1
|
Pradal LDA, de Freitas E, Azevedo MRB, Costa R, Bertolini GRF. Photobiomodulation in Burn Wounds: A Systematic Review and Meta-Analysis of Clinical and Preclinical Studies. Photobiomodul Photomed Laser Surg 2025; 43:8-23. [PMID: 39172550 DOI: 10.1089/photob.2023.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Objective: This systematic review and meta-analysis main goal was to evaluate the efficacy of photobiomodulation as burn wounds treatment. Methods: Systematic review of literature available in databases such as PubMed, Web of Science, Embase, Latin American and Caribbean Health Sciences Literature (LILACS), and The Cumulative Index to Nursing and Allied Health Literature (CINAHL) and gray literature in Google Scholar, Livivi, and Open Gray. SYRCLE's RoB tool was applied to determine methodological quality and risk of bias, and meta-analysis was performed using the software Review Manager. Results: Fifty-one studies, gathering more than three thousand animals were included in this systematic review, and four studies were selected to the meta-analysis due to their suitability. The results indicated that photobiomodulation was not effective to improve, statistical significantly, wound retraction (SMD = -0.22; 95% CI = -4.19, 3.75; p = 0.91; I2 = 92%) or collagen deposition (SMD = -0.02; 95% CI = -2.17, 2.13; p = 0.99; I2 = 78%). Conclusion: This meta-analysis suggests that photobiomodulation, applied in burn wounds, accordingly to the protocols presented by the selected studies, was not effective over analyzed outcomes. However, this conclusion could be further discussed and verified in more homogeneous animal models and human clinical trials.
Collapse
Affiliation(s)
- Lilian de Araujo Pradal
- Progama de Pós-graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná - UNIOESTE, Cascavel, Brazil
| | - Edicleia de Freitas
- Progama de Pós-graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná - UNIOESTE, Cascavel, Brazil
| | | | - Rosemeire Costa
- Progama de Pós-graduação em Biociências e Saúde, Universidade Estadual do Oeste do Paraná - UNIOESTE, Cascavel, Brazil
| | | |
Collapse
|
2
|
Chang F, Yan L, Zha Y, Hong X, Zhu K, Fei Y, Si T, Ding Y, Chen A, Zhang X, Chen Z, Li H, Jin J. Development of a Wound Epithelialization Healing Model: Reducing the Impact of Contraction Healing on the Wound Surface. J Burn Care Res 2024; 45:1016-1025. [PMID: 38616525 DOI: 10.1093/jbcr/irae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Indexed: 04/16/2024]
Abstract
Animal experiments are important in trauma-related studies because they simulate in vivo effects. Rodents are a good choice for preparing trauma models; however, contractile healing in rodents results in a healing pattern that differs considerably from that in humans. Therefore, this study developed a new rodent model that avoids contractile healing of the skin around the wound using an anticontraction ring, and the skin in the wound's center remains intact and acts as a source for epithelialized diffusion healing. Cell proliferation, migration, revascularization, and collagen secretion did not differ between the novel and conventional full-skin defect trauma models. However, the healing rate at various stages significantly differed between the 2 groups owing to differences in the healing patterns. And without effective treatment, the experimental group cannot heal. The stabilities of the novel and conventional methods were good regardless of operator or batch. In summary, this new animal trauma model provides a stable experimental environment similar to that in humans, which may promote trauma-related research.
