1
|
Yoshimoto K, Ikeguchi R, Noguchi T, Ando M, Sakamoto D, Iwai T, Nishitani K, Ikeda HO, Kakizuka A, Matsuda S. The effect of KUS121, a novel VCP modulator, against ischemic injury in random pattern flaps. PLoS One 2024; 19:e0299882. [PMID: 39724048 DOI: 10.1371/journal.pone.0299882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/16/2024] [Indexed: 12/28/2024] Open
Abstract
Surgery using skin flaps is essential for soft tissue reconstruction. However, postoperative ischemic injury of the skin flap is a major complication and a top concern after the surgery. Currently, evidence-based drugs to fully prevent ischemic injury are not available. The purpose of this study was to evaluate the effect of KUS121, a VCP modulator, on flap ischemia using a rodent model. 26 Sprague-Dawley rats were randomly divided into two groups. The experimental group was intraperitoneally administered with 100 mg/kg KUS121 dissolved in 5% glucose solution 1 hour before surgery and once per day after surgery. The control group received the same amount of glucose solution on the same schedule. On day 7, 33.6 ± 3.7% of skin flaps in the control group had developed black necrosis compared with 26.4 ± 3.6% in the KUS121 group (p < 0.01). Immunohistochemistry showed that the KUS121 treatment reduced the number of apoptotic cells in the distal third of the flap (p < 0.01); moreover, in the KUS121-treated rats, the number of cells expressing CHOP, an endoplasmic reticulum (ER) stress marker, in the middle third of the flap was significantly lower than in the controls (p < 0.01). We examined the mRNA expression of Ddit3 (CHOP) and Casp3 (caspase-3) on day one after the surgery; mRNA expression of both genes appeared to decrease in the KUS121 group, as compared with the control group, although differences between groups were not significant. Thus, in a random pattern flap, KUS121 reduces ER stress and the number of apoptotic cells, thereby reducing ischemic damage of the flap.
Collapse
Affiliation(s)
- Koichi Yoshimoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Ikeguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Noguchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Maki Ando
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Daichi Sakamoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Terunobu Iwai
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kohei Nishitani
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hanako Ohashi Ikeda
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Kakizuka
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Chen J, Jiang Z, Liu X, Wang K, Fan W, Chen T, Li Z, Lin D. Berberine promotes the viability of random skin flaps via the PI3K/Akt/eNOS signaling pathway. Phytother Res 2023; 37:424-437. [PMID: 36116786 DOI: 10.1002/ptr.7621] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022]
Abstract
Random skin flaps are often used in reconstruction operations. However, flap necrosis is still a common postoperative complication. Here, we investigated whether berberine (C20 H19 NO5 , BBR), a drug with antioxidant activity, improves the survival rate of random flaps. Fifty-four rats were divided into three groups: control, BBR and BBR + L -NAME groups (L -NAME, L -NG -Nitro-arginine methyl ester). The survival condition and the percentage of survival area of the flaps were evaluated on the seventh day after surgery. After animals were sacrificed, angiogenesis, apoptosis, oxidative stress and inflammation levels were assessed by histological and protein analyses. Our findings suggest that berberine promotes flap survival. The level of angiogenesis increased; the levels of oxidative stress, inflammation and apoptosis decreased; the levels of phosphoinositide 3-kinase (PI3K), phospho-Akt (p-Akt) and phospho-endothelial nitric oxide synthase (p-eNOS) increased in the flap tissue; and L -NAME reversed the effects of berberine on random skin flaps. Statistical analysis showed that the BBR group results differed significantly from those of the control and the BBR + L -NAME groups (p < .05). Our results confirm that berberine is an effective drug for significantly improving the survival rate of random skin flaps by promoting angiogenesis, inhibiting inflammation, attenuating oxidative stress, and reducing apoptosis through the PI3K/Akt/eNOS signaling pathway.
