1
|
Parmar UPS, Surico PL, Scarabosio A, Barone V, Singh RB, D'Ancona F, Zeppieri M, Parodi PC, Mori T, Cutrupi F, Ma DHK, Di Zazzo A, Coassin M. Amniotic Membrane Transplantation for Wound Healing, Tissue Regeneration and Immune Modulation. Stem Cell Rev Rep 2025:10.1007/s12015-025-10892-x. [PMID: 40366553 DOI: 10.1007/s12015-025-10892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2025] [Indexed: 05/15/2025]
Abstract
Amniotic membrane transplantation (AMT) has emerged as a versatile therapeutic modality with significant applications in wound healing, tissue regeneration, and ophthalmology. This review comprehensively evaluates AMT's efficacy in acute and chronic wound management, where it has been shown to alleviate pain, reduce infection risk, and facilitate epithelialization. In chronic wounds, AMT enhances healing through mechanisms such as re-epithelialization, angiogenesis, and immune modulation. Additionally, AMT exhibits promise in nerve regeneration, demonstrating potential in the repair of peripheral and central nervous system injuries by fostering neural recovery and minimizing scar formation. In ophthalmology, AMT is instrumental in corneal surface reconstruction, conjunctival repairs, and the management of dry eye syndrome and limbal stem cell deficiency. While the benefits of AMT are well-documented, this review also addresses significant challenges, including variability in success rates across different clinical conditions, ethical concerns regarding donor tissue usage, and regulatory hurdles impacting its broader clinical application. Furthermore, we integrate recent advances in the understanding of AMT's molecular mechanisms - such as its antioxidant effects via Nrf2/HO-1 pathway and immune modulation via P2X7 receptor pathways - and highlight innovative strategies including the incorporation of nanoceria nanoparticles, Vitamin D3 supplementation, and gene therapy approaches to enhance AMT outcomes. By exploring these dimensions, the review highlights not only the current state of AMT but also its potential future role in advancing regenerative medicine, including emerging applications in spinal cord repair, orthopaedics, and tissue engineering. This updated synthesis aims to inform clinicians and researchers about the multifaceted applications of AMT, promoting further investigation and optimization of this promising therapeutic approach.
Collapse
Affiliation(s)
| | - Pier Luigi Surico
- Department of Organs of Sense, University of Rome La Sapienza, Rome, 00185, Italy.
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan.
| | - Anna Scarabosio
- Department of Plastic Surgery, University Hospital of Udine, Udine, 33100, Italy
| | - Vincenzo Barone
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome, 00128, Italy
| | - Rohan Bir Singh
- Discipline of Ophthalmology and Visual Science, Faculty of Health and Medical Sciences, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Fabrizio D'Ancona
- Department of Ophthalmology, Royal Liverpool University Hospital, Liverpool, UK
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine, 33100, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, Udine, 33100, Italy
| | - Tommaso Mori
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome, 00128, Italy
| | - Francesco Cutrupi
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome, 00128, Italy
| | - David Hui-Kang Ma
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, Taiwan
- Department of Ophthalmology, Xiamen Chang Gung Hospital, Xiamen, China
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Tissue Engineering, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Antonio Di Zazzo
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome, 00128, Italy
| | - Marco Coassin
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome, 00128, Italy
| |
Collapse
|
2
|
Khalilzad MA, Mohammadi J, Amirsaadat S, Najafi S, Zare S, Nilforoushzadeh MA, Khalilzad M, Khaghani A, Soltankouhi MRF, Hajimohammad A. Elevating Dermatology Beyond Aesthetics: Perinatal-Derived Advancements for Rejuvenation, Alopecia Strategies, Scar Therapies, and Progressive Wound Healing. Stem Cell Rev Rep 2025; 21:709-729. [PMID: 39804520 DOI: 10.1007/s12015-024-10835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2024] [Indexed: 04/03/2025]
Abstract
Dermatologists have been interested in recent advancements in regenerative therapy. Current research is actively investigating the possibility of placental tissue derivatives to decelerate the skin aging process, enhance skin regeneration, reduce scarring, and prevent hair loss. Amniotic membranes (AM) play a crucial role in regenerative medicine as they serve as a suitable means of transporting stem cells, growth hormones, cytokines, and other essential compounds. Regulating an intricate network of biological processes improves the development and repair of tissues. Studies done by dermatologists indicate that several compounds found in the decidua, umbilical cord, and amniotic membrane have the potential to be used for regeneration. Examples include mesenchymal stem cells, growth factors, and immunomodulatory pharmaceuticals. Due to research and technological developments, scientists may use placental sections to facilitate skin regeneration, minimize scarring, and expedite wound healing. This study examines the current state of dermatological therapy, with a focus on using derivatives obtained from fetal tissue as the basis. The critical areas of study focus on this strategy are the potential benefits, growth opportunities, and recovery rates. Based on a thorough examination of the available literature and clinical data, we want to make definitive conclusions on the possible influence of fetal tissue derivatives in dermatological therapy.
Collapse
Affiliation(s)
- Mohammad Amin Khalilzad
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Mohammadi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran.
| | - Soumayeh Amirsaadat
- Stem Cell Research Center, Tabriz university of medical sciences, Tabriz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Laser application Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Skin Repair Research Center, Jordan Dermatology and Hair Transplantation Center, Tehran, Iran.
| | - Mitra Khalilzad
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ayoub Khaghani
- Department of Gynecological Surgery, Tehranpars Hospital, Tehran, Iran
| | | | - Alireza Hajimohammad
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Solecki L, Fenelon M, Kerdjoudj H, Di Pietro R, Stati G, Gaudet C, Bertin E, Nallet J, Louvrier A, Gualdi T, Schiavi-Tritz J, Gindraux F. Perspectives on the use of decellularized/devitalized and lyophilized human perinatal tissues for bone repair: Advantages and remaining challenges. Mater Today Bio 2025; 30:101364. [PMID: 39811604 PMCID: PMC11732169 DOI: 10.1016/j.mtbio.2024.101364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 01/16/2025] Open
Abstract
Human amniotic membrane (hAM) has been extensively used for several decades as a bioactive scaffold for regenerative medicine. In its cryopreserved form-one of the main storage formats-the presence of viable cells has often been questioned. Furthermore, there is little published evidence of the role of endogenous amniotic cells from cryopreserved hAM in tissue repair. Some technologies, often patented and combined, have facilitated the use of hAM. Decellularization and devitalization processes have been developed to ensure its safety and prevent immune rejection. Lyophilization and dehydration methods have had a significant impact on clinical practices by enabling storage at room temperature in the operating room and making handling and cutting easier. Consequently, the commercialization of hAM has expanded, initially in the USA, and now in Europe. In the last decade, there has been growing interest in new perinatal tissues in clinical medicine. Similar processes have been adapted for these tissues to prevent immune or inflammatory reactions, and to improve storage and make them easier to use. For example, in the USA, many products marketed for wound healing undergo lyophilization, sometimes in combination with decellularization. Given our expertise, we wanted to highlight the potential of decellularized/devitalized and lyophilized perinatal tissues in regenerative medicine, particularly for bone repair. In this opinion paper, we discuss why these tissues represent the future of regenerative medicine, their potential drawbacks and strategies to overcome these challenges.