Collapse
Affiliation(s)
- Fei Chang
- Department of Burns, Zhangjiagang Hospital affiliated to Soochow University, Zhangjiagang, Jiangsu Province 215600, China
- Department of Burns, The First People's Hospital of Zhangjiagang City, Zhangjiagang, Jiangsu Province 215600, China
| | - Lei Yan
- Department of Burns, The 72nd Group Military Hospital of PLA, Huzhou, Zhejiang Province 313100, China
| | - Yuanyuan Zha
- Department of Burns, The First Affiliated Hospital of Second Military Medical University, Shanghai 200433, China
| | - Xudong Hong
- Department of Burns and Plastic, 903rd Hospital of PLA, Hangzhou, Zhejiang Province 310000, China
| | - Kaisi Zhu
- Department of Burns, The First Affiliated Hospital of Second Military Medical University, Shanghai 200433, China
| | - Yanghonghong Fei
- Department of Burns and Plastic, 903rd Hospital of PLA, Hangzhou, Zhejiang Province 310000, China
| | - Tingting Si
- Department of Burns and Plastic, 903rd Hospital of PLA, Hangzhou, Zhejiang Province 310000, China
| | - Yinjia Ding
- Department of Burns and Plastic, 903rd Hospital of PLA, Hangzhou, Zhejiang Province 310000, China
| | - Aifen Chen
- Department of Burns and Plastic, 903rd Hospital of PLA, Hangzhou, Zhejiang Province 310000, China
| | - Xudong Zhang
- Department of Burns and Plastic, 903rd Hospital of PLA, Hangzhou, Zhejiang Province 310000, China
| | - Zhengli Chen
- Department of Burns, The First Affiliated Hospital of Second Military Medical University, Shanghai 200433, China
| | - Huatao Li
- Department of Burns, The 72nd Group Military Hospital of PLA, Huzhou, Zhejiang Province 313100, China
| | - Jian Jin
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
- Shanghai Depeac Biotechnology Co., Ltd, Shanghai 200444, China
| |
Collapse
|
3
|
Jian J, Yu P, Zhengli C, Xudong H, Xudong Z, Yu S, Guangyi W, Shihui Z, Bing M, Zhaofan X. Determining transfusion use in major burn patients: A retrospective review and analysis from 2009 to 2019. Burns 2022; 48:1104-1111. [PMID: 34839960 DOI: 10.1016/j.burns.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022]
Abstract
Blood transfusion is an important treatment for patients with major burns. Understanding the predictive factors of blood product usage in major burns can improve effective transfusion therapy. We retrospectively reviewed the medical records of the Burn Center, First Affiliated Hospital of the Chinese Naval Military Medical University, from August 2009 to July 2019 and enrolled all patients with major burns treated in that decade. Basic information, condition, and blood-transfusion details of the patients were analyzed to identify predictive factors for blood use and prognosis. Despite a yearly decreasing trend, the frequency of use of blood-product usage in major burns was high at 57.72%, with 5.39 times and 28.76 units of blood usage per person. Burn area was the most important predictive factor for blood transfusion at different stages. Burn depth, combined with injury, age, and other factors, affected blood use. Blood use or volume correlated with prognosis; especially, platelet and cryoprecipitate use was significantly associated with increased mortality. Blood product usage in major burns patients is related not only to the clinical condition, but also to doctors' experience, which can predict prognosis. Blood use is associated with increased mortality, although we found no evidence of a causal association.
Collapse
Affiliation(s)
- Jin Jian
- 903rd Hospital of People Liberation Army (PLA), Hangzhou, Zhejiang, China
| | - Peng Yu
- The First Affiliated Hospital of Naval Medical University, Yangpu, Shanghai, China
| | - Chen Zhengli
- The First Affiliated Hospital of Naval Medical University, Yangpu, Shanghai, China
| | - Hong Xudong
- 903rd Hospital of People Liberation Army (PLA), Hangzhou, Zhejiang, China
| | - Zhang Xudong
- 903rd Hospital of People Liberation Army (PLA), Hangzhou, Zhejiang, China
| | - Sun Yu
- The First Affiliated Hospital of Naval Medical University, Yangpu, Shanghai, China
| | - Wang Guangyi
- The First Affiliated Hospital of Naval Medical University, Yangpu, Shanghai, China
| | - Zhu Shihui
- The First Affiliated Hospital of Naval Medical University, Yangpu, Shanghai, China
| | - Ma Bing
- The First Affiliated Hospital of Naval Medical University, Yangpu, Shanghai, China.
| | - Xia Zhaofan
- The First Affiliated Hospital of Naval Medical University, Yangpu, Shanghai, China.