Collapse
Affiliation(s)
- Jianpeng Chen
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zhikai Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xuao Liu
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Kaitao Wang
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Weijian Fan
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Tingxiang Chen
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijie Li
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dingsheng Lin
- Department of Hand Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Chen J, Chen H, Muhammad I, Han T, Zhang D, Li B, Zhou X, Zhou F. Protein kinase D1 promotes the survival of random-pattern skin flaps in rats. Biochem Biophys Res Commun 2023; 641:67-76. [PMID: 36525926 DOI: 10.1016/j.bbrc.2022.12.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/20/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND In reconstructive surgery, random skin flaps are commonly used tools to cover skin defects, however, their applicability and size are limited by post-operative complications such as marginal ischemia-reperfusion injury and flap necrosis. Protein kinase D1 (PKD1), a calcium/calmodulin-dependent serine/threonine kinase, is known to induce angiogenesis and has been shown to mitigate ischemia in cardiovascular diseases. However, the role of PKD1 has not been investigated in skin flaps. METHOD Seventy-five male Sprague-Dawley rats with skin flaps were randomly divided into three groups: control, PKD1, and CID755673. Seven days following surgery, we assessed the general view and survival rate of the flap using histological analysis. Laser Doppler and lead oxide/gelatin angiography were used to evaluate microcirculation blood flow. Histopathological changes, neovascularization and microvascular density (MVD). were examined and calculated using microscopy after H&E staining. Protein expression levels were determined using immunoblotting and immunohistochemistry techniques. RESULT PKD1 significantly improved flap survival by upregulating angiogenic factors VEGF and cadherin5 and increasing antioxidant enzymes SOD, eNOS, and HO1, as well as reducing caspase 3, cytochrome c, and Bax expression, and attenuating IL-1β, IL-6, and TNF-α. In the PKD1 group, PKD1 increased neovascularization, and blood flow and flap survival areas were larger as compared to the control and CID755673 groups. CONCLUSION These findings show that PKD1 accelerates angiogenesis, reduces oxidative stress, and impedes apoptosis and inflammation, thus resulting in improved flap survival. Our observations indicated that PKD1 could be a therapeutic target for flap failure treatment.
Collapse
Affiliation(s)
- Jianpeng Chen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Hongyu Chen
- Zhejiang University School of Medicine, China
| | - Ismail Muhammad
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Tao Han
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Dupiao Zhang
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | | | - Xijie Zhou
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
| | - Feiya Zhou
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
4
|
Oxidative stress-induced endothelial cells-derived exosomes accelerate skin flap survival through Lnc NEAT1-mediated promotion of endothelial progenitor cell function. Stem Cell Res Ther 2022; 13:325. [PMID: 35850692 PMCID: PMC9290268 DOI: 10.1186/s13287-022-03013-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
Background Flap transplantation is commonly used in reconstructive surgery. A prerequisite for skin flap survival is sufficient blood supply. However, such approaches remain unclear. This study aimed to explore the underlying mechanisms of exosomes derived from human umbilical vascular endothelial cells (HUVECs) exposed to oxidative stress on endothelial progenitor cells (EPCs) and their subsequent influence on the survival of skin flaps. Methods HUVECs were treated with various concentrations of H2O2 to establish an oxidative stress model. To investigate the effects of H2O2-HUVEC-Exos and HUVEC-Exos, Cell Counting Kit-8, tube formation, invasion assays, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed in EPCs. Microarray analysis was used to reveal the differentially expressed long non-coding RNAs (lncRNAs) in the H2O2-HUVEC-Exos and HUVEC-Exos. In addition, gene silencing and western blotting were employed to determine the mechanism behind lncRNA nuclear enrichment enriched transcript 1 (Lnc NEAT1) in EPCs. Further, a rat skin flap model was used to determine the role of the exosomes in skin flap survival in vivo. Results HUVECs were stimulated with 100 μmol/L H2O2 for 12 h to establish an oxidative stress model. H2O2-HUVEC-Exos promoted the proliferation, tube formation, and invasion of EPCs and remarkably increased skin flap survival compared to the HUVEC-Exos and control groups. Sequencing of exosome RNAs revealed that the Lnc NEAT1 level was dramatically increased in the H2O2-HUVEC-Exos, leading to activation of the Wnt/β-catenin signaling pathway. Comparatively, knockdown of Lnc NEAT1 in HUVEC-Exos and H2O2-HUVEC-Exos significantly inhibits the angiogenic capacity of EPCs, reduced the survival area of skin flap and downregulated the expression levels of Wnt/β-catenin signaling pathway proteins, whereas Wnt agonist partly reversed the negative effect of NEAT1 downregulation on EPCs through the Wnt/β-catenin signaling pathway. Conclusions Exosomes derived from HUVECs stimulated by oxidative stress significantly promoted the pro-angiogenic ability of EPCs through the Wnt/β-catenin signaling pathway mediated by Lnc NEAT1 and hence enhanced random flap survival in vivo. Therefore, the application of H2O2-HUVEC-Exos may serve as an alternative therapy for improving random skin flap survival. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03013-9.
