1
|
Gieger TL. Radiation Therapy for Brain Tumors in Dogs and Cats. Vet Clin North Am Small Anim Pract 2025; 55:67-80. [PMID: 39393930 DOI: 10.1016/j.cvsm.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
External beam radiation therapy (RT) has become the standard of care for non-resectable or post-operative incompletely excised brain tumors in dogs and cats due to its relatively low side effect profile and increasing availability. This article reviews the indications for, expected outcomes of and possible toxicities associated with RT, follow-up care recommendations after RT, and publications about specific tumor types in dogs and cats with brain tumors.
Collapse
Affiliation(s)
- Tracy L Gieger
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| |
Collapse
|
2
|
Rohrer Bley C, Meier V, Turek M, Besserer J, Unterhirkhers S. Stereotactic Radiation Therapy Planning, Dose Prescription and Delivery in Veterinary Medicine: A Systematic Review on Completeness of Reporting and Proposed Reporting Items. Vet Comp Oncol 2024; 22:457-469. [PMID: 39367729 DOI: 10.1111/vco.13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 10/06/2024]
Abstract
Increasing numbers of dogs and cats with cancer are treated with stereotactic radiosurgery, stereotactic radiation therapy or stereotactic body radiotherapy (SRS, SRT or SBRT). We provide a systematic review of the current data landscape with a focus on technical and dosimetric data of stereotactic radiotherapy in veterinary oncology. Original peer-reviewed articles on dogs and cats with cancer treated with SRT were included. The systematic search included Medline via PubMed and EMBASE. The study was performed according to the Preferred Reporting Items for Systematic Reviews (PRISMA) statement. We assessed the manuscripts regarding outcome reporting, treatment planning, dose prescription, -delivery and -reporting as well as quality assurance. As of February 2024, there are 80 peer-reviewed publications on various disease entities on SRS, SRT and SBRT in veterinary medicine. Overall, we found often insufficient or highly variable technical data, with incomplete information to reproduce these treatments. While in some instances, technical factors may not impact clinical outcome, the variability found in protocols, outcome and toxicity assessments precludes accurate and reliable conclusions for a benefit of stereotactic radiotherapy for many of the treated diseases. In line with the extensive recommendations from human stereotactic radiotherapy practise, we propose a draft of reporting items for future stereotactic radiation treatments in veterinary medicine. SRS, SRT and SBRT have specific clinical and technological requirements that differ from those of standard radiation therapy. Therefore, a deep understanding of the methodologies, as well as the quality and precision of dose delivery, is essential for effective clinical knowledge transfer.
Collapse
Affiliation(s)
- Carla Rohrer Bley
- Clinic for Radiation Oncology & Medical Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Valeria Meier
- Clinic for Radiation Oncology & Medical Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Michelle Turek
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Juergen Besserer
- Clinic for Radiation Oncology & Medical Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Radiation Oncology, Hirslanden Clinic, Zurich, Switzerland
| | - Sergejs Unterhirkhers
- Clinic for Radiation Oncology & Medical Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Radiation Oncology, Hirslanden Clinic, Zurich, Switzerland
| |
Collapse
|
3
|
Basran PS, Turek M, Selting KA, Rancilio N. AAPM WGVRTO report 390: A survey of veterinary radiation oncology equipment and infrastructure in 2022. Med Phys 2024; 51:3924-3931. [PMID: 38626571 DOI: 10.1002/mp.17042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/19/2024] [Accepted: 03/10/2024] [Indexed: 04/18/2024] Open
Abstract
Since 2010, there has been little published data on the state of equipment and infrastructure in veterinary radiation oncology clinical practice. These data are important not only to identify the status and use of technology within the veterinary radiation oncology community but also to help identify the extent of medical physics support. The purpose of our study is to report findings from a survey of veterinary radiation oncologists in the USA, Canada, and select centers outside of North America in 2022. A 40-question survey covering topics such as type of radiotherapy equipment, techniques offered, treatment planning systems and dose calculation algorithms, special techniques, board-certified radiation oncologists and residents, and extent of medical physics support was distributed through an online survey tool. Results from 40 veterinary radiation oncology institutions, with equipment explicitly used for veterinary care, suggest that the current state of practice is not dissimilar to what currently exists in human radiation oncology facilities; techniques and technologies commonly employed include flattening filter-free mode megavoltage beams, volumetric arc therapy, daily cone-beam computed tomography, image-guided radiation therapy, and sophisticated dose calculation algorithms. These findings suggest the need for modern radiation oncology acceptance testing, commissioning, and quality assurance programs within the veterinary community. The increase in veterinary radiation oncology residency positions and increasing sophistication of equipment suggests that increased levels of standardized medical physics support would benefit the veterinary radiation oncology community.