Collapse
Affiliation(s)
- Lauriana Solecki
- CHU Besançon, Service d'Ophtalmologie, F-25000 Besançon, France
- Université de Franche-Comté, Laboratoire SINERGIES, F-25000 Besançon, France
- Hôpitaux Universitaires de Strasbourg, Service d'Ophtalmologie, F-67091 Strasbourg, France
| | - Mathilde Fenelon
- Université de Bordeaux, INSERM, BIOTIS, U1026, F-33000 Bordeaux, France
- Service de Chirurgie Orale, CHU Bordeaux, F-33076 Bordeaux, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, F-51100 Reims, France
- Université de Reims Champagne Ardenne, Faculté Dentaire, F-51100 Reims, France
| | - Roberta Di Pietro
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, Fondazione G. d’Annunzio, University of Chieti- Pescara, Chieti, Italy
| | - Gianmarco Stati
- Department of Medicine and Aging Sciences, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy
- StemTeCh Group, Fondazione G. d’Annunzio, University of Chieti- Pescara, Chieti, Italy
| | - Camille Gaudet
- CHU Besançon, Service de chirurgie Maxillo-faciale, Stomatologie et Odontologie Hospitalière, F-25000 Besançon, France
| | - Eugenie Bertin
- CHU Besançon, Service de chirurgie Maxillo-faciale, Stomatologie et Odontologie Hospitalière, F-25000 Besançon, France
| | - Jeremie Nallet
- CHU Besançon, Service de chirurgie Pédiatrique, F-25000 Besançon, France
| | - Aurélien Louvrier
- Université de Franche-Comté, Laboratoire SINERGIES, F-25000 Besançon, France
- CHU Besançon, Service de chirurgie Maxillo-faciale, Stomatologie et Odontologie Hospitalière, F-25000 Besançon, France
| | - Thomas Gualdi
- CHU Besancon, Centre d’Investigation Clinique–Inserm CIC 1431, F 25000 Besançon, France
| | | | - Florelle Gindraux
- Université de Franche-Comté, Laboratoire SINERGIES, F-25000 Besançon, France
- CHU Besançon, Service de chirurgie Maxillo-faciale, Stomatologie et Odontologie Hospitalière, F-25000 Besançon, France
| |
Collapse
|
4
|
Dardari D, Piaggesi A, Potier L, Sultan A, Diener H, Francois M, Dorweiler B, Bouillet B, M'Bemba J, Chaillous L, Clerici G, Kessler L, Wetzel-Roth W, Storck M, Davidsson OB, Baldursson B, Kjartansson H, Lantis JC, Charpentier G. Intact Fish Skin Graft to Treat Deep Diabetic Foot Ulcers. NEJM EVIDENCE 2024; 3:EVIDoa2400171. [PMID: 39365895 DOI: 10.1056/evidoa2400171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
BACKGROUND Diabetic foot ulcers are chronic, difficult to heal, and potentially life-threatening. Few medical devices have been studied in diabetic ulcers penetrating to bone or tendon. METHODS We conducted an international, open-label randomized controlled trial, randomly assigning patients with diabetic ulcers penetrating to bone, joint, or tendon 1:1 to intact fish skin graft or standard wound care, with assigned treatment applied through 14 weeks. The primary end point was the proportion of ulcers healed at 16 weeks, defined as reepithelization as identified by the investigator, and confirmed 14 days later. A blinded adjudication committee confirmed healing at both time points. Healing was also assessed at 20 and 24 weeks. RESULTS Between July 2020 and November 2022, 255 patients were randomly assigned to intact fish skin graft (n=129) or standard of care (n=126). Healing was achieved in 44% of patients at 16 weeks with intact fish skin graft compared with 26% for standard of care (P<0.001, unadjusted), with additional healing at 20 weeks (46% vs. 32%) and 24 weeks (55% vs. 38%). Mean (SD) time to healing was 17.3 (0.69) weeks (95% confidence interval [CI], 15.5 to 18.7) for the intact fish skin graft group and 19.4 (0.66) weeks (95% CI, 18.1 to 20.7) for the standard of care group. In a Cox regression, intact fish skin graft was associated with faster time to healing (hazard ratio, 1.59; 95% CI, 1.07 to 2.36). Primary wound infections were the most common adverse event, occurring in 39 (30.2%) of patients in the intact fish skin graft group and 31 (24.6%) of patients in the standard of care group. CONCLUSIONS Among patients with deep diabetic foot ulcers, treatment with intact fish skin graft was superior to standard of care in proportion of wounds healed at 16 weeks and was associated with faster time to healing. (Funded by European Commission Fast Track to Innovation Horizon 2020, and Kerecis Ltd. ClinicalTrials.gov NCT04257370.).
Collapse
Affiliation(s)
- Dured Dardari
- Diabetology Department, Center Hopitalier Sud Francilien, Corbeil-Essonnes, France
- LBEPS, Université d'Evry, IRBA, Université Paris Saclay, 91025 Evry, France
| | - Alberto Piaggesi
- Diabetic Foot Section, Department of Endocrinology and Metabolism, University Hospital Pisa, Pisa, Italy
| | - Louis Potier
- Diabetology Department, Hôpital Bichat - Claude Bernard, AP-HP, 75018 Paris, France
- Institut Necker Enfants Malades, Université Paris Cité, INSERM U1151, CNRS UMR-S8253, F-75015 Paris, France
| | - Ariane Sultan
- Diabetology Nutrition Department, CHU Montpelier, Université de Montpellier, 34090 Montpellier, France
- Inserm, CNRS, Phymedexp, CHU de Montpellier, 34090 Montpellier, France
| | - Holger Diener
- Department of Vascular and Endovascular Surgery, Wound Competence Center, Krankenhaus Bucholz, Buchholz, Germany
| | - Maude Francois
- Diabetology Department, CHU de Reims Hôpital Robert Debré, 51100 Reims, France
| | - Bernhard Dorweiler
- Department of Vascular and Endovascular Surgery, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Benjamin Bouillet
- Department of Endocrinology, Diabetology and Nutrition, Dijon Bourgogne University Hospital, 21000 Dijon, France
- INSERM Research Center U1231 CMT, University of Burgundy, 21000 Dijon, France
| | - Jocelyne M'Bemba
- Department of Diabetology, CHU Cochin, Hôpital Cochin, 75000 Paris, France
| | - Lucy Chaillous
- Department of Endocrinology-Diabetology-Nutrition, L'Institut du Thorax, CHU de Nantes, University Hospital of Nantes, 44000 Nantes, France
| | - Giacomo Clerici
- San Carlo Hospital, Paderno-Dugnano, Italy
- Gruppo Ospedaliero Leonardo Abano Terme (Padua)
| | - Laurence Kessler
- Department of Endocrinology, Diabetes and Nutrition, University Hospital of Strasbourg, UMR Inserm 1260, Regenerative Nanomedicine, University of Strasbourg 67000 Strasbourg, France
| | | | | | | | | | | | | | - Guillaume Charpentier
- CERITD (Center for Study and Research for Improvement of the Treatment of Diabetes), Bioparc-Genopole Evry-Corbeil, 91042 Evry, France
| |
Collapse
|
5
|
Kang Y, Wang L, Zhang S, Liu B, Gao H, Jin H, Xiao L, Zhang G, Li Y, Jiang J, Zhao J. Bioactive Patch for Rotator Cuff Repairing via Enhancing Tendon-to-Bone Healing: A Large Animal Study and Short-Term Outcome of a Clinical Trial. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308443. [PMID: 38922803 PMCID: PMC11336973 DOI: 10.1002/advs.202308443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/26/2024] [Indexed: 06/28/2024]
Abstract
Tissue engineering has demonstrated its efficacy in promoting tissue regeneration, and extensive research has explored its application in rotator cuff (RC) tears. However, there remains a paucity of research translating from bench to clinic. A key challenge in RC repair is the healing of tendon-bone interface (TBI), for which bioactive materials suitable for interface repair are still lacking. The umbilical cord (UC), which serves as a vital repository of bioactive components in nature, is emerging as an important source of tissue engineering materials. A minimally manipulated approach is used to fabricate UC scaffolds that retain a wealth of bioactive components and cytokines. The scaffold demonstrates the ability to modulate the TBI healing microenvironment by facilitating cell proliferation, migration, suppressing inflammation, and inducing chondrogenic differentiation. This foundation sets the stage for in vivo validation and clinical translation. Following implantation of UC scaffolds in the canine model, comprehensive assessments, including MRI and histological analysis confirm their efficacy in inducing TBI reconstruction. Encouraging short-term clinical results further suggest the ability of UC scaffolds to effectively enhance RC repair. This investigation explores the mechanisms underlying the promotion of TBI repair by UC scaffolds, providing key insights for clinical application and translational research.
Collapse
Affiliation(s)
- Yuhao Kang
- Department of Sports MedicineDepartment of OrthopedicsShanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineNo. 600 Yishan RoadShanghai200233China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation WorkroomShanghai Jiao Tong University School of MedicineNo. 600 Yishan RoadShanghai200233China
| | - Liren Wang
- Department of Sports MedicineDepartment of OrthopedicsShanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineNo. 600 Yishan RoadShanghai200233China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation WorkroomShanghai Jiao Tong University School of MedicineNo. 600 Yishan RoadShanghai200233China
| | - Shihao Zhang
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryEngineering Research Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Bowen Liu
- Bioarticure Medical Technology (Shanghai) Co., LtdNo.81‐82, Zuchongzhi Road, PudongShanghai200120China
| | - Haihan Gao
- Department of Sports MedicineDepartment of OrthopedicsShanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineNo. 600 Yishan RoadShanghai200233China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation WorkroomShanghai Jiao Tong University School of MedicineNo. 600 Yishan RoadShanghai200233China
| | - Haocheng Jin
- Department of Sports MedicineDepartment of OrthopedicsShanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineNo. 600 Yishan RoadShanghai200233China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation WorkroomShanghai Jiao Tong University School of MedicineNo. 600 Yishan RoadShanghai200233China
| | - Lan Xiao
- School of Mechanical, Medical and Process EngineeringCenter of Biomedical TechnologyQueensland University of TechnologyBrisbane4059Australia
| | - Guoyang Zhang
- Department of Sports MedicineDepartment of OrthopedicsShanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineNo. 600 Yishan RoadShanghai200233China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation WorkroomShanghai Jiao Tong University School of MedicineNo. 600 Yishan RoadShanghai200233China
| | - Yulin Li
- Key Laboratory for Ultrafine Materials of Ministry of EducationFrontiers Science Center for Materiobiology and Dynamic ChemistryEngineering Research Center for Biomedical Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and TechnologyShanghai200237China
| | - Jia Jiang
- Department of Sports MedicineDepartment of OrthopedicsShanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineNo. 600 Yishan RoadShanghai200233China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation WorkroomShanghai Jiao Tong University School of MedicineNo. 600 Yishan RoadShanghai200233China
| | - Jinzhong Zhao
- Department of Sports MedicineDepartment of OrthopedicsShanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineNo. 600 Yishan RoadShanghai200233China
- Regenerative Sports Medicine and Translational Youth Science and Technology Innovation WorkroomShanghai Jiao Tong University School of MedicineNo. 600 Yishan RoadShanghai200233China
| |
Collapse
|
6
|
Cheng AM, Gupta SK. Dr. Scheffer C.G. Tseng: A Pioneer in Cryopreserved Amniotic Membrane for Regenerative Medicine. Cureus 2024; 16:e66872. [PMID: 39280453 PMCID: PMC11398612 DOI: 10.7759/cureus.66872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/18/2024] Open
Abstract
Dr. Scheffer Chuei-Goong Tseng is widely recognized as a pioneer in the development and application of cryopreserved amniotic membrane therapy. Dr. Tseng has completely revolutionized the management of ocular and various diseases through the success in the study of regenerative medicine, specifically through the human amniotic membrane. He has turned innovative scientific discoveries into products that contribute to many medical fields, including ophthalmology, orthopedics, oral and maxillofacial surgery, dermatology, and wound care. This review article explores Dr. Tseng's background, career, and significant contributions to regenerative medicine, with a particular focus on the impact of cryopreserved amniotic membrane technology.