Collapse
|
5
|
Lee JH, You HJ, Lee TY, Kang HJ. Current Status of Experimental Animal Skin Flap Models: Ischemic Preconditioning and Molecular Factors. Int J Mol Sci 2022; 23:5234. [PMID: 35563624 PMCID: PMC9103896 DOI: 10.3390/ijms23095234] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
Skin flaps are necessary in plastic and reconstructive surgery for the removal of skin cancer, wounds, and ulcers. A skin flap is a portion of skin with its own blood supply that is partially separated from its original position and moved from one place to another. The use of skin flaps is often accompanied by cell necrosis or apoptosis due to ischemia-reperfusion (I/R) injury. Proinflammatory cytokines, such as nuclear factor kappa B (NF-κB), inhibitor of kappa B (IκB), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and oxygen free radicals are known causative agents of cell necrosis and apoptosis. To prevent I/R injury, many investigators have suggested the inhibition of proinflammatory cytokines, stem-cell therapies, and drug-based therapies. Ischemic preconditioning (IPC) is a strategy used to prevent I/R injury. IPC is an experimental technique that uses short-term repetition of occlusion and reperfusion to adapt the area to the loss of blood supply. IPC can prevent I/R injury by inhibiting proinflammatory cytokine activity. Various stem cell applications have been studied to facilitate flap survival and promote angiogenesis and vascularization in animal models. The possibility of constructing tissue engineered flaps has also been investigated. Although numerous animal studies have been published, clinical data with regard to IPC in flap reconstruction have never been reported. In this study, we present various experimental skin flap methods, IPC methods, and methods utilizing molecular factors associated with IPC.
Collapse
Affiliation(s)
- Ju-Hee Lee
- College of Korean Medicine, Dongguk University, Goyang 10326, Korea;
| | - Hi-Jin You
- Department of Plastic Surgery, Korea University Ansan Hospital, Ansan 15355, Korea; (H.-J.Y.); (T.-Y.L.)
| | - Tae-Yul Lee
- Department of Plastic Surgery, Korea University Ansan Hospital, Ansan 15355, Korea; (H.-J.Y.); (T.-Y.L.)
| | - Hyo Jin Kang
- Biomedical Research Center, Korea University Ansan Hospital, Ansan 15355, Korea
- Core Research and Development Center, Korea University Ansan Hospital, Ansan 15355, Korea
| |
Collapse
|
6
|
Kushibiki T, Mayumi Y, Nakayama E, Azuma R, Ojima K, Horiguchi A, Ishihara M. Photocrosslinked gelatin hydrogel improves wound healing and skin flap survival by the sustained release of basic fibroblast growth factor. Sci Rep 2021; 11:23094. [PMID: 34845307 PMCID: PMC8630120 DOI: 10.1038/s41598-021-02589-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023] Open
Abstract
Biomaterials traditionally used for wound healing can act as a temporary barrier to halt bleeding, prevent infection, and enhance regeneration. Hydrogels are among the best candidates for wound healing owing to their moisture retention and drug-releasing properties. Photo-polymerization using visible light irradiation is a promising method for hydrogel preparation since it can easily control spatiotemporal reaction kinetics and rapidly induce a single-step reaction under mild conditions. In this study, photocrosslinked gelatin hydrogels were imparted with properties namely fast wound adherence, strong wet tissue surface adhesion, greater biocompatibility, long-term bFGF release, and importantly, ease of use through the modification and combination of natural bio-macromolecules. The production of a gelatin hydrogel made of natural gelatin (which is superior to chemically modified gelatin), crosslinked by visible light, which is more desirable than UV light irradiation, will enable its prolonged application to uneven wound surfaces. This is due to its flexible shape, along with the administration of cell growth factors, such as bFGF, for tissue regeneration. Further, the sustained release of bFGF enhances wound healing and skin flap survival. The photocrosslinking gelatin hydrogel designed in this study is a potential candidate to enhance wound healing and better skin flap survival.
