1
|
Wolf F, Rohrer Bley C, Besserer J, Meier V. Estimation of planning organ at risk volumes for ocular structures in dogs undergoing three-dimensional image-guided periocular radiotherapy with rigid bite block immobilization. Vet Radiol Ultrasound 2021; 62:246-254. [PMID: 33460237 PMCID: PMC7986628 DOI: 10.1111/vru.12955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/20/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
Planning organ at risk volume (PRV) estimates have been reported as methods for sparing organs at risk (OARs) during radiation therapy, especially for hypofractioned and/or dose‐escalated protocols. The objectives of this retrospective, analytical, observational study were to evaluate peri‐ocular OAR shifts and derive PRVs in a sample of dogs undergoing radiation therapy for periocular tumors. Inclusion criteria were as follows: dogs irradiated for periocular tumors, with 3D‐image‐guidance and at least four cone‐beam CTs (CBCTs) used for position verification, and positioning in a rigid bite block immobilization device. Peri‐ocular OARs were contoured on each CBCT and the systematic and random error of the shifts in relation to the planning CT position computed. The formula 1.3×Σ+0.5xσ was used to generate a PRV of each OAR in the dorsoventral, mediolateral, and craniocaudal axis. A total of 30 dogs were sampled, with 450 OARs contoured, and 2145 shifts assessed. The PRV expansion was qualitatively different for each organ (1‐4 mm for the dorsoventral and 1‐2 mm for the mediolateral and craniocaudal axes). Maximal PRV expansion was ≤4 mm and directional for the majority; most pronounced for corneas and retinas. Findings from the current study may help improve awareness of and minimization of radiation dose in peri‐ocular OARs for future canine patients. Because some OARs were difficult to visualize on CBCTs and/ or to delineate on the planning CT, authors recommend that PRV estimates be institution‐specific and applied with caution.
Collapse
Affiliation(s)
- Friederike Wolf
- Division of Radiation Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Carla Rohrer Bley
- Division of Radiation Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jürgen Besserer
- Division of Radiation Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Department of Physics, University of Zurich, Zurich, Switzerland.,Radiation Oncology, Hirslanden Clinic, Zurich, Switzerland
| | - Valeria Meier
- Division of Radiation Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Department of Physics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Wolf F, Meier VS, Pot SA, Rohrer Bley C. Ocular and periocular radiation toxicity in dogs treated for sinonasal tumors: A critical review. Vet Ophthalmol 2020; 23:596-610. [PMID: 32281234 PMCID: PMC7496316 DOI: 10.1111/vop.12761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/26/2020] [Accepted: 03/16/2020] [Indexed: 12/25/2022]
Abstract
Visual impairment from radiation‐induced damage can be painful, disabling, and reduces the patient's quality of life. Ocular tissue damage can result from the proximity of ocular organs at risk to irradiated sinonasal target volumes. As toxicity depends on the radiation dose delivered to a certain volume, dose‐volume constraints for organs at risk should ideally be known during treatment planning in order to reduce toxicity. Herein, we summarize published ocular toxicity data of dogs irradiated for sinonasal tumors from 36 publications (1976‐2018). In particular, we tried to extract a dose guideline for a clinically acceptable rate of ocular toxicity. The side effects to ocular and periocular tissues were reported in 26/36 studies (72%) and graded according to scoring systems (10/26; 39%). With most scoring systems, however, toxicities of different ocular and periocular tissues are summed into one score. Further, the scores were mostly applied in retrospect and lack volume‐ and dose‐data. This incomplete information reflects the crux of the matter for radiation dose tolerance in canine ocular tissues: The published information of the last three decades does not allow formulating dose‐volume guidelines. As a start, we can only state that a mean dose of 39 Gy (given in 10 x 4.2 Gy fractions) will lead to loss of vision by one or both eyes, while mean doses of <30 Gy seem to preserve functionality. With a future goal to define tolerated doses and volumes of ocular and periocular tissues at risk, we propose the use of combined ocular toxicity scoring systems.