| |
Collapse
|
4
|
Oliveira RF, Marquiore LF, Gomes CBS, de Abreu PTR, Ferreira LAQ, Diniz LA, Gomes NA, Jácome‐Santos H, Moreno A, Macari S, Mesquita RA, Silva TA, Marques MM, Diniz IMA. Interplay between epithelial and mesenchymal cells unveils essential proinflammatory and pro‐resolutive mediators modulated by photobiomodulation therapy at 660 nm. Wound Repair Regen 2022; 30:345-356. [PMID: 35373874 DOI: 10.1111/wrr.13010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 03/04/2022] [Accepted: 03/27/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Rafaela F. Oliveira
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Larissa F. Marquiore
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Cristopher B. S. Gomes
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Priscila T. R. de Abreu
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Luiza A. Q. Ferreira
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Luiza A. Diniz
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Natália A. Gomes
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Humberto Jácome‐Santos
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Amália Moreno
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Soraia Macari
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Ricardo A. Mesquita
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Tarcília A. Silva
- Department of Oral Pathology and Surgery School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| | - Márcia M. Marques
- Post‐Graduation Program in Dentistry, Ibirapuera University São Paulo São Paulo Brazil
| | - Ivana M. A. Diniz
- Department of Restorative Dentistry School of Dentistry, Universidade Federal de Minas Gerais Belo Horizonte Minas Gerais Brazil
| |
Collapse
|
5
|
Gomes NA, do Valle IB, Gleber-Netto FO, Silva TA, Oliveira HMDC, de Oliveira RF, Ferreira LDAQ, Castilho LS, Reis PHRG, Prazeres PHDM, Menezes GB, de Magalhães CS, Mesquita RA, Marques MM, Birbrair A, Diniz IMA. Nestin and NG2 transgenes reveal two populations of perivascular cells stimulated by photobiomodulation. J Cell Physiol 2022; 237:2198-2210. [PMID: 35040139 DOI: 10.1002/jcp.30680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/14/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022]
Abstract
Pericytes and glial cells are known to collaborate in dental pulp tissue repair. Cell-based therapies that stimulate these stromal components may be of therapeutic relevance for partially vital dental pulp conditions. This study aimed to examine the early effect of photobiomodulation (PBM) in pericytes from experimentally injured pulp tissue. To accomplish this, we used the Nestin-GFP/NG2-DsRed mice, which could allow the identification of distinct pericyte phenotypes. We discovered the presence of two pericytes subsets within the dental pulp, the Nestin + NG2+ (type-2) and Nestin- NG2+ (type-1). Upon injury, PBM treatment led to a significant increase in Nestin+ cells and pericytes. This boost was mainly conferred by the more committed pericyte subset (NestinNG2+ ). PBM also stimulated terminal blood vessels sprouting adjacent to the injury site while maintaining signs of pulp vitality. In vitro, PBM induced VEGF upregulation, improved dental pulp cells proliferation and migration, and favored their mineralization potential. Herein, different subsets of perivascular cells were unveiled in the pulp tissue. PBM enhanced not only NG2+ cells but nestin-expressing progenitors in the injured dental pulp.
Collapse
Affiliation(s)
- Natália A Gomes
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabella B do Valle
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Frederico O Gleber-Netto
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tarcília A Silva
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Rafaela F de Oliveira
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiza de Almeida Q Ferreira
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lia S Castilho
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paulo H R G Reis
- Ohlab, Associação Mineira de Reabilitação, Belo Horizonte, Brazil
| | - Pedro H D M Prazeres
- Departament of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gustavo B Menezes
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cláudia S de Magalhães
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo A Mesquita
- Department of Head & Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Márcia M Marques
- Postgraduation Program in Dentistry, Ibirapuera University, São Paulo, Brazil
| | - Alexander Birbrair
- Departament of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ivana M A Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Keshri GK, Kumar G, Sharma M, Bora K, Kumar B, Gupta A. Photobiomodulation effects of pulsed-NIR laser (810 nm) and LED (808 ± 3 nm) with identical treatment regimen on burn wound healing: A quantitative label-free global proteomic approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
7
|
Smith RD, Carney BC, Garg G, Monger KW, Prindeze NJ, Shupp JW, Moffatt LT. Modeling Burn Progression Using Comb Burns: The Impact of Thermal Contact Duration on Model Outcomes. J Surg Res 2020; 260:155-162. [PMID: 33340869 DOI: 10.1016/j.jss.2020.11.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/02/2020] [Accepted: 11/15/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Burn progression is a phenomenon that remains poorly characterized. The mechanisms of burn conversion are not completely understood, and consequently, both predictive diagnostic tools and interventions are limited. The rat comb burn model is a commonly used approach to study horizontal burn conversion. However, there is significant variability in how the model is performed. Skin contact duration, comb device heating method, comb heating duration, amount of pressure applied, the weight of the comb, and associated depth of burn are all variables that are heterogeneous in studies utilizing the model. MATERIALS AND METHODS Here, contact duration was examined to determine the impact the duration of burn delivery has on the conversion of interspaces in this model. Data from multiple experiments consisting of 10, 15, 20, 30, 40, and 45 s comb burns were compiled and assessed. Burns were made using combs heated in a 100°C dry bath and then monitored for 2 d. Interspace viability was assessed by digital and laser doppler imaging and biopsy procurement. RESULTS Laser Doppler Imaging and viable interspace measurements showed that as burn duration increased, the percentage of the viable interspace and interspace perfusion decreased. Additionally, a contact time of 30 s or greater was required to result in 100% interspace conversion. CONCLUSIONS These results demonstrate a need to better characterize and potentially standardize the rat comb burn model to reduce variation and maintain it as a valuable tool for controlled studies of the pathophysiology of burn wound progression.