Collapse
Affiliation(s)
- Toshihiro Kushibiki
- Department of Medical Engineering, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan.
| | - Yoshine Mayumi
- Department of Medical Engineering, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| | - Eiko Nakayama
- Department of Plastic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| | - Ryuichi Azuma
- Department of Plastic Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| | - Kenichiro Ojima
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| | - Akio Horiguchi
- Department of Urology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| | - Miya Ishihara
- Department of Medical Engineering, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, Japan
| |
Collapse
|
7
|
Liu L, Wang Q, Liao H, Ye J, Huang J, Li S, Peng H, Yu X, Wen H, Wang X. Soluble microneedle patch with photothermal and NO-release properties for painless and precise treatment of ischemic perforator flaps. J Mater Chem B 2021; 9:7725-7733. [PMID: 34586148 DOI: 10.1039/d1tb00491c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Skin necrosis is the most serious complication of flap plastic surgery, which means the failure of the operation. Systemic administration rarely benefits the local area and can lead to side effects, while topical administration has poor permeability due to the skin barrier function. Currently, few of these common medical interventions can totally respond to the blood supply of the skin after surgery. Herein, a soluble microneedle (MN) patch made of hyaluronic acid was used to target the ischemic area in a painless and precise manner for transdermal drug delivery. Based on the important role of nitric oxide (NO) in angiogenesis, the thermosensitive NO donor (BNN6) and gold nanorods (GNRs) acting as photothermal agents were introduced into the microneedles (MNs). The hyperthermia induced by GNRs under near infrared (NIR, 808 nm) irradiation could enhance the penetration of drugs and facilitate NO release from BNN6. A series of corresponding experiments proved that the system played a significant promotion role in vascular regeneration, providing a painless, precise and NO-assisted treatment method for the ischemic perforator flaps.
Collapse
Affiliation(s)
- Lubing Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Qingqing Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, China.
| | - Huaiwei Liao
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Jing Ye
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, China.
| | - Jinjun Huang
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Shisheng Li
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Haichuan Peng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, China.
| | - Xiang Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, China.
| | - Huicai Wen
- Department of Plastic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China.
| | - Xiaolei Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies: Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, China.
