Abstract
Transfusion of whole blood largely was replaced by component therapy in the 1970s and 1980s. The recent military operations in Iraq and Afghanistan returned whole blood to military trauma care. Eventually, whole blood use was incorporated into some civilian trauma care. It has been utilized in several other civilian populations as well. Trials to compare whole blood to component therapy are ongoing.
Collapse
Affiliation(s)
- Elizabeth A Godbey
- Department of Pathology, Virginia Commonwealth University Health, Richmond, VA, USA.
| |
Collapse
|
12
|
Abstract
The supply of platelets for transfusion is a logistical challenge due to the physiology of platelets and current measures of transfusion performance dictating storage at 22°C and a short product shelf-life (<7 days). Demand for platelets has increased in recent years and changes in the demographics of the population may enhance this further. Many studies have been conducted to understand what the optimal dose and trigger for transfusion should be, mainly in hematology patients who are the largest cohort that receive platelets, mostly to prevent bleeding. Emerging data suggests that for bleeding patients, where immediate hemostasis is a key consideration, the current standard product may not be optimal. Alternative platelet preparation methods/storage options that may improve the hemostatic properties of platelets are under active development. In parallel with research into alternative platelet products that might enhance hemostasis, better measures for assessing bleeding risk and platelet efficacy are needed.
Collapse
|
13
|
Prin M, Mfune T, Njolomole S, Moore EE, Ginde A. For whole blood research, look to the whole world. Vox Sang 2021; 117:145. [PMID: 34081775 DOI: 10.1111/vox.13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Meghan Prin
- Department of Anesthesiology, University of Colorado, Aurora, Colorado, USA
| | - Thomas Mfune
- Malawi Blood Transfusion Services, Lilongwe, Malawi
| | - Stephen Njolomole
- University of Malawi College of Medicine, Department of Pathology, Blantyre, Malawi
| | - Ernest Eugene Moore
- Department of Surgery, Ernest E Moore Shock and Trauma Center at Denver Health, Denver, Colorado, USA
| | - Adit Ginde
- Department of Emergency Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|