Collapse
Affiliation(s)
- Friederike Wolf
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Valeria S Meier
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Department of Physics, University of Zurich, Zurich, Switzerland
| | - Simon A Pot
- Ophthalmology Section, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Carla Rohrer Bley
- Division of Radiation Oncology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Hansen KS, Zwingenberger AL, Théon AP, Kent MS. Long-term survival with stereotactic radiotherapy for imaging-diagnosed pituitary tumors in dogs. Vet Radiol Ultrasound 2018; 60:219-232. [PMID: 30575174 DOI: 10.1111/vru.12708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/20/2018] [Accepted: 09/23/2018] [Indexed: 12/16/2022] Open
Abstract
Published studies on the use of stereotactic radiotherapy for dogs with pituitary tumors are limited. This retrospective observational study describes results of stereotactic radiotherapy for 45 dogs with imaging-diagnosed pituitary tumors. All dogs were treated at a single hospital during the period of December 2009-2015. The stereotactic radiotherapy was delivered in one 15 Gray (Gy) fraction or in three 8 Gy fractions. At the time of analysis, 41 dogs were deceased. Four were alive and censored from all survival analyses; one dog received 8 Gy every other day and was removed from protocol analyses. The median overall survival from first treatment was 311 days (95% confidence interval 226-410 days [range 1-2134 days]). Thirty-two dogs received 15 Gy (median overall survival 311 days; 95% confidence interval [range 221-427 days]), and 12 received 24 Gy on three consecutive days (median overall survival 245 days, 95% confidence interval [range 2-626 days]). Twenty-nine dogs had hyperadrenocorticism (median overall survival 245 days), while 16 had nonfunctional masses (median overall survival 626 days). Clinical improvement was reported in 37/45 cases. Presumptive signs of acute adverse effects within 4 months of stereotactic radiotherapy were noted in 10/45, and most had improvement spontaneously or with steroids. Late effects versus tumor progression were not discernable, but posttreatment blindness (2), hypernatremia (2), and progressive neurological signs (31) were reported. There was no statistical difference in median overall survival for different protocols. Patients with nonfunctional masses had longer median overall survival than those with hyperadrenocorticism (P = 0.0003). Survival outcomes with stereotactic radiotherapy were shorter than those previously reported with definitive radiation, especially for dogs with hyperadrenocorticism.
Collapse
Affiliation(s)
- Katherine S Hansen
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616
| | - Allison L Zwingenberger
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616
| | - Alain P Théon
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, 95616
| |
Collapse
|
4
|
Soukup A, Meier V, Pot S, Voelter K, Rohrer Bley C. A prospective pilot study on early toxicity from a simultaneously integrated boost technique for canine sinonasal tumours using image-guided intensity-modulated radiation therapy. Vet Comp Oncol 2018; 16:441-449. [PMID: 29761663 DOI: 10.1111/vco.12399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 11/28/2022]
Abstract
In order to overcome the common local treatment failure of canine sinonasal tumours, integrated boost techniques were tried in the cobalt/orthovoltage era, but dismissed because of unacceptable early (acute) toxicity. Intriguingly, a recent calculation study of a simultaneously integrated boost (SIB) technique for sinonasal irradiation using intensity-modulated radiation therapy (IMRT) predicted theoretical feasibility. In this prospective pilot study we applied a commonly used protocol of 10 × 4.2 Gy to the planning target volume (PTV) with a 20%-SIB dose to the gross tumour volume (GTV). Our hypothesis expected this dose escalation to be clinically tolerable if applied with image-guided IMRT. We included 9 dogs diagnosed with sinonasal tumours without local/distant metastases. For treatment planning, organs at risk were contoured according to strict anatomical guidelines. Planning volume extensions (GTV/CTV/PTV) were standardized to minimize interplanner variability. Treatments were applied with rigid patient positioning and verified daily with image guidance. After radiation therapy, we set focus on early ophthalmologic complications as well as mucosal and cutaneous toxicity. Early toxicity was evaluated at week 1, 2, 3, 8 and 12 after radiotherapy. Only mild ophthalmologic complications were found. Three patients (33%) had self-limiting moderate to severe early toxicity (grade 3 mucositis) which was managed medically. No patient developed ulcerations/haemorrhage/necrosis of skin/mucosa. The SIB protocol applied with image-guided IMRT to treat canine sinonasal tumours led to clinically acceptable side effects. The suspected increased tumour control probability and the risk of late toxicity with the used dose escalation of 20% has to be further investigated.
Collapse
Affiliation(s)
- A Soukup
- Division of Radiation Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - V Meier
- Division of Radiation Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - S Pot
- Division of Ophthalmology, Equine Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - K Voelter
- Division of Ophthalmology, Equine Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - C Rohrer Bley
- Division of Radiation Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|