| |
Collapse
|
8
|
The Role of Recombinant Fibroblast Growth Factor 1 in Enhancing the Angiogenesis in Random Cutaneous Flaps in Animal Model of Rat. World J Plast Surg 2021. [DOI: 10.52547/wjps.10.2.76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
严 玉, 潘 新, 林 博, 林 冠, 殷 国. [Effect of natural hirudin on revascularization of ischemic skin flaps in rats by Micro-CT]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:382-386. [PMID: 32174087 PMCID: PMC8171649 DOI: 10.7507/1002-1892.201907030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/06/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To investigate the effect of natural hirudin on revascularization of ischemic skin flap in rats using Micro-CT and three-dimensional (3D) reconstruction. METHODS Thirty-two Sprague Dawley rats were prepared a ischemic skin flap (8.0 cm×1.8 cm) model on the back and randomly divided into hirudin group and control group (16 rats in each group). At immediate and within 3 days after operation, the rats were treated with hypodermic injection of natural hirudin 0.3 mL (including natural hirudin 6 ATU) every day in hirudin group and the equal amount of normal saline in control group. At 6 days after operation, the survival rate of skin flap was evaluated, histological changes were observed by HE staining, and the volemia, length of blood vessels, and number of blood vessels were analyzed with Micro-CT 3D reconstruction. RESULTS Both groups of rats survived to the end of the experiment without infection. Different degrees of necrosis occurred in the distal part of the skin flaps in both groups at 6 days after operation, but the flap survival rate of the hirudin group (72.11%±8.97%) was significantly higher than that of control group (58.94%±4.02%) ( t=3.280, P=0.008). Histological observation showed that the histological hierarchy of the hirudin group was clearer than that of the control group, with more microangiogenesis and less inflammatory response and inflammatory cell infiltration. Micro-CT 3D reconstruction showed that the flap vessels in the hirudin group were more and denser, and the volemia, length of blood vessels, and number of blood vessels were significantly higher than those in the control group ( P<0.05). CONCLUSION Natural hirudin can reduce the inflammation of tissue, promote the regeneration and recanalization of blood vessels in ischemic skin flap, so as to improve the survival rate of the flap.
Collapse
Affiliation(s)
- 玉勇 严
- 广西医科大学第一附属医院整形美容外科(南宁 530021)Department of Plastic and Aesthetic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning Guangxi, 530021, P.R.China
| | - 新元 潘
- 广西医科大学第一附属医院整形美容外科(南宁 530021)Department of Plastic and Aesthetic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning Guangxi, 530021, P.R.China
| | - 博杰 林
- 广西医科大学第一附属医院整形美容外科(南宁 530021)Department of Plastic and Aesthetic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning Guangxi, 530021, P.R.China
| | - 冠宇 林
- 广西医科大学第一附属医院整形美容外科(南宁 530021)Department of Plastic and Aesthetic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning Guangxi, 530021, P.R.China
| | - 国前 殷
- 广西医科大学第一附属医院整形美容外科(南宁 530021)Department of Plastic and Aesthetic Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning Guangxi, 530021, P.R.China
- 广西壮族自治区人民医院整形美容激光中心(南宁 530021)Department of Cosmetology and Plastic Surgery Center, the People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning Guangxi, 530021, P.R.China
| |
Collapse
|
10
|
Nobiletin enhances the survival of random pattern skin flaps: Involvement of enhancing angiogenesis and inhibiting oxidative stress. Int Immunopharmacol 2019; 78:106010. [PMID: 31806568 DOI: 10.1016/j.intimp.2019.106010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/26/2019] [Accepted: 10/27/2019] [Indexed: 12/17/2022]
Abstract
Random-pattern flap necrosis is a serious challenge for plastic surgeons. Nobiletin (NOB) is a polymethoxylated flavonoid extracted from citrus fruits reported to have antioxidant, anti-inflammatory and anti-apoptotic effects. Our experiment evaluated the impact of NOB on the viability of random flaps. Thirty six male "McFarlane flap" rat models were separated into two equal groups: a control group and an experimental group treated with 10 mg/kg of NOB. After 7 days, the range of necrosis was calculated, and a histological analysis was performed on tissue specimens. Immunohistochemical staining, lead oxide-gelatin angiography, and a Laser Doppler perfusion imager were used to assess angiogenesis and measure oxidative stress, as indicated by superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels. The average survival area of flap was greater in the NOB-treated group than that in the control group. The NOB-treated group mitigated oxidative stress via augmented SOD, reduced MDA, and enhanced vascular endothelial growth factor (VEGF) expression. Hematoxylin and eosin staining indicated that NOB increased blood flow and had anti-inflammatory effects. Our findings revealed that NOB improved random skin flap survival.