Collapse
Affiliation(s)
- Anny M Cheng
- Ophthalmology, Broward Health, Fort Lauderdale, USA
- Ophthalmology, Florida International University, Herbert Wertheim College of Medicine, Miami, USA
- Ophthalmology, Specialty Retina Center, Deerfield beach, USA
| | - Shailesh K Gupta
- Ophthalmology, Broward Health, Fort lauderdale, USA
- Ophthalmology, Specialty Retina Center, Deerfield beach, USA
| |
Collapse
|
7
|
Mohsin F, Javaid S, Tariq M, Mustafa M. Molecular immunological mechanisms of impaired wound healing in diabetic foot ulcers (DFU), current therapeutic strategies and future directions. Int Immunopharmacol 2024; 139:112713. [PMID: 39047451 DOI: 10.1016/j.intimp.2024.112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
Diabetic foot ulcer (DFU) is a foremost cause of amputation in diabetic patients. Consequences of DFU include infections, decline in limb function, hospitalization, amputation, and in severe cases, death. Immune cells including macrophages, regulatory T cells, fibroblasts and other damage repair cells work in sync for effective healing and in establishment of a healthy skin barrier post-injury. Immune dysregulation during the healing of wounds can result in wound chronicity. Hyperglycemic conditions in diabetic patients influence the pathophysiology of wounds by disrupting the immune system as well as promoting neuropathy and ischemic conditions, making them difficult to heal. Chronic wound microenvironment is characterized by increased expression of matrix metalloproteinases, reactive oxygen species as well as pro-inflammatory cytokines, resulting in persistent inflammation and delayed healing. Novel treatment modalities including growth factor therapies, nano formulations, microRNA based treatments and skin grafting approaches have significantly augmented treatment efficiency, demonstrating creditable efficacy in clinical practices. Advancements in local treatments as well as invasive methodologies, for instance formulated wound dressings, stem cell applications and immunomodulatory therapies have been successful in targeting the complex pathophysiology of chronic wounds. This review focuses on elucidating the intricacies of emerging physical and non-physical therapeutic interventions, delving into the realm of advanced wound care and comprehensively summarizing efficacy of evidence-based therapies for DFU currently available.
Collapse
Affiliation(s)
- Fatima Mohsin
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Sheza Javaid
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Mishal Tariq
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| | - Muhammad Mustafa
- KAM School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan.
| |
Collapse
|
8
|
Wong AYW, Hooi NMF, Yeo BSY, Sultana R, Bee YM, Lee ARYB, Tay SM. Improving Diabetic Wound-Healing Outcomes With Topical Growth Factor Therapies. J Clin Endocrinol Metab 2024; 109:e1642-e1651. [PMID: 38477463 DOI: 10.1210/clinem/dgae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
CONTEXT Diabetes mellitus is associated with morbid complications such as diabetic foot ulcers (DFUs) that may lead to amputations or mortality if not managed adequately. OBJECTIVE New adjunctive interventions to treat diabetic wounds include topical biologics and growth factors. This study aims to evaluate their efficacy in improving wound-healing outcomes and safety. METHODS Comprehensive database searches of MEDLINE via PubMed, EMBASE, and Cochrane were performed from inception to December 2022. Three independent researchers selected the studies. Randomized controlled trials that compared the use of a topical biologic growth factor-containing regimen to other biologics or standard of care (SOC) were included. This review followed PRISMA guidelines. Risk of bias analysis was performed using the Jadad scale. Network meta-analysis was performed. Treatments were grouped into common nodes based on the type of biologic agent. Primary outcomes of interest were healing rate and time to wound closure. Secondary outcomes included wound infection, serious adverse events (AEs), and amputation rate. RESULTS Human umbilical cord (HUC) was associated with the highest cure, followed by recombinant human epidermal growth factor (hEGF). A significantly greater reduction in the time to cure DFUs was seen in HUC, hEGF, and fibroblast growth factor (FGF). There was a significantly lower risk of AEs when platelet-rich plasma (PRP) was administered. CONCLUSION HUC, hEGF, and FGF are promising topical biologics with statistically significant primary outcomes compared to SOC, while PRP is effective in reducing ulcer-related AEs. HUC has been found to be the most effective in terms of cure rate and a reduction in time to cure.
Collapse
Affiliation(s)
- Andrew Yew Wei Wong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Natalie Ming Foong Hooi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Brian Sheng Yep Yeo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Rehena Sultana
- Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Yong Mong Bee
- Department of Endocrinology, Singapore General Hospital, Singapore 169608, Singapore
| | - Ainsley Ryan Yan Bin Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sook Muay Tay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Surgical Intensive Care, Singapore General Hospital, Singapore 169608, Singapore
| |
Collapse
|
9
|
Tettelbach WH, Kelso MR, Armstrong DG. A review of the proposed draft CAMPs LCDs compared to evidence-based medicine: a letter to the MACs for consideration. J Wound Care 2024; 33:S16-S23. [PMID: 38973641 DOI: 10.12968/jowc.2024.0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Affiliation(s)
- William H Tettelbach
- RestorixHealth, Metairie, LA, US
- American Professional Wound Care Association, Lafayette, LA, US
- Duke University School of Medicine, Durham, NC, US
- Western University of Health Sciences - College of Podiatric Medicine, Pomona, CA, US
| | | | - David G Armstrong
- Southwestern Academic Limb Salvage Alliance (SALSA), US
- Keck School of Medicine, University of Southern California, Department of Surgery, US
| |
Collapse
|
10
|
Wang F, Zhang X, Zhang J, Xu Q, Yu X, Xu A, Yi C, Bian X, Shao S. Recent advances in the adjunctive management of diabetic foot ulcer: Focus on noninvasive technologies. Med Res Rev 2024; 44:1501-1544. [PMID: 38279968 DOI: 10.1002/med.22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
Diabetic foot ulcer (DFU) is one of the most costly and serious complications of diabetes. Treatment of DFU is usually challenging and new approaches are required to improve the therapeutic efficiencies. This review aims to update new and upcoming adjunctive therapies with noninvasive characterization for DFU, focusing on bioactive dressings, bioengineered tissues, mesenchymal stem cell (MSC) based therapy, platelet and cytokine-based therapy, topical oxygen therapy, and some repurposed drugs such as hypoglycemic agents, blood pressure medications, phenytoin, vitamins, and magnesium. Although the mentioned therapies may contribute to the improvement of DFU to a certain extent, most of the evidence come from clinical trials with small sample size and inconsistent selections of DFU patients. Further studies with high design quality and adequate sample sizes are necessitated. In addition, no single approach would completely correct the complex pathogenesis of DFU. Reasonable selection and combination of these techniques should be considered.