Collapse
Affiliation(s)
- Robert D Smith
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia
| | - Bonnie C Carney
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia; Department of Biochemistry and Molecular Biology, Georgetown University, Washington, District of Columbia
| | - Gaurav Garg
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia; Department of Surgery, MedStar Washington Hospital Center and MedStar Georgetown University Hospital, Washington, District of Columbia
| | - Kyle W Monger
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia
| | - Nicholas J Prindeze
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia; Department of Surgery, MedStar Washington Hospital Center and MedStar Georgetown University Hospital, Washington, District of Columbia
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia; Department of Biochemistry and Molecular Biology, Georgetown University, Washington, District of Columbia; The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, District of Columbia; Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia.
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia; Department of Biochemistry and Molecular Biology, Georgetown University, Washington, District of Columbia; Department of Surgery, Georgetown University School of Medicine, Washington, District of Columbia
| |
Collapse
|
8
|
do Valle IB, Prazeres PHDM, Mesquita RA, Silva TA, de Castro Oliveira HM, Castro PR, Freitas IDP, Oliveira SR, Gomes NA, de Oliveira RF, Marquiore LF, Macari S, do Amaral FA, Jácome-Santos H, Barcelos LS, Menezes GB, Marques MM, Birbrair A, Diniz IMA. Photobiomodulation drives pericyte mobilization towards skin regeneration. Sci Rep 2020; 10:19257. [PMID: 33159113 PMCID: PMC7648092 DOI: 10.1038/s41598-020-76243-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Photobiomodulation is being widely applied for improving dermal or mucosal wound healing. However, the underlying cellular and molecular processes that directly contribute to its effects remain poorly understood. Pericytes are relevant cells involved in the wound microenvironment and could be one of the main targets of photobiomodulation due to their plasticity and perivascular localization. Herein, we investigate tissue repair under the photobiomodulation stimulus using a pericyte labeled (or reporter) transgenic mice. Using a model of two contralateral back wounds, one the control and the other photoactivated daily (660 nm, 20 mW, 0.71 W/cm2, 5 J/cm2, 7 s, 0.14 J), we showed an overall influx of immune and undifferentiated cells and higher mobilization of a potent pericyte subpopulation (Type-2 pericytes) in the photoactivated wounds in comparison to the controls. Doppler analysis showed a significant increase in the blood flow in the photoactivated wounds, while marked vascular supply was observed histologically. Histochemical analysis has indicated more advanced stages of tissue repair after photoactivation. These data suggest that photobiomodulation significantly accelerates tissue repair through its vascular effects with direct recruitment of pericytes to the injury site.
Collapse
Affiliation(s)
- Isabella Bittencourt do Valle
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31.270-901, Brazil
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ricardo Alves Mesquita
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tarcília Aparecida Silva
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Pollyana Ribeiro Castro
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Iuri Dornelas Prates Freitas
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31.270-901, Brazil
- School of Dentistry, Faculdade Sete Lagoas, Sete Lagoas, Minas Gerais, Brazil
| | - Sicília Rezende Oliveira
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Natália Aparecida Gomes
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31.270-901, Brazil
| | - Rafaela Férrer de Oliveira
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31.270-901, Brazil
| | - Larissa Fassarela Marquiore
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31.270-901, Brazil
| | - Soraia Macari
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31.270-901, Brazil
| | - Flávio Almeida do Amaral
- Department of Biochemistry and Immunology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Humberto Jácome-Santos
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31.270-901, Brazil
- Department of Oral Pathology and Surgery, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lucíola Silva Barcelos
- Department of Physiology and Biophysics, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo Batista Menezes
- Department of Morphology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Alexander Birbrair
- Departament of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ivana Márcia Alves Diniz
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31.270-901, Brazil.
| |
Collapse
|
9
|
Hu X, Wang X, Hong X, Fan H, Zhang X, Chen A, Wang G, Jin J, Xia Z. Modification and utility of a rat burn wound model. Wound Repair Regen 2020; 28:797-811. [PMID: 32770808 DOI: 10.1111/wrr.12855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/11/2020] [Accepted: 07/18/2020] [Indexed: 11/26/2022]
Abstract
This study aimed to improve the conventional rat burn wound model and to validate its utility. In total, 60 Sprague-Dawley rats were divided equally into the control and experimental groups. Altogether, 60 burn wound models with zones of stasis were created in each group. Gross visual assessments of the burn wounds were performed at 0, 24, and 48 hours after burn creation. The rates of necrosis in the zones of stasis were calculated, and the blood flow from the wounds was examined. Wound tissues were collected 48 hours after the burn and subjected to hematoxylin and eosin staining to determine whether the models were successfully established. The model success rates were calculated. The success rate of the burn wound models was significantly different between the control group and the experimental group (93.33% [56/60] vs 100%; P = .042). The Cronbach's alpha values and the respective correlation coefficients indicated that the stability of the zones of stasis in the models on the two sides of the spine was higher in the experimental group than in the control group. The standard deviations of the rate of necrosis, blood flow, and density of necrotic cells and apoptosis cell density, and inflammatory factor content in the zones of stasis were smaller in the experimental group than in the control group at 48 hours after model construction. This suggested that the stability of repeated procedures was higher in the experimental group than in the control group. The novel device for creating burns in animal models facilitated the effective creation of zones of stasis for rat burn wound models. Both the model success rate and stability were higher compared with the conventional model construction method. In addition, the use of the novel device can better align with the requirements of self-controlled studies.
Collapse
Affiliation(s)
- Xiaoyan Hu
- Department of Burns, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Xingxia Wang
- Department of Nephrology, 903rd Hospital of PLA, Hangzhou, China
| | - Xudong Hong
- Department of Burns and Plastic Surgery, 903rd Hospital of PLA, Hangzhou, China
| | - Hao Fan
- Department of Burns and Plastic Surgery, 903rd Hospital of PLA, Hangzhou, China
| | - Xudong Zhang
- Department of Burns and Plastic Surgery, 903rd Hospital of PLA, Hangzhou, China
| | - Aifen Chen
- Department of Burns and Plastic Surgery, 903rd Hospital of PLA, Hangzhou, China
| | - Guangyi Wang
- Department of Burns, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Jian Jin
- Department of Burns and Plastic Surgery, 903rd Hospital of PLA, Hangzhou, China
| | - Zhaofan Xia
- Department of Burns, Changhai Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
10
|
Gavish L, Hoffer O, Rabin N, Halak M, Shkilevich S, Shayovitz Y, Weizman G, Haim O, Gavish B, Gertz SD, Ovadia‐Blechman Z. Microcirculatory Response to Photobiomodulation—Why Some Respond and Others Do Not: A Randomized Controlled Study. Lasers Surg Med 2020; 52:863-872. [DOI: 10.1002/lsm.23225] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Lilach Gavish
- The Institute for Research in Military Medicine (IRMM) Faculty of Medicine of The Hebrew University of Jerusalem and Israel Defense Forces Medical Corps Ein Kerem, POB 12272 Jerusalem 9112001 Israel
- Institute for Medical Research‐Israel‐Canada (IMRIC) Faculty of Medicine of The Hebrew University of Jerusalem Ein Kerem, POB 12272 Jerusalem 9112001 Israel
| | - Oshrit Hoffer
- School of Electrical Engineering Afeka Tel‐Aviv Academic College of Engineering 38 Mivtza Kadesh St. Tel‐Aviv 6910717 Israel
| | - Neta Rabin
- Unit of Mathematics Afeka Tel‐Aviv Academic College of Engineering 38 Mivtza Kadesh St. Tel‐Aviv 6910717 Israel
- Department of Industrial Engineering, The Iby and Aladar Fleischman Faculty of Engineering Tel‐Aviv University P.O.B 39040, Ramat Aviv Tel‐Aviv 6997801 Israel
| | - Moshe Halak
- Department of Vascular Surgery Sheba Medical Center Ramat‐Gan 5265601 Israel
| | - Simon Shkilevich
- School of Medical Engineering Afeka Tel‐Aviv Academic College of Engineering 8 Mivtza Kadesh St. Tel‐Aviv 6910717 Israel
| | - Yuval Shayovitz
- School of Medical Engineering Afeka Tel‐Aviv Academic College of Engineering 8 Mivtza Kadesh St. Tel‐Aviv 6910717 Israel
| | - Gal Weizman
- School of Medical Engineering Afeka Tel‐Aviv Academic College of Engineering 8 Mivtza Kadesh St. Tel‐Aviv 6910717 Israel
| | - Ortal Haim
- School of Electrical Engineering Afeka Tel‐Aviv Academic College of Engineering 38 Mivtza Kadesh St. Tel‐Aviv 6910717 Israel
| | | | - S. David Gertz
- The Institute for Research in Military Medicine (IRMM) Faculty of Medicine of The Hebrew University of Jerusalem and Israel Defense Forces Medical Corps Ein Kerem, POB 12272 Jerusalem 9112001 Israel
- Institute for Medical Research‐Israel‐Canada (IMRIC) Faculty of Medicine of The Hebrew University of Jerusalem Ein Kerem, POB 12272 Jerusalem 9112001 Israel
| | - Zehava Ovadia‐Blechman
- School of Medical Engineering Afeka Tel‐Aviv Academic College of Engineering 8 Mivtza Kadesh St. Tel‐Aviv 6910717 Israel
| |
Collapse
|
11
|
Keshri GK, Yadav A, Verma S, Kumar B, Gupta A. Effects of Pulsed 810 nm Al-Ga-As Diode Laser on Wound Healing Under Immunosuppression: A Molecular Insight. Lasers Surg Med 2019; 52:424-436. [PMID: 31483061 DOI: 10.1002/lsm.23156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVES Dysregulated inflammation is one of the major contributing factors for the prevalence of non-healing chronic wound in immunosuppressed subjects. Photobiomodulation (PBM) has emerged as a potential non-thermal, light-based therapeutic healing intervention for the treatment of impaired wounds. STUDY DESIGN/MATERIALS AND METHODS The present study delineates the underlying molecular mechanisms of PBM 810 nm laser-induced full-thickness cutaneous wound repair in immunosuppressed rats at continuous and pulsed wave-mode with power-density of 40 mW/cm 2 , fluence 22.6 J/cm 2 for 10 minutes daily for 7 post-wounding days. Molecular markers were assessed using biochemical, enzyme-linked immunosorbent assay quantification, enzyme kinetics and immunoblots analyses pertaining to inflammation, oxidative stress, cell survival, calcium signaling, and proliferation cascades. RESULTS Results distinctly revealed that pulsed 810 nm (10 Hz) PBM potentially influenced the cell survival and proliferation signaling pathway by significantly upregulated phospho-protein kinase B(phospho-Akt), phospho-extracellular-signal-regulated kinase 1 (ERK1), transient receptor potential vanilloid-3 (TRPV3), Ca2+ , calmodulin, transforming growth factor-β1 (TGF-β1), TGF-βR3, and Na + /K + -ATPase pump levels. PBM treatment resulted in reduction of exaggerated inflammatory responses evident by significantly repressed levels of interleukin-1β (IL-1β), IL-6, cyclooxygenase 2 (COX-2), and substance-P receptor (SPR), as well as inhibited apoptotic cell death by decreasing p53, cytochrome C, and caspase 3 levels (P < 0.05), which, in turn, effectively augment the wound repair in immunosuppressed rats. PBM treatment also lowered 4-hydroxynoneal (HNE) adduct level and NADP/NADPH ratio and upregulated the GRP78 expression, which might culminate into reduced oxidative stress and maintained the redox homeostasis. CONCLUSIONS Taken together, these findings would be helpful in better understanding of the molecular aspects involved in pulsed 810 nm laser-mediated dermal wound healing in immunosuppressed rats through regulation of cell survival and proliferation via Ca2+ -calmodulin, Akt, ERK, and redox signaling. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gaurav K Keshri
- Pharmacology Devision, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, 110 054, India
| | - Anju Yadav
- Pharmacology Devision, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, 110 054, India
| | - Saurabh Verma
- Pharmacology Devision, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, 110 054, India
| | - Bhuvnesh Kumar
- Pharmacology Devision, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, 110 054, India
| | - Asheesh Gupta
- Pharmacology Devision, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, 110 054, India
| |
Collapse
|