Collapse
Affiliation(s)
- Parminder S Basran
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Michelle Turek
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Kimberly A Selting
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana, Illinois, USA
| | - Nicholas Rancilio
- Department Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Iowa, USA
| |
Collapse
|
4
|
Nolan MW, Gieger TL. Update in Veterinary Radiation Oncology: Focus on Stereotactic Radiation Therapy. Vet Clin North Am Small Anim Pract 2024; 54:559-575. [PMID: 38160099 DOI: 10.1016/j.cvsm.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Stereotactic radiotherapy (SRT) involves the precise delivery of highly conformal, dose-intense radiation to well-demarcated tumors. Special equipment and expertise are needed, and a unique biological mechanism distinguishes SRT from other forms of external beam radiotherapy. Families find the convenient schedules and minimal acute toxicity of SRT appealing. Common indications in veterinary oncology include nasal, brain, and bone tumors. Many other solid tumors can also be treated, including spinal, oral, lung, heart-base, liver, adrenal, and prostatic malignancies. Accessibility of SRT is improving, and new data are constantly emerging to define parameters for appropriate case selection, radiation dose prescription, and long-term follow-up.
Collapse
Affiliation(s)
- Michael W Nolan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Tracy L Gieger
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| |
Collapse
|
5
|
Morsink NC, Klaassen NJM, Meij BP, Kirpensteijn J, Grinwis GCM, Schaafsma IA, Hesselink JW, Nijsen JFW, van Nimwegen SA. Case Report: Radioactive Holmium-166 Microspheres for the Intratumoral Treatment of a Canine Pituitary Tumor. Front Vet Sci 2021; 8:748247. [PMID: 34805338 PMCID: PMC8600255 DOI: 10.3389/fvets.2021.748247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: In this case study, a client-owned dog with a large pituitary tumor was experimentally treated by intratumoral injection of radioactive holmium-166 microspheres (166HoMS), named 166Ho microbrachytherapy. To our knowledge, this is the first intracranial intratumoral treatment through needle injection of radioactive microspheres. Materials and Methods: A 10-year-old Jack Russell Terrier was referred to the Clinic for Companion Animal Health (Faculty of Veterinary Medicine, Utrecht University, The Netherlands) with behavioral changes, restlessness, stiff gait, and compulsive circling. MRI and CT showed a pituitary tumor with basisphenoid bone invasion and marked mass effect. The tumor measured 8.8 cm3 with a pituitary height-to-brain area (P/B) ratio of 1.86 cm-1 [pituitary height (cm) ×10/brain area (cm2)]. To reduce tumor volume and neurological signs, 166HoMS were administered in the tumor center by transsphenoidal CT-guided needle injections. Results: Two manual CT-guided injections were performed containing 0.6 ml of 166HoMS suspension in total. A total of 1097 MBq was delivered, resulting in a calculated average tumor dose of 1866 Gy. At 138 days after treatment, the tumor volume measured 5.3 cm3 with a P/B ratio of 1.41 cm-1, revealing a total tumor volume reduction of 40%. Debulking surgery was performed five months after 166HoMS treatment due to recurrent neurological signs. The patient was euthanized two weeks later at request of the owners. Histopathological analysis indicated a pituitary adenoma at time of treatment, with more malignant characteristics during debulking surgery. Conclusion: The 40% tumor volume reduction without evident severe periprocedural side effects demonstrated the feasibility of intracranial intratumoral 166HoMS treatment in this single dog.
Collapse
Affiliation(s)
- Nino Chiron Morsink
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Nienke Johanna Maria Klaassen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Björn Petrus Meij
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jolle Kirpensteijn
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Irene Afra Schaafsma
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jan Willem Hesselink
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Johannes Frank Wilhelmus Nijsen
- Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
- Quirem Medical, Deventer, Netherlands
| | | |
Collapse
|
6
|
Swan M, Morrow D, Grace M, Adby N, Lurie D. Pilot study evaluating the feasibility of stereotactic body radiation therapy for canine anal sac adenocarcinomas. Vet Radiol Ultrasound 2021; 62:621-629. [PMID: 34121267 DOI: 10.1111/vru.12998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 11/29/2022] Open
Abstract
The use of stereotactic body radiation therapy (SBRT) to treat many canine tumors is rapidly expanding. However, published studies are lacking regarding use of SBRT for management of canine anal sac adenocarcinoma (ASAC), primarily due to concerns regarding intolerable late effects. The objective of this retrospective, pilot study was to describe the efficacy and safety profile of coarse fractions administered with an SBRT regime to manage a group of dogs with ASAC. A total of 12 dogs with ASAC that received SBRT as a component of their treatment were sampled. Three patients had macroscopic primary tumors irradiated, while nine patients received SBRT following incomplete surgical resection. Seven patients also received metastatic regional lymph node irradiation. Primary tumor and nodal irradiation sites received three fractions totaling 22-24 Gy and 22.5-24 Gy, respectively, over three consecutive days. All patients developed acute effects including mild colitis, alopecia, and erythema. Late effects included alopecia, variable dermal pigmentation and leuko- or melanotrichia within radiation fields, and rectal stricture in one patient. A median progression free survival time of 549 days and median survival time of 991 days were achieved in this study. These results should be considered preliminary data suggesting that coarse fractionation administered with an SBRT technique is a safe and effective treatment regime for the management of canine ASAC, with the aim to conduct prospective studies in the future.