Collapse
Affiliation(s)
- Fen Wang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xiaoling Zhang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Jing Zhang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Qinqin Xu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xuefeng Yu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Anhui Xu
- Division of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengla Yi
- Division of Trauma Surgery, Tongji Hospital, Tongji Medical College, Wuhan, China
| | - Xuna Bian
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Shiying Shao
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| |
Collapse
|
11
|
Histological Characterization of Class I HLA Molecules in Whole Umbilical Cord Tissue Towards an Inexhaustible Graft Alternative for Reconstructive Surgery. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010110. [PMID: 36671682 PMCID: PMC9855378 DOI: 10.3390/bioengineering10010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Limited graft availability is a constant clinical concern. Hence, the umbilical cord (UC) is an attractive alternative to autologous grafts. The UC is an inexhaustible tissue source, and its removal is harmless and part of standard of care after the birth of the baby. Minimal information exists regarding the immunological profile of a whole UC when it is considered to be used as a tissue graft. We aimed to characterize the localization and levels of class I human leukocyte antigens (HLAs) to understand the allogenicity of the UC. Additionally, HLA-E and HLA-G are putative immunosuppressive antigens that are abundant in placenta, but their profiles in UC whole tissue are unclear. HYPOTHESIS The UC as a whole expresses a relatively low but ubiquitous level of HLA-ABC and significant levels of HLA-G and HLA-E. METHODS Healthy patients with no known pregnancy-related complications were approached for informed consent. UCs at term and between 12 and 19 weeks were collected to compare HLA profiles by gestational age. Formalin-fixed paraffin-embedded tissues were sectioned to 5 µm and immunohistochemically stained with a pan-HLA-ABC, two HLA-G-specific, or an HLA-E-specific antibody. RESULTS HLA-ABC was consistently found present in UCs. HLA-ABC was most concentrated in the UC vessel walls and amniotic epithelium but more dispersed in the Wharton's Jelly. HLA-E had a similar localization pattern to HLA-ABC in whole UC tissues at both gestational ages, but its protein level was lower. HLA-G localization and intensity were poor in all UC tissues analyzed, but additional analyses by Western immunoblot and mass spectrometry revealed a low level of HLA-G in the UC. CONCLUSION The UC may address limitations of graft availability. Rather than the presence of HLA-G, the immunosuppressive properties of the UC are more likely due to the abundance of HLA-E and the interaction known to occur between HLA-E and HLA-ABC. The co-localization of HLA-E and HLA-ABC suggests that HLA-E is likely presenting HLA-ABC leader peptides to immune cells, which is known to have a primarily inhibitory effect.
Collapse
|
12
|
Wong AYW, Ong BSY, Lee ARYB, Mai AS, Selvarajan S, Lakshminarasappa SR, Tay SM. Topical Biological Agents as Adjuncts to Improve Wound Healing in Chronic Diabetic Wounds: A Systematic Review of Clinical Evidence and Future Directions. Cureus 2022; 14:e27180. [PMID: 36035037 PMCID: PMC9398533 DOI: 10.7759/cureus.27180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2022] [Indexed: 11/05/2022] Open
Abstract
Diabetes is a leading chronic illness in the modern world and 19-34% develop chronic diabetic foot ulcers (DFUs) in their lifetime, often necessitating amputation. The reduction in tissue growth factors and resulting imbalance between proteolytic enzymes and their inhibitors, along with systemic factors impairing healing appear particularly important in chronic wounds. Growth factors applied topically have thus been suggested to be a non-invasive, safe, and cost-effective adjunct to improve wound healing and prevent complications. Comprehensive database searches of MEDLINE via PubMed, EMBASE, Cochrane, and ClinicalTrials.gov were performed to identify clinical evidence and ongoing trials. The risk of bias analysis included randomized controlled trials (RCTs) was performed using the Cochrane Risk of Bias 2.0 tool. We included randomized controlled trials that compared the use of a topical biologic growth factor-containing regimen to any other regimen. Primary outcomes of interest were time to wound closure, healing rate, and time. Secondary outcomes included the incidence of adverse events such as infection. A total of 41 trials from 1992-2020 were included in this review, with a total recorded 3,112 patients. Platelet-derived growth factors (PDGF) in the form of becaplermin gel are likely to reduce the time of closure, increase the incidence of wound closure, and complete wound healing. Human umbilical cord-related treatments, dehydrated human amnion and chorion allograft (dHACA), and hypothermically stored amniotic membrane (HSAM), consistently increased the rates and incidence of complete ulcer healing while reducing ulcer size and time to complete ulcer healing. Fibroblast growth factor-1 (FGF1) showed only a slight benefit in multiple studies regarding increasing complete ulcer healing rates and incidence while reducing ulcer size and time to complete ulcer healing, with a few studies showing no statistical difference from placebo. Platelet-rich fibrin (PRF) is consistent in reducing the time to complete ulcer healing and increasing wound healing rate but may not reduce ulcer size or increase the incidence of complete ulcer healing. Targeting the wound healing pathway via the extrinsic administration of growth factors is a promising option to augment wound healing in diabetic patients. Growth factors have also shown promise in specific subgroups of patients who are at risk of significantly impaired wound healing such as those with a history of secondary infection and vasculopathy. As diabetes impairs multiple stages of wound healing, combining growth factors in diabetic wound care may prove to be an area of interest. Evidence from this systematic literature review suggests that topical adjuncts probably reduce time to wound closure, reduce healing time, and increase the healing rate in patients with chronic DFUs.
Collapse
Affiliation(s)
- Andrew Yew Wei Wong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, SGP
| | | | | | - Aaron Shengting Mai
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, SGP
| | | | | | - Sook Muay Tay
- Surgical Intensive Care, Singapore General Hospital, Singapore, SGP
| |
Collapse
|
13
|
Placental Tissues as Biomaterials in Regenerative Medicine. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6751456. [PMID: 35496035 PMCID: PMC9050314 DOI: 10.1155/2022/6751456] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/19/2022] [Indexed: 12/02/2022]
Abstract
Placental tissues encompass all the tissues which support fetal development, including the placenta, placental membrane, umbilical cord, and amniotic fluid. Since the 1990s there has been renewed interest in the use of these tissues as a raw material for regenerative medicine applications. Placental tissues have been extensively studied for their potential contribution to tissue repair applications. Studies have attributed their efficacy in augmenting the healing process to the extracellular matrix scaffolds rich in collagens, glycosaminoglycans, and proteoglycans, as well as the presence of cytokines within the tissues that have been shown to stimulate re-epithelialization, promote angiogenesis, and aid in the reduction of inflammation and scarring. The compositions and properties of all birth tissues give them the potential to be valuable biomaterials for the development of new regenerative therapies. Herein, the development and compositions of each of these tissues are reviewed, with focus on the structural and signaling components that are relevant to medical applications. This review also explores current configurations and recent innovations in the use of placental tissues as biomaterials in regenerative medicine.
Collapse
|
14
|
Dubus M, Scomazzon L, Chevrier J, Montanede A, Baldit A, Terryn C, Quilès F, Thomachot-Schneider C, Gangloff SC, Bouland N, Gindraux F, Rammal H, Mauprivez C, Kerdjoudj H. Decellularization of Wharton’s Jelly Increases Its Bioactivity and Antibacterial Properties. Front Bioeng Biotechnol 2022; 10:828424. [PMID: 35360386 PMCID: PMC8963334 DOI: 10.3389/fbioe.2022.828424] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/08/2022] [Indexed: 12/31/2022] Open
Abstract
The field of regenerative medicine has recently seen an emerging trend toward decellularized extracellular matrix (ECM) as a biological scaffold for stem cell-delivery. Human umbilical cord represents a valuable opportunity from both technical and ethical point of view to obtain allogenic ECM. Herein, we established a protocol, allowing the full removal of cell membranes and nuclei moieties from Wharton’s jelly (WJ) tissue. No alterations in the ECM components (i.e., collagen, GAG content, and growth factors), physical (i.e., porosity and swelling) and mechanical (i.e., linear tensile modulus) properties were noticed following WJ processing. Furthermore, no effect of the tissue processing on macromolecules and growth factors retention was observed, assuring thus a suitable bioactive matrix for cell maintenance upon recellularization. Based on the in vitro and in vivo biodegradability and stromal cell homing capabilities, decellularized WJ could provide an ideal substrate for stromal cells adhesion and colonization. Interestingly, the tissue processing increased the antibacterial and antiadhesive properties of WJ against Staphylococcus aureus and Staphylococcus epidermidis pathogens. Altogether, our results indicate that decellularized WJ matrix is able to limit Staphylococcus-related infections and to promote stromal cell homing, thus offering a versatile scaffold for tissue regenerative medicine.
Collapse
Affiliation(s)
- M. Dubus
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | - L. Scomazzon
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
| | - J. Chevrier
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
| | - A. Montanede
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
| | - A. Baldit
- Laboratoire d’étude des Microstructures et de Mécanique des Matériaux (LEM3), UMR CNRS 7239, Université de Lorraine, Metz, France
| | - C. Terryn
- Plateau Technique PICT, Université de Reims Champagne Ardenne, Reims, France
| | - F. Quilès
- CNRS, LCPME, Université de Lorraine, Nancy, France
| | - C. Thomachot-Schneider
- Groupe d’Étude des Géomatériaux et Environnement Naturels, Anthropiques et Archéologiques (GEGENAA), Université de Reims Champagne Ardenne, Reims, France
| | - S. C. Gangloff
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
- UFR de Pharmacie, Université de Reims Champagne Ardenne, Reims, France
| | - N. Bouland
- Service d’anatomopathologie, UFR de Médecine, Université de Reims Champagne Ardenne, Reims, France
| | - F. Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique, Université Bourgogne Franche-Comté, Besançon, France
| | - H. Rammal
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, Reims, France
| | - C. Mauprivez
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, Reims, France
- Centre Hospitalier Universitaire de Reims, Pôle Médecine Bucco-dentaire, Hôpital Maison Blanche, Reims, France
| | - H. Kerdjoudj
- Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, Université de Reims Champagne Ardenne, Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, Reims, France
- *Correspondence: H. Kerdjoudj,
| |
Collapse
|
15
|
Antibacterial and Immunomodulatory Properties of Acellular Wharton’s Jelly Matrix. Biomedicines 2022; 10:biomedicines10020227. [PMID: 35203437 PMCID: PMC8869352 DOI: 10.3390/biomedicines10020227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
Of all biologic matrices, decellularized tissues have emerged as a promising tool in the field of regenerative medicine. Few empirical clinical studies have shown that Wharton’s jelly (WJ) of the human umbilical cord promotes wound closure and reduces wound-related infections. In this scope, we herein investigated whether decellularized (DC)-WJ could be used as an engineered biomaterial. In comparison with devitalized (DV)-WJ, our results showed an inherent effect of DC-WJ on Gram positive (S. aureus and S. epidermidis) and Gram negative (E. coli and P. aeruginosa) growth and adhesion. Although DC-WJ activated the neutrophils and monocytes in a comparable magnitude to DV-WJ, macrophages modulated their phenotypes and polarization states from the resting M0 phenotype to the hybrid M1/M2 phenotype in the presence of DC-WJ. M1 phenotype was predominant in the presence of DV-WJ. Finally, the subcutaneous implantation of DC-WJ showed total resorption after three weeks of implantation without any sign of foreign body reaction. These significant data shed light on the potential regenerative application of DC-WJ in providing a suitable biomaterial for tissue regenerative medicine and an ideal strategy to prevent wound-associated infections.
Collapse
|
16
|
Baldit A, Dubus M, Sergheraert J, Kerdjoudj H, Mauprivez C, Rahouadj R. Biomechanical tensile behavior of human Wharton's jelly. J Mech Behav Biomed Mater 2021; 126:104981. [PMID: 34915358 DOI: 10.1016/j.jmbbm.2021.104981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 02/08/2023]
Abstract
Wharton's jelly (WJ) is a mucous connective tissue of the umbilical cord. It shows high healing capabilities, mainly attributed to the chemical composition and to the presence of stem cells, growth factors and peptides. Although WJ biological properties are well documented in vitro and in vivo, there is still a lack of mechanical data on this tissue, which is paramount for its use as a biomaterial for medical applications. In this study, mechanical responses of ten WJ samples within close physiological conditions were registered undergoing quasi static cyclic tensile tests followed by a load up to failure. This protocol aimed on one hand to provide biomechanical data to feed predictive numerical models and on the other hand increase WJ knowledge in view of its potential use in biomedical field. In spite of the WJ harvest, the resulting viscous nonlinear elastic response obtained is fully in tune with the literature confirming the database quality. A side of the knowledge improvement on WJ mechanical response, this paper provides accurate data that will enhance predictive simulation work such as finite element analysis. The mechanical step-through brought by the analytical nonlinear characterization over cyclic and ultimate loads is to predict WJ behavior. Actually, principal component analysis highlighted its quality while pointing out indicators, such as failure or hydration criteria, as well as models' limitations.
Collapse
Affiliation(s)
- Adrien Baldit
- LEM3-UMR-7239, CNRS - Université de Lorraine - Arts et Métiers ParisTech, France; ENIM, Université de Lorraine, METZ, France.
| | - Marie Dubus
- Université de Reims Champagne Ardenne, Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, 51100, Reims, France
| | - Johan Sergheraert
- Université de Reims Champagne Ardenne, Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, 51100, Reims, France; Centre Hospitalier Universitaire de Reims, France
| | - Halima Kerdjoudj
- Université de Reims Champagne Ardenne, Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, 51100, Reims, France
| | - Cedric Mauprivez
- Université de Reims Champagne Ardenne, Biomatériaux et Inflammation en Site Osseux (BIOS) EA 4691, 51100, Reims, France; Centre Hospitalier Universitaire de Reims, France
| | - Rachid Rahouadj
- LEM3-UMR-7239, CNRS - Université de Lorraine - Arts et Métiers ParisTech, France
| |
Collapse
|
17
|
Influence of cord blood serum and actovegin on the reproductive function of cows in the comparative aspect. EUREKA: HEALTH SCIENCES 2021. [DOI: 10.21303/2504-5679.2021.001834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The results of the study of the effect of cord blood serum and “Actovegin” (Takeda, Ukraine) on the reproductive function of cows in a comparative aspect are presented.
The aim of the study was to analyze the effect of cord blood serum and Actovegin on the reproductive function of uterine cows in a comparative aspect.
Materials and methods. The research was conducted during 2017-2020 in four dairy farms of Sumy region with tethered and untied maintenance. In 128 cows of different breeds and productivity, the timing of sexual cycling was studied and analyzed in comparison with the spontaneous sexual cycle with the use of cord blood serum and the drug "Actovegin" (Takeda, Ukraine).
Results. It was found that in cows with tethered content, the number of days from the introduction of 15 ml of cord blood serum to the manifestation of the excitation stage was significantly less compared to the spontaneous manifestation of sexual desire (5.63±0.36 and 14.38±2.1, respectively).
When cows with loose content were administered 10 ml of cord blood serum in combination with the drug "Actovegin", the number of days before the manifestation of sexual cycling was lower by 18.3 % compared with the rate of spontaneous sexual desire (4.31±0.38 and 18.25±1.89, respectively).
Conclusions. As a result of using 10 ml of cord blood serum in combination with the drug "Actovegin", in cows of different productivity and under different housing conditions, the number of days before the onset of the stage of arousal is significantly reduced compared to the spontaneous manifestation of sexual desire.
Cows of different productivity and with different housing conditions come to the sexual desire significantly faster with the use of 15 ml of cord blood serum compared to the spontaneous manifestation of sexual desire.
Collapse
|
18
|
Oropallo A, Goodwin A, Morrissey M, Del Pin C, Rao A. Human Amnion Chorion Membrane Allografts in the Treatment of Chronic Diabetic Foot Ulcers: A Literature Review. Adv Skin Wound Care 2021; 34:1-7. [PMID: 33739952 DOI: 10.1097/01.asw.0000734388.08779.e8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To discuss human amnion chorion (placental) membrane allograft (HACMA) use for the treatment of chronic diabetic foot ulcers (DFUs) and to evaluate the effectiveness, cost, and product waste of this therapy. DATA SOURCES PubMed, Cochrane, and OVID databases. STUDY SELECTION Twenty-four articles pertaining to HACMA and DFUs published from 2016 to 2020 were selected. DATA EXTRACTION The data collected included type of wound care product, study design, study size, baseline size of DFU, cost, product wastage, number of applications, and wound healing outcomes. DATA SYNTHESIS Human amnion chorion membrane allografts in the treatment of chronic DFUs have led to a reduction in healing time and increased the overall percentage of healing, making them more effective in treating DFUs compared with standard of care. These products are offered in multiple sizes with various shelf lives and methods of storage, making them accessible, easy to use, less wasteful, and lower in cost compared with other commercially available products. Promising evidence demonstrates that HACMAs are beneficial in treating complex, high-grade DFUs with exposed tendon or bone. CONCLUSIONS Human amnion chorion membrane allografts are effective in treating chronic DFUs with a greater percentage of complete wound closure and a reduction in healing time versus standard of care.
Collapse
Affiliation(s)
- Alisha Oropallo
- At Northwell Health, Lake Success, New York, Alisha Oropallo, MD, FACS, is Director, Northshore/LIJ Wound Healing Center and Hyperbarics; Ashley Goodwin, MD, is Visiting Scholar, Department of Surgery; MaKenzie Morrissey, MD, is Visiting Scholar, Department of Surgery; Christina Del Pin, MD, FACS, is Attending Surgeon, Department of Surgery; and Amit Rao, MD, is Research Coordinator, Department of Surgery. The authors have disclosed no financial relationships related to this article. Submitted March 2, 2020; accepted in revised form May 4, 2020
| | | | | | | | | |
Collapse
|
19
|
Tseng SCG, Chen SY, Mead OG, Tighe S. Niche regulation of limbal epithelial stem cells: HC-HA/PTX3 as surrogate matrix niche. Exp Eye Res 2020; 199:108181. [PMID: 32795525 DOI: 10.1016/j.exer.2020.108181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/15/2020] [Accepted: 07/31/2020] [Indexed: 12/13/2022]
Abstract
Homeostasis of the corneal epithelium is ultimately maintained by stem cells that reside in a specialized microenvironment within the corneal limbus termed palisades of Vogt. This limbal niche nourishes, protects, and regulates quiescence, self-renewal, and fate decision of limbal epithelial stem/progenitor cells (LEPCs) toward corneal epithelial differentiation. This review focuses on our current understanding of the mechanism by which limbal (stromal) niche cells (LNCs) regulate the aforementioned functions of LEPCs. Based on our discovery and characterization of a unique extracellular matrix termed HC-HA/PTX3 (Heavy chain (HC1)-hyaluronan (HA)/pentraxin 3 (PTX3) complex, "-" denotes covalent linkage; "/" denotes non-covalent binding) in the birth tissue, i.e., amniotic membrane and umbilical cord, we put forth a new paradigm that HC-HA/PTX3 serves as a surrogate matrix niche by maintaining the in vivo nuclear Pax6+ neural crest progenitor phenotype to support quiescence and self-renewal but prevent corneal fate decision of LEPCs. This new paradigm helps explain how limbal stem cell deficiency (LSCD) develops in aniridia due to Pax6-haplotype deficiency and further explains why transplantation of HC-HA/PTX3-containing amniotic membrane prevents LSCD in acute chemical burns and Stevens Johnson syndrome, augments the success of autologous LEPCs transplantation in patients suffering from partial or total LSCD, and assists ex vivo expansion (engineering) of a graft containing LEPCs. We thus envisage that this new paradigm based on regenerative matrix HC-HA/PTX3 as a surrogate niche can set a new standard for regenerative medicine in and beyond ophthalmology.
Collapse
Affiliation(s)
- Scheffer C G Tseng
- Research & Development Department, TissueTech, Inc., Miami, FL, 33126, USA; Ocular Surface Center and Ocular Surface Research & Education Foundation, Miami, FL, 33126, USA.
| | - Szu-Yu Chen
- Research & Development Department, TissueTech, Inc., Miami, FL, 33126, USA
| | - Olivia G Mead
- Research & Development Department, TissueTech, Inc., Miami, FL, 33126, USA
| | - Sean Tighe
- Research & Development Department, TissueTech, Inc., Miami, FL, 33126, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Ophthalmology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
20
|
Marston WA, Lantis JC, Wu SC, Nouvong A, Clements JR, Lee TD, McCoy ND, Slade HB, Tseng SC. One-year safety, healing and amputation rates of Wagner 3-4 diabetic foot ulcers treated with cryopreserved umbilical cord (TTAX01). Wound Repair Regen 2020; 28:526-531. [PMID: 32386343 PMCID: PMC7383512 DOI: 10.1111/wrr.12809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/09/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022]
Abstract
An open label, multicenter 16‐week trial of cryopreserved human umbilical cord (TTAX01) was previously undertaken in 32 subjects presenting with a Wagner grade 3 or 4 diabetic foot ulcer, with 16 (50%) of these having confirmed closure following a median of one product application (previous study). All but two subjects (30/32; 94%) consented to participate in this follow‐up study to 1‐year postexposure. No restrictions were placed on treatments for open wounds. At 8‐week intervals, subjects were evaluated for adverse events (AEs) and wound status (open or closed). Average time from initial exposure to end of follow‐up was 378 days (range 343‐433), with 29 of 30 (97%) subjects completing a full year. AEs were all typical for the population under study, and none were attributed to prior exposure to TTAX01. One previously healed wound re‐opened, one previously unconfirmed closed wound remained healed, and nine new wound closures occurred, giving 25 of 29 (86.2%) healed in the ITT population. Three of the new closures followed the use of various tissue‐based products. Three subjects whose wounds were healed required subsequent minor amputations due to osteomyelitis, one of which progressed to a major amputation (1/29; 3.4%). One additional subject underwent two minor amputations prior to healing. Overall, the study found TTAX01 to be safe in long‐term follow‐up and associated with both a low rate of major amputation and a higher than expected rates of healing.
Collapse
Affiliation(s)
- William A Marston
- Division of Vascular Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - John C Lantis
- Mt Sinai West and St Luke's Hospitals, New York, New York, USA
| | - Stephanie C Wu
- Rosalind Franklin University, North Chicago, Illinois, USA
| | - Aksone Nouvong
- Department of Surgery, UCLA, Los Angeles, California, USA
| | | | | | | | - Herbert B Slade
- TissueTech, Inc., Miami, Florida, USA.,Department of Pediatrics, University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | | |
Collapse
|
21
|
Velarde F, Castañeda V, Morales E, Ortega M, Ocaña E, Álvarez-Barreto J, Grunauer M, Eguiguren L, Caicedo A. Use of Human Umbilical Cord and Its Byproducts in Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:117. [PMID: 32211387 PMCID: PMC7075856 DOI: 10.3389/fbioe.2020.00117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
The fresh or cryopreserved human umbilical cord (HUC) and its byproducts, such as cells and extracts, have different uses in tissue regeneration. Defining what HUC byproduct is more effective in a particular application is a challenge. Furthermore, the methods of isolation, culture and preservation, may affect cell viability and regenerative properties. In this article, we review the HUC and its byproducts' applications in research and clinical practice. We present our results of successful use of HUC as a patch to treat gastroschisis and its potential to be applied in other conditions. Our in vitro results show an increase in proliferation and migration of human fibroblasts by using an acellular HUC extract. Our goal is to promote standardization of procedures and point out that applications of HUC and its byproducts, as well as the resulting advances in regenerative medicine, will depend on rigorous quality control and on more research in this area.
Collapse
Affiliation(s)
- Francesca Velarde
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, Quito, Ecuador
| | - Verónica Castañeda
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Escuela de Biotecnología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Emilia Morales
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Escuela de Biotecnología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Mayra Ortega
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, Quito, Ecuador
- Colegio de Ciencias Biológicas y Ambientales, Escuela de Biotecnología, Universidad San Francisco de Quito, Quito, Ecuador
| | - Edwin Ocaña
- Hospital Carlos Andrade Marín, Quito, Ecuador
| | - Jose Álvarez-Barreto
- Instituto para el Desarrollo de Energías y Materiales Alternativos (IDEMA), Colegio de Ciencias e Ingenierías (Politécnico), Universidad San Francisco de Quito, Quito, Ecuador
| | - Michelle Grunauer
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Unidad de Cuidados Intensivos Pediátricos, Hospital de los Valles, Quito, Ecuador
| | - Luis Eguiguren
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Sistemas Médicos, SIME, Universidad San Francisco de Quito, Quito, Ecuador
| | - Andrés Caicedo
- Colegio de Ciencias de la Salud, Escuela de Medicina, Universidad San Francisco de Quito, Quito, Ecuador
- Instituto de Investigaciones en Biomedicina, Universidad San Francisco de Quito, Quito, Ecuador
- Sistemas Médicos, SIME, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
22
|
Affiliation(s)
- Scheffer C. G. Tseng
- Ocular Surface Center, Ocular Surface Research Education Foundation, and R&D Department of TissueTech Inc., Miami, FL, USA
| |
Collapse
|