Collapse
|
11
|
Zhou K, Chen H, Lin J, Xu H, Wu H, Bao G, Li J, Deng X, Shui X, Gao W, Ding J, Xiao J, Xu H. FGF21 augments autophagy in random-pattern skin flaps via AMPK signaling pathways and improves tissue survival. Cell Death Dis 2019; 10:872. [PMID: 31740658 PMCID: PMC6861244 DOI: 10.1038/s41419-019-2105-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
Random-pattern skin flap is commonly used for surgical tissue reconstruction due to its ease and lack of axial vascular limitation. However, ischemic necrosis is a common complication, especially in distal parts of skin flaps. Previous studies have shown that FGF21 can promote angiogenesis and protect against ischemic cardiovascular disease, but little is known about the effect of FGF21 on flap survival. In this study, using a rat model of random skin flaps, we found that the expression of FGF21 is significantly increased after establishment skin flaps, suggesting that FGF21 may exert a pivotal effect on flap survival. We conducted experiments to elucidate the role of FGF21 in this model. Our results showed that FGF21 directly increased the survival area of skin flaps, blood flow intensity, and mean blood vessel density through enhancing angiogenesis, inhibiting apoptosis, and reducing oxidative stress. Our studies also revealed that FGF21 administration leads to an upregulation of autophagy, and the beneficial effects of FGF21 were reversed by 3-methyladenine (3MA), which is a well-known inhibitor of autophagy, suggesting that autophagy plays a central role in FGF21’s therapeutic benefit on skin flap survival. In our mechanistic investigation, we found that FGF21-induced autophagy enhancement is mediated by the dephosphorylation and nuclear translocation of TFEB; this effect was due to activation of AMPK-FoxO3a-SPK2-CARM1 and AMPK-mTOR signaling pathways. Together, our data provides novel evidence that FGF21 is a potent modulator of autophagy capable of significantly increasing random skin flap viability, and thus may serve as a promising therapy for clinical use.
Collapse
Affiliation(s)
- Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Huanwen Chen
- University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jinti Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Hongqiang Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Guodong Bao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Jiafeng Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Xiangyang Deng
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiaolong Shui
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China. .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China. .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325027, China.
| |
Collapse
|
12
|
Trehalose promotes the survival of random-pattern skin flaps by TFEB mediated autophagy enhancement. Cell Death Dis 2019; 10:483. [PMID: 31522191 PMCID: PMC6745036 DOI: 10.1038/s41419-019-1704-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
Abstract
Random-pattern skin flaps are commonly used and valuable tools in reconstructive surgery, however, post-operative random skin flap necrosis remains a major and common complication. Previous studies have suggested that activating autophagy, a major pathway for degradation of intracellular waste, may improve flap survival. In this study, we investigated whether trehalose, a novel and potent autophagy activator, improves random skin flap viability. Our results demonstrated that trehalose significantly improves viability, augments blood flow, and decreases tissue edema. Furthermore, we found that trehalose leads to increased angiogenesis, decreased apoptosis, and reduced oxidative stress. Using immunohistochestry and western blot, we demonstrated that trehalose augments autophagy, and that inhibition of autophagy augmentation using 3MA significantly blunted the aforementioned benefits of trehalose therapy. Mechanistically, we showed that trehalose’s autophagy augmentation is mediated by activation and nuclear translocation of TFEB, which may be due to inhibition of Akt and activation of the AMPK-SKP2-CARM1 signaling pathway. Altogether, our results established that trehalose is a potent agent capable for significantly increasing random-pattern skin flap survival by augmenting autophagy and subsequently promoting angiogenesis, reducing oxidative stress, and inhibiting cell death.
