1
|
Cheng AM, Gupta SK. Dr. Scheffer C.G. Tseng: A Pioneer in Cryopreserved Amniotic Membrane for Regenerative Medicine. Cureus 2024; 16:e66872. [PMID: 39280453 PMCID: PMC11398612 DOI: 10.7759/cureus.66872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/18/2024] Open
Abstract
Dr. Scheffer Chuei-Goong Tseng is widely recognized as a pioneer in the development and application of cryopreserved amniotic membrane therapy. Dr. Tseng has completely revolutionized the management of ocular and various diseases through the success in the study of regenerative medicine, specifically through the human amniotic membrane. He has turned innovative scientific discoveries into products that contribute to many medical fields, including ophthalmology, orthopedics, oral and maxillofacial surgery, dermatology, and wound care. This review article explores Dr. Tseng's background, career, and significant contributions to regenerative medicine, with a particular focus on the impact of cryopreserved amniotic membrane technology.
Collapse
Affiliation(s)
- Anny M Cheng
- Ophthalmology, Broward Health, Fort Lauderdale, USA
- Ophthalmology, Florida International University, Herbert Wertheim College of Medicine, Miami, USA
- Ophthalmology, Specialty Retina Center, Deerfield beach, USA
| | - Shailesh K Gupta
- Ophthalmology, Broward Health, Fort lauderdale, USA
- Ophthalmology, Specialty Retina Center, Deerfield beach, USA
| |
Collapse
|
2
|
Wang F, Zhang X, Zhang J, Xu Q, Yu X, Xu A, Yi C, Bian X, Shao S. Recent advances in the adjunctive management of diabetic foot ulcer: Focus on noninvasive technologies. Med Res Rev 2024; 44:1501-1544. [PMID: 38279968 DOI: 10.1002/med.22020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 01/29/2024]
Abstract
Diabetic foot ulcer (DFU) is one of the most costly and serious complications of diabetes. Treatment of DFU is usually challenging and new approaches are required to improve the therapeutic efficiencies. This review aims to update new and upcoming adjunctive therapies with noninvasive characterization for DFU, focusing on bioactive dressings, bioengineered tissues, mesenchymal stem cell (MSC) based therapy, platelet and cytokine-based therapy, topical oxygen therapy, and some repurposed drugs such as hypoglycemic agents, blood pressure medications, phenytoin, vitamins, and magnesium. Although the mentioned therapies may contribute to the improvement of DFU to a certain extent, most of the evidence come from clinical trials with small sample size and inconsistent selections of DFU patients. Further studies with high design quality and adequate sample sizes are necessitated. In addition, no single approach would completely correct the complex pathogenesis of DFU. Reasonable selection and combination of these techniques should be considered.
Collapse
Affiliation(s)
- Fen Wang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xiaoling Zhang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Jing Zhang
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Qinqin Xu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Xuefeng Yu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Anhui Xu
- Division of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengla Yi
- Division of Trauma Surgery, Tongji Hospital, Tongji Medical College, Wuhan, China
| | - Xuna Bian
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| | - Shiying Shao
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Branch of National Clinical Research Center for Metabolic Diseases, Hubei, China
| |
Collapse
|
3
|
Histological Characterization of Class I HLA Molecules in Whole Umbilical Cord Tissue Towards an Inexhaustible Graft Alternative for Reconstructive Surgery. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010110. [PMID: 36671682 PMCID: PMC9855378 DOI: 10.3390/bioengineering10010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Limited graft availability is a constant clinical concern. Hence, the umbilical cord (UC) is an attractive alternative to autologous grafts. The UC is an inexhaustible tissue source, and its removal is harmless and part of standard of care after the birth of the baby. Minimal information exists regarding the immunological profile of a whole UC when it is considered to be used as a tissue graft. We aimed to characterize the localization and levels of class I human leukocyte antigens (HLAs) to understand the allogenicity of the UC. Additionally, HLA-E and HLA-G are putative immunosuppressive antigens that are abundant in placenta, but their profiles in UC whole tissue are unclear. HYPOTHESIS The UC as a whole expresses a relatively low but ubiquitous level of HLA-ABC and significant levels of HLA-G and HLA-E. METHODS Healthy patients with no known pregnancy-related complications were approached for informed consent. UCs at term and between 12 and 19 weeks were collected to compare HLA profiles by gestational age. Formalin-fixed paraffin-embedded tissues were sectioned to 5 µm and immunohistochemically stained with a pan-HLA-ABC, two HLA-G-specific, or an HLA-E-specific antibody. RESULTS HLA-ABC was consistently found present in UCs. HLA-ABC was most concentrated in the UC vessel walls and amniotic epithelium but more dispersed in the Wharton's Jelly. HLA-E had a similar localization pattern to HLA-ABC in whole UC tissues at both gestational ages, but its protein level was lower. HLA-G localization and intensity were poor in all UC tissues analyzed, but additional analyses by Western immunoblot and mass spectrometry revealed a low level of HLA-G in the UC. CONCLUSION The UC may address limitations of graft availability. Rather than the presence of HLA-G, the immunosuppressive properties of the UC are more likely due to the abundance of HLA-E and the interaction known to occur between HLA-E and HLA-ABC. The co-localization of HLA-E and HLA-ABC suggests that HLA-E is likely presenting HLA-ABC leader peptides to immune cells, which is known to have a primarily inhibitory effect.
Collapse
|
4
|
Marston WA, Lantis JC, Wu SC, Nouvong A, Clements JR, Lee TD, McCoy ND, Slade HB, Tseng SC. One-year safety, healing and amputation rates of Wagner 3-4 diabetic foot ulcers treated with cryopreserved umbilical cord (TTAX01). Wound Repair Regen 2020; 28:526-531. [PMID: 32386343 PMCID: PMC7383512 DOI: 10.1111/wrr.12809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/09/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022]
Abstract
An open label, multicenter 16‐week trial of cryopreserved human umbilical cord (TTAX01) was previously undertaken in 32 subjects presenting with a Wagner grade 3 or 4 diabetic foot ulcer, with 16 (50%) of these having confirmed closure following a median of one product application (previous study). All but two subjects (30/32; 94%) consented to participate in this follow‐up study to 1‐year postexposure. No restrictions were placed on treatments for open wounds. At 8‐week intervals, subjects were evaluated for adverse events (AEs) and wound status (open or closed). Average time from initial exposure to end of follow‐up was 378 days (range 343‐433), with 29 of 30 (97%) subjects completing a full year. AEs were all typical for the population under study, and none were attributed to prior exposure to TTAX01. One previously healed wound re‐opened, one previously unconfirmed closed wound remained healed, and nine new wound closures occurred, giving 25 of 29 (86.2%) healed in the ITT population. Three of the new closures followed the use of various tissue‐based products. Three subjects whose wounds were healed required subsequent minor amputations due to osteomyelitis, one of which progressed to a major amputation (1/29; 3.4%). One additional subject underwent two minor amputations prior to healing. Overall, the study found TTAX01 to be safe in long‐term follow‐up and associated with both a low rate of major amputation and a higher than expected rates of healing.
Collapse
Affiliation(s)
- William A Marston
- Division of Vascular Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - John C Lantis
- Mt Sinai West and St Luke's Hospitals, New York, New York, USA
| | - Stephanie C Wu
- Rosalind Franklin University, North Chicago, Illinois, USA
| | - Aksone Nouvong
- Department of Surgery, UCLA, Los Angeles, California, USA
| | | | | | | | - Herbert B Slade
- TissueTech, Inc., Miami, Florida, USA.,Department of Pediatrics, University of North Texas Health Sciences Center, Fort Worth, Texas, USA
| | | |
Collapse
|