1
|
Ivanišević A, Boban Z, Jurić J, Vukojević K. Smart Drill for a Streamlined Estimation of the Drilling Angle and Channel Length in Orthopedic Surgical Procedures. Bioengineering (Basel) 2024; 11:630. [PMID: 38927866 PMCID: PMC11200387 DOI: 10.3390/bioengineering11060630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/12/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
The estimation of distances and angles is a routine part of an orthopedic surgical procedure. However, despite their prevalence, these steps are most often performed manually, heavily relying on the surgeon's skill and experience. To address these issues, this study presents a sensor-equipped drill system which enables automatic estimation of the drilling angle and channel length. The angular accuracy and precision of the system were tested over a range of inclination angles and proved to be superior to the manual approach, with mean absolute errors ranging from 1.9 to 4.5 degrees for the manual approach, and from 0.6 to 1.3 degrees with the guided approach. When sensors were used for simultaneous estimation of both the inclination and anteversion angles, the obtained mean absolute errors were 0.35 ± 0.25 and 2 ± 1.33 degrees for the inclination and anteversion angles, respectively. Regarding channel length estimation, using measurements obtained with a Vernier caliper as a reference, the mean absolute error was 0.33 mm and the standard deviation of errors was 0.41 mm. The obtained results indicate a high potential of smart drill systems for improvement of accuracy and precision in orthopedic surgical procedures, enabling better patient clinical outcomes.
Collapse
Affiliation(s)
- Arsen Ivanišević
- Department of Surgery, Division of Orthopaedics and Traumatology, University Hospital of Split, 21000 Split, Croatia;
| | - Zvonimir Boban
- Department of Medical Physics and Biophysics, University of Split School of Medicine, 21000 Split, Croatia
| | - Josip Jurić
- Independent Researcher, 21000 Split, Croatia;
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia;
| |
Collapse
|
2
|
Liu P, Xiao JX, Zhao C, Li X, Sun G, Yang F, Wang X. Factors Associated With the Accuracy of Depth Gauge Measurements. Front Surg 2022; 8:774682. [PMID: 35096957 PMCID: PMC8793061 DOI: 10.3389/fsurg.2021.774682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: It is important to select appropriate screws in orthopedic surgeries, as excessively long or too short a screw may results failure of the surgeries. This study explored factors that affect the accuracy of measurements in terms of the experience of the surgeons, passage of drilled holes and different depth gauges.Methods: Holes were drilled into fresh porcine femurs with skin in three passages, straight drilling through the metaphysis, straight drilling through the diaphysis, and angled drilling through the diaphysis. Surgeons with different surgical experiences measured the holes with the same depth gauge and using a vernier caliper as gold standard. The length of selected screws, and the time each surgeon spent were recorded. The measurement accuracy was compared based on the experiences of the surgeons and the passage of drilled holes. Further, parameters of depth gauges and 12-mm cortical bone screws from five different manufacturers were measured.Results: A total of 13 surgeons participated in 585 measurements in this study, and each surgeon completed 45 measurements. For the surgeons in the senior, intermediate, and junior groups, the average time spent in measurements was 689, 833, and 785 s with an accuracy of 57.0, 42.2, and 31.5%, respectively. The accuracy and measurement efficiency were significantly different among the groups of surgeons (P < 0.001). The accuracy of measurements was 45.1% for straight metaphyseal drilling, 43.6% for straight diaphyseal drilling, and 33.3% for angled diaphyseal drilling (P = 0.036). Parameters of depth gauges and screws varied among different manufacturers.Conclusion: Both observer factor and objective factors could affect the accuracy of depth gauge measurement. Increased surgeon's experience was associated with improvements in the accuracy rate and measurement efficiency of drilled holes based on the depth gauge. The accuracy rate varied with hole passages, being the lowest for angled drilled holes.
Collapse
Affiliation(s)
- Pengcheng Liu
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Joanna Xi Xiao
- School of Clinical Medicine, The National University of Ireland Galway, Galway, Ireland
| | - Chen Zhao
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Li
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guantong Sun
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Yang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqing Wang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoqing Wang
| |
Collapse
|