Collapse
Affiliation(s)
- Michaela Swan
- Oncology Department, Animal Referral Hospital, Homebush West, New South Wales, Australia
| | - Deanna Morrow
- Oncology Department, Animal Referral Hospital, Homebush West, New South Wales, Australia
| | | | - Natalie Adby
- Oncology Department, Animal Referral Hospital, Homebush West, New South Wales, Australia
| | - David Lurie
- Oncology Department, Animal Referral Hospital, Homebush West, New South Wales, Australia
| |
Collapse
|
7
|
Wolf F, Rohrer Bley C, Besserer J, Meier V. Estimation of planning organ at risk volumes for ocular structures in dogs undergoing three-dimensional image-guided periocular radiotherapy with rigid bite block immobilization. Vet Radiol Ultrasound 2021; 62:246-254. [PMID: 33460237 PMCID: PMC7986628 DOI: 10.1111/vru.12955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/20/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
Planning organ at risk volume (PRV) estimates have been reported as methods for sparing organs at risk (OARs) during radiation therapy, especially for hypofractioned and/or dose‐escalated protocols. The objectives of this retrospective, analytical, observational study were to evaluate peri‐ocular OAR shifts and derive PRVs in a sample of dogs undergoing radiation therapy for periocular tumors. Inclusion criteria were as follows: dogs irradiated for periocular tumors, with 3D‐image‐guidance and at least four cone‐beam CTs (CBCTs) used for position verification, and positioning in a rigid bite block immobilization device. Peri‐ocular OARs were contoured on each CBCT and the systematic and random error of the shifts in relation to the planning CT position computed. The formula 1.3×Σ+0.5xσ was used to generate a PRV of each OAR in the dorsoventral, mediolateral, and craniocaudal axis. A total of 30 dogs were sampled, with 450 OARs contoured, and 2145 shifts assessed. The PRV expansion was qualitatively different for each organ (1‐4 mm for the dorsoventral and 1‐2 mm for the mediolateral and craniocaudal axes). Maximal PRV expansion was ≤4 mm and directional for the majority; most pronounced for corneas and retinas. Findings from the current study may help improve awareness of and minimization of radiation dose in peri‐ocular OARs for future canine patients. Because some OARs were difficult to visualize on CBCTs and/ or to delineate on the planning CT, authors recommend that PRV estimates be institution‐specific and applied with caution.
Collapse
Affiliation(s)
- Friederike Wolf
- Division of Radiation Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Carla Rohrer Bley
- Division of Radiation Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Jürgen Besserer
- Division of Radiation Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Department of Physics, University of Zurich, Zurich, Switzerland.,Radiation Oncology, Hirslanden Clinic, Zurich, Switzerland
| | - Valeria Meier
- Division of Radiation Oncology, Small Animal Department, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Department of Physics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Nell E, Ober C, Rendahl A, Forrest L, Lawrence J. Volumetric tumor response assessment is inefficient without overt clinical benefit compared to conventional, manual veterinary response assessment in canine nasal tumors. Vet Radiol Ultrasound 2020; 61:592-603. [PMID: 32702179 DOI: 10.1111/vru.12895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/27/2020] [Accepted: 05/07/2020] [Indexed: 02/04/2023] Open
Abstract
Accurate assessment of tumor response to therapy is critical in guiding management of veterinary oncology patients and is most commonly performed using response evaluation criteria in solid tumors criteria. This process can be time consuming and have high intra- and interobserver variability. The primary aim of this serial measurements, secondary analysis study was to compare manual linear tumor response assessment to semi-automated, contoured response assessment in canine nasal tumors. The secondary objective was to determine if tumor measurements or clinical characteristics, such as stage, would correlate to progression-free interval. Three investigators evaluated paired CT scans of skulls of 22 dogs with nasal tumors obtained prior to and following radiation therapy. The automatically generated tumor volumes were not useful for canine nasal tumors in this study, characterized by poor intraobserver agreement between automatically generated contours and hand-adjusted contours. The radiologist's manual linear method of determining response evaluation criteria in solid tumors categorization and tumor volume is significantly faster (P < .0001) but significantly underestimates nasal tumor volume (P < .05) when compared to a contour-based method. Interobserver agreement was greater for volume determination using the contour-based method when compared to response evaluation criteria in solid tumors categorization utilizing the same method. However, response evaluation criteria in solid tumors categorization and percentage volume change were strongly correlated, providing validity to response evaluation criteria in solid tumors as a rapid method of tumor response assessment for canine nasal tumors. No clinical characteristics or tumor measurements were significantly associated with progression-free interval.
Collapse
Affiliation(s)
- Esther Nell
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Christopher Ober
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Aaron Rendahl
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Lisa Forrest
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jessica Lawrence
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| |
Collapse
|
9
|
Magestro LM, Cahoon JY, Gieger TL, Nolan MW. Radiotherapy isocenters verified by matching to bony landmarks of the canine and feline head differ when localized using volumetric versus planar imaging. Vet Comp Oncol 2019; 17:562-569. [PMID: 31322802 DOI: 10.1111/vco.12522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 01/08/2023]
Abstract
The "gold standard" for verification of patient positioning before linear accelerator-based stereotactic radiation therapy is kilovoltage cone-beam computed tomography (kV-CBCT), which is not uniformly available or utilized; planar imaging is sometimes used instead. The primary aim of this study was to determine if the position of the bony skull, when used as a surrogate for isocenter verification, is different when orthogonal megavoltage (MV) portal or kilovoltage (kV/kV) radiographs are used for image guidance, rather than kV-CBCT. A secondary aim was to determine the influence of intra-observer variability, body size and skull conformation on positioning, as determined using these three imaging modalities. Dogs and cats receiving radiotherapy of the head were recruited for this prospective analytical study. Planar (MV portal and kV/kV images) and volumetric (kV-CBCT) images were acquired before treatment, and manually coregistered with reference images. Differences in skull position when matched based on MV portal, kV/kV images and kV-CBCT were compared. A total of 65 subjects and 148 unique datasets were evaluated. The Wilcoxon rank-sum test was used to evaluate effects of transitioning between imaging modalities. When comparing magnitude of shifts in MV to kV-CBCT, MV to kV/kV and kV/kV to kV-CBCT, there were statistically significant differences. Results were not measurably impacted by body size, skull conformation or interobserver differences. Based on shift magnitude and direction, an isotropic setup margin of at least 1 mm should be incorporated within the planning target volume when MV or kV planar imaging is used for position verification.
Collapse
Affiliation(s)
- Leanne M Magestro
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Joyce Y Cahoon
- Department of Statistics, North Carolina State University, Raleigh, North Carolina
| | - Tracy L Gieger
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Michael W Nolan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
10
|
Nolan MW, Gieger TL. Update in Veterinary Radiation Oncology: Focus on Stereotactic Radiation Therapy. Vet Clin North Am Small Anim Pract 2019; 49:933-947. [PMID: 31253427 DOI: 10.1016/j.cvsm.2019.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stereotactic radiotherapy (SRT) involves the precise delivery of highly conformal, dose-intense radiation to well-demarcated tumors. Special equipment and expertise are needed, and a unique biological mechanism distinguishes SRT from other forms of external beam radiotherapy. Families find the convenient schedules and minimal acute toxicity of SRT appealing. Common indications in veterinary oncology include nasal, brain, and bone tumors. Many other solid tumors can also be treated, including spinal, oral, lung, heart-base, liver, adrenal, and prostatic malignancies. Accessibility of SRT is improving, and new data are constantly emerging to define parameters for appropriate case selection, radiation dose prescription, and long-term follow-up."
Collapse
Affiliation(s)
- Michael W Nolan
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Tracy L Gieger
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Drive, Raleigh, NC 27607, USA
| |
Collapse
|
11
|
A survey of stereotactic radiation therapy in veterinary medicine. Vet Radiol Ultrasound 2019; 60:247. [PMID: 30822372 DOI: 10.1111/vru.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
12
|
Rohrer Bley C, Meier VS, Besserer J, Schneider U. Intensity‐modulated radiation therapy dose prescription and reporting: Sum and substance of the International Commission on Radiation Units and Measurements Report 83 for veterinary medicine. Vet Radiol Ultrasound 2019; 60:255-264. [DOI: 10.1111/vru.12722] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/09/2018] [Accepted: 12/31/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- Carla Rohrer Bley
- Division of Radiation OncologyVetsuisse FacultyUniversity of Zurich Zurich Switzerland
| | - Valeria S. Meier
- Division of Radiation OncologyVetsuisse FacultyUniversity of Zurich Zurich Switzerland
| | - Juergen Besserer
- Division of Radiation OncologyVetsuisse FacultyUniversity of Zurich Zurich Switzerland
- Radiation OncologyHirslanden Clinic Zurich Switzerland
| | - Uwe Schneider
- Division of Radiation OncologyVetsuisse FacultyUniversity of Zurich Zurich Switzerland
- Radiation OncologyHirslanden Clinic Zurich Switzerland
| |
Collapse
|