1
|
Zhu YF, Hu YF, Li CH, Nie L, Chen J. Molecular characterization and functional study of a galectin-9 from a teleost fish, Boleophthalmus pectinirostris. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109308. [PMID: 38122956 DOI: 10.1016/j.fsi.2023.109308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Galectin-9, a tandem-repeat galectin, plays an important role in the regulation of innate immune response against various microbial infections. Here, galectin-9 from mudskipper (Boleophthalmus pectinirostris) was identified and named as BpGal-9. Putative BpGal-9 contains two conserved carbohydrate recognition domains (CRDs), one CRD within N-terminal (N-CRD) and the other one within C-terminal (C-CRD). Multi-alignment analysis indicated that BpGal-9 shared the highest amino acid sequence identity of 64.3 % with that of Southern platyfish (Xiphophorus maculatus). Phylogenetic analysis showed that BpGal-9 grouped tightly with other teleosts galectin-9 and was most closely related to that of Southern platyfish. BpGal-9 transcripts were more abundant in the intestine, and its expression upregulated significantly in the intestine, kidney, spleen, gills, and skin after Edwardsiella tarda infection. Meanwhile, BpGal-9 expression significantly increased in hemocytes and serum of mudskipper infected by E. tarda. The recombinant BpGal-9 (rBpGal-9) and rBpGal-9C-CRD could agglutinate all tested bacteria, whereas rBpGal-9N-CRD could only agglutinate three kinds of bacteria. When targeting the same bacteria, rBpGal-9 showed stronger agglutinating activities than rBpGal-9C-CRD or rBpGal-9N-CRD. In addition, the induction effect of three recombinant proteins on the mRNA expression of anti-inflammatory cytokines (BpIL-10 and BpTGF-β) was better than that on the pro-inflammatory cytokines (BpIL-1β and BpTNF-α). Our result suggested that the N-CRD and C-CRD of galectin-9 contribute differently to its multiple functions in innate immunity in teleosts.
Collapse
Affiliation(s)
- Yong-Fei Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Yi-Fan Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Chang-Hong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
2
|
Loghry HJ, Sondjaja NA, Minkler SJ, Kimber MJ. Secreted filarial nematode galectins modulate host immune cells. Front Immunol 2022; 13:952104. [PMID: 36032131 PMCID: PMC9402972 DOI: 10.3389/fimmu.2022.952104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022] Open
Abstract
Lymphatic filariasis (LF) is a mosquito-borne disease caused by filarial nematodes including Brugia malayi. Over 860 million people worldwide are infected or at risk of infection in 72 endemic countries. The absence of a protective vaccine means that current control strategies rely on mass drug administration programs that utilize inadequate drugs that cannot effectively kill adult parasites, thus established infections are incurable. Progress to address deficiencies in the approach to LF control is hindered by a poor mechanistic understanding of host-parasite interactions, including mechanisms of host immunomodulation by the parasite, a critical adaptation for establishing and maintaining infections. The canonical type 2 host response to helminth infection characterized by anti-inflammatory and regulatory immune phenotypes is modified by filarial nematodes during chronic LF. Current efforts at identifying parasite-derived factors driving this modification focus on parasite excretory-secretory products (ESP), including extracellular vesicles (EVs). We have previously profiled the cargo of B. malayi EVs and identified B. malayi galectin-1 and galectin-2 as among the most abundant EV proteins. In this study we further investigated the function of these proteins. Sequence analysis of the parasite galectins revealed highest homology to mammalian galectin-9 and functional characterization identified similar substrate affinities consistent with this designation. Immunological assays showed that Bma-LEC-2 is a bioactive protein that can polarize macrophages to an alternatively activated phenotype and selectively induce apoptosis in Th1 cells. Our data shows that an abundantly secreted parasite galectin is immunomodulatory and induces phenotypes consistent with the modