1
|
Vargas-Alarcón G, Pérez-Méndez Ó, Martínez-Ríos MA, Díaz-Santillán I, Morales-Villamil LÁ, Delgadillo-Rodríguez H, Posadas-Sánchez R, Ramírez-Bello J, Fragoso JM. The DEFB1 gene rs11362 A/G genetic variant is associated with risk of developing CAD: a case-control study. Acta Cardiol 2024; 79:730-736. [PMID: 38973431 DOI: 10.1080/00015385.2024.2375487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/27/2023] [Accepted: 06/03/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND In the present study, we evaluated whether DEFB1 gene polymorphisms are associated with the presence of coronary artery disease (CAD). METHODS Two rs11362 A/G, and rs1800972 C/G gene polymorphisms of DEFB1 gene were genotyped by 5'exonuclease TaqMan assays in 219 patients with CAD and 522 control individuals. RESULTS The distribution of rs1800972 C/G polymorphisms was similar in patients with CAD and healthy controls. Nonetheless, under the co-dominant, dominant, recessive, and additive models, the AA genotype of the rs11362 A/G polymorphism was associated with the risk of developing CAD (OR = 1.89 pCCo-Dom = 0.041, OR = 1.46, pCDom = 0.034, OR = 1.69, pCRes = 0.039, and OR = 1.37, pCAdd = 0.012, respectively). In addition, the linkage disequilibrium showed that the 'AG' haplotype was associated with an increased risk of developing CAD (OR = 1.23, p = 0.042). According, with the Genotype-Tissue Expression (GTEx) consortium data, the rs11362 AA genotype is associated with a low mRNA expression of the β-defensin-1 in tissues, such as artery aorta, artery coronary, heart left ventricle, and heart atrial appendage (p < 0.001). CONCLUSION This study demonstrates that rs11362 A/G polymorphism of the DEFB1 gene is involved in the risk of developing CAD, and with a low RNA expression of the β-defensin-1 in heart tissue.
Collapse
Affiliation(s)
- Gilberto Vargas-Alarcón
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Óscar Pérez-Méndez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | - Irán Díaz-Santillán
- Department of Hemodynamics, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | | | | | - Julián Ramírez-Bello
- Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - José Manuel Fragoso
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| |
Collapse
|
2
|
Liu C, Yang QQ, Zhou YL. Peptides and Wound Healing: From Monomer to Combination. Int J Pept Res Ther 2024; 30:46. [DOI: 10.1007/s10989-024-10627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2024] [Indexed: 01/02/2025]
|
3
|
Fig latex inhibits the growth of pathogenic bacteria invading human diabetic wounds and accelerates wound closure in diabetic mice. Sci Rep 2022; 12:21852. [PMID: 36528674 PMCID: PMC9759588 DOI: 10.1038/s41598-022-26338-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Impaired wound healing is one of the most critical complications associated with diabetes mellitus. Infections and foot ulcers are major causes of morbidity for diabetic patients. The current treatment of diabetic foot ulcers, commonly used antibiotics, is associated with the development of bacterial resistance. Hence, novel and more effective natural therapeutic antibacterial agents are urgently needed and should be developed against the pathogenic bacteria inhabiting diabetic wounds. Therefore, the current study aimed to investigate the impact of fig latex on pathogenic bacteria and its ability to promote the healing process of diabetic wounds. The pathogenic bacteria were isolated from patients with diabetic foot ulcers admitted to Assiut University Hospital. Fig latex was collected from trees in the Assiut region, and its chemical composition was analyzed using GC‒MS. The antibacterial efficacy of fig latex was assessed on the isolated bacteria. An in vivo study to investigate the effect of fig latex on diabetic wound healing was performed using three mouse groups: nondiabetic control mice, diabetic mice and diabetic mice treated with fig latex. The influence of fig latex on the expression levels of β-defensin-1, PECAM-1, CCL2 and ZO-1 and collagen formation was investigated. The GC‒MS analysis demonstrated the presence of triterpenoids, comprising more than 90% of the total latex content. Furthermore, using a streptozotocin-induced diabetic mouse model, topical treatment of diabetic wound tissues with fig latex was shown to accelerate and improve wound closure by increasing the expression levels of β-defensin-1, collagen, and PECAM-1 compared to untreated diabetic wounds. Additionally, fig latex decreased the expression levels of ZO-1 and CCL2.
Collapse
|
4
|
Tan ZX, Tao R, Li SC, Shen BZ, Meng LX, Zhu ZY. Role of defensins in diabetic wound healing. World J Diabetes 2022; 13:962-971. [PMID: 36437862 PMCID: PMC9693740 DOI: 10.4239/wjd.v13.i11.962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/22/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The adverse consequences resulting from diabetes are often presented as severe complications. Diabetic wounds are one of the most commonly occurring complications in diabetes, and the control and treatment of this is costly. Due to a series of pathophysiological mechanisms, diabetic wounds remain in the inflammatory phase for a prolonged period of time, and face difficulty in entering the proliferative phase, thus leading to chronic non-healing wounds. The current consensus on the treatment of diabetic wounds is through multidisciplinary comprehensive management, however, standard wound treatment methods are still limited and therefore, more effective methods are required. In recent years, defensins have been found to play diverse roles in a variety of diseases; however, the molecular mechanisms underlying these activities are still largely unknown. Defensins can be constitutively or inductively produced in the skin, therefore, their local distribution is affected by the microenvironment of these diabetic wounds. Current evidence suggests that defensins are involved in the diabetic wound pathogenesis, and can potentially promote the early completion of each stage, thus making research on defensins a promising area for developing novel treatments for diabetic wounds. In this review, we describe the complex function of human defensins in the development of diabetic wounds, and suggest potential thera-peutic benefits.
Collapse
Affiliation(s)
- Zhi-Xiang Tan
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Rui Tao
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Si-Cheng Li
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Bing-Zheng Shen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Lan-Xia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Zhan-Yong Zhu
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| |
Collapse
|
5
|
Li G, Wang Q, Feng J, Wang J, Wang Y, Huang X, Shao T, Deng X, Cao Y, Zhou M, Zhao C. Recent insights into the role of defensins in diabetic wound healing. Biomed Pharmacother 2022; 155:113694. [PMID: 36099789 DOI: 10.1016/j.biopha.2022.113694] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetic wound, one of the most common serious complications of diabetic patients, is an important factor in disability and death. Much of the research on the pathophysiology of diabetic wound healing has long focused on mechanisms mediated by hyperglycemia, chronic inflammation, microcirculatory and macrocirculatory dysfunction. However, recent evidence suggests that defensins may play a crucial role in the development and perpetuation of diabetic wound healing. The available findings suggest that defensins exert a beneficial influence on diabetic wound healing through antimicrobial, immunomodulatory, angiogenic, tissue regenerator effects, and insulin resistance improvement. Therefore, summarizing the existing research progress on defensins in the diabetic wound may present a promising strategy for diabetic patients.
Collapse
Affiliation(s)
- Gen Li
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jialin Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoting Huang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tengteng Shao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xiaofei Deng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
6
|
Wang Z, Lu H, Tang T, Liu L, Pan B, Chen J, Cheng D, Cai X, Sun Y, Zhu F, Zhu S. Tetrahedral framework nucleic acids promote diabetic wound healing via the Wnt signalling pathway. Cell Prolif 2022; 55:e13316. [PMID: 35869570 PMCID: PMC9628242 DOI: 10.1111/cpr.13316] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/05/2023] Open
Abstract
Objectives To determine the therapeutic effect of tetrahedral framework nucleic acids (tFNAs) on diabetic wound healing and the underlying mechanism. Materials and Methods The tFNAs were characterized by polyacrylamide gel electrophoresis (PAGE), atomic force microscopy (AFM), transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential assays. Cell Counting Kit‐8 (CCK‐8) and migration assays were performed to evaluate the effects of tFNAs on cellular proliferation and migration. Quantitative polymerase chain reaction (Q‐PCR) and enzyme‐linked immunosorbent assay (ELISA) were used to detect the effect of tFNAs on growth factors. The function and role of tFNAs in diabetic wound healing were investigated using diabetic wound models, histological analyses and western blotting. Results Cellular proliferation and migration were enhanced after treatment with tFNAs in a high‐glucose environment. The expression of growth factors was also facilitated by tFNAs in vitro. During in vivo experiments, tFNAs accelerated the healing process in diabetic wounds and promoted the regeneration of the epidermis, capillaries and collagen. Moreover, tFNAs increased the secretion of growth factors and activated the Wnt pathway in diabetic wounds. Conclusions This study indicates that tFNAs can accelerate diabetic wound healing and have potential for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Zejing Wang
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Hao Lu
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Tao Tang
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Lei Liu
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Bohan Pan
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Jiqiu Chen
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Dasheng Cheng
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Yu Sun
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Feng Zhu
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| | - Shihui Zhu
- Burn Institute of PLA, Department of Burn Surgery the First Affiliated Hospital of Naval Medical University, Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences Shanghai China
| |
Collapse
|
7
|
Sanapalli BKR, Yele V, Singh MK, Thaggikuppe Krishnamurthy P, Karri VVSR. Preclinical models of diabetic wound healing: A critical review. Biomed Pharmacother 2021; 142:111946. [PMID: 34339915 DOI: 10.1016/j.biopha.2021.111946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of diabetic wounds (DWs) is always challenging for the medical community because of its multifaceted pathophysiology. Due to practical and ethical considerations, direct studies of therapeutic interventions on human subjects are limited. Thus, it is ideal for performing studies on animals having less genetic and biological variability. An ideal DW model should progress toward reproducibility, quantifiable interpretation, therapeutic significance, and effective translation into clinical use. In the last couple of decades, various animal models were developed to examine the complex cellular and biochemical process of skin restoration in DW healing. Also, these models were used to assess the potency of developed active pharmaceutical ingredients and formulations. However, many animal models lack studying mechanisms that can appropriately restate human DW, stay a huge translational challenge. This review discusses the available animal models with their significance in DW experiments and their limitations, focusing on levels of proof of effectiveness in selecting appropriate models to restate the human DW to improve clinical outcomes. Although numerous newer entities and combinatory formulations are very well appreciated preclinically for DW management, they fail in clinical trials, which may be due to improper selection of the appropriate model. The major future challenge could be developing a model that resembles the human DW environment, can potentiate translational research in DW care.
Collapse
Affiliation(s)
- Bharat Kumar Reddy Sanapalli
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | - Vidyasrilekha Yele
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | - Mantosh Kumar Singh
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu 643001, India.
| | | |
Collapse
|
8
|
Mude L, Sanapalli BKR, V AN, Singh SK, Karri VVSR. Overview of in situ gelling injectable hydrogels for diabetic wounds. Drug Dev Res 2021; 82:503-522. [PMID: 33432634 DOI: 10.1002/ddr.21788] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 01/01/2023]
Abstract
Diabetes mellitus (DM) is an endocrine disorder that causes increased blood glucose than usual due to insulin impairment. In DM, several complications arise in which diabetic wound (DW) is the most devastating complication. About 25% of patients with DM expected to develop DWs in their lifetime and undergo limb amputations. Even though several treatments such as surgery, debridement, wound dressings, advanced therapies were available, the overall conclusion has been that with very few exceptions, patients still suffer from limitations like pain, frequent dress changing, high rates of failure, and cost involvement. Further, the treatments involving the delivery of therapeutic agents in treating DWs have limited success due to abnormal levels of proteases in the DW environment. In this backdrop, in situ gelling injectable hydrogels have gained special attention due to their easy encapsulation of therapeutic medications and prolonged release, filling the wound defect areas, ease of handling, and minimally invasive surgical procedures. Though the in situ gelling injectable hydrogels are developed a couple of decades ago, their use for treating DW has not yet been explored thoroughly. Thus, in this review, we have covered the sequential events of DW healing, pathophysiology, current treatments, and its limitations, along with a particular emphasis on the mechanism of action of these in situ gelling injectable hydrogels treating DWs.
Collapse
Affiliation(s)
- Lavanya Mude
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Bharat Kumar Reddy Sanapalli
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Anoop Narayanan V
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE Deemed to be University, Paneer, Deralakatte, Mangalore, Karnataka, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | | |
Collapse
|