Collapse
|
13
|
Lese I, Graf DA, Tsai C, Taddeo A, Matter MT, Constantinescu MA, Herrmann IK, Olariu R. Bioactive nanoparticle-based formulations increase survival area of perforator flaps in a rat model. PLoS One 2018; 13:e0207802. [PMID: 30475867 PMCID: PMC6258121 DOI: 10.1371/journal.pone.0207802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/06/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Distal flap necrosis is a frequent complication of perforator flaps. Advances in nanotechnology offer exciting new therapeutic approaches. Anti-inflammatory and neo-angiogenic properties of certain metal oxides within the nanoparticles, including bioglass and ceria, may promote flap survival. Here, we explore the ability of various nanoparticle formulations to increase flap survival in a rat model. MATERIALS AND METHODS A 9 x 3 cm dorsal flap based on the posterior thigh perforator was raised in 32 Lewis rats. They were divided in 4 groups and treated with different nanoparticle suspensions: I-saline (control), II-Bioglass, III-Bioglass/ceria and IV-Zinc-doped strontium-substituted bioglass/ceria. On post-operative day 7, planimetry and laser Doppler analysis were performed to assess flap survival and various samples were collected to investigate angiogenesis, inflammation and toxicity. RESULTS All nanoparticle-treated groups showed a larger flap survival area as compared to the control group (69.9%), with groups IV (77,3%) and II (76%) achieving statistical significance. Blood flow measurements by laser Doppler analysis showed higher perfusion in the nanoparticle-treated flaps. Tissue analysis revealed higher number of blood vessels and increased VEGF expression in groups II and III. The cytokines CD31 and MCP-1 were decreased in groups II and IV. CONCLUSIONS Bioglass-based nanoparticles exert local anti-inflammatory and neo-angiogenic effects on the distal part of a perforator flap, increasing therefore its survival. Substitutions in the bioglass matrix and trace metal doping allow for further tuning of regenerative activity. These results showcase the potential utility of these nanoparticles in the clinical setting.
Collapse
Affiliation(s)
- Ioana Lese
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for Biomedical Research, University of Bern, Bern, Switzerland
| | | | - Catherine Tsai
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Adriano Taddeo
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Martin Tobias Matter
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Mihai A Constantinescu
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Inge Katrin Herrmann
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
| | - Radu Olariu
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, Bern, Switzerland.,Department for Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Wu H, Ding J, Wang L, Lin J, Li S, Xiang G, Jiang L, Xu H, Gao W, Zhou K. Valproic acid enhances the viability of random pattern skin flaps: involvement of enhancing angiogenesis and inhibiting oxidative stress and apoptosis. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3951-3960. [PMID: 30510403 PMCID: PMC6248271 DOI: 10.2147/dddt.s186222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Random skin flaps are commonly applied during plastic surgery, but distal flap necrosis limits their clinical applications. Valproic acid (VPA), a histone deacetylase inhibitor and a traditional antiepileptic agent, may promote flap survival. Materials and methods Sprague–Dawley rats were randomly divided into VPA-treated and control groups. All rats received VPA or saline by intraperitoneal injections once daily for 7 days after the modified McFarlane flap model was established. On postoperative day 7, flap survival, laser Doppler blood flow, and water content were examined for flap viability, hematoxylin and eosin staining (H&E), immunohistochemistry (IHC), and Western blot analysis, and the status of angiogenesis, apoptosis, and oxidative stress were detected in the ischemic flaps. Results VPA increased the survival area, blood flow, and number of microvessels in skin flaps on postoperative day 7 and reduced edema. VPA promoted angiogenesis by enhancing vascular endothelial growth factor (VEGF) mRNA transcription and upregulating VEGF and cadherin 5 expression, inhibited apoptosis via reduction of caspase 3 cleavage, and relieved oxidative stress by increasing superoxide dismutase (SOD) and glutathione (GSH) levels and reducing the malondialdehyde (MDA) level. Conclusion VPA promoted random skin flap survival by enhancing angiogenesis and inhibiting oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Hongqiang Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China, ; .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China, ; .,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China, ;
| | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China, ; .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China, ; .,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China, ;
| | - Lei Wang
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China, ;
| | - Jinti Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China, ; .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China, ; .,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China, ;
| | - Shihen Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China, ; .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China, ; .,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China, ;
| | - Guangheng Xiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China, ; .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China, ; .,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China, ;
| | - Liangfu Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China, ; .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China, ; .,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China, ;
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China, ; .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China, ; .,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China, ;
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China, ; .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China, ; .,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China, ;
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China, ; .,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China, ; .,The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China, ;
| |
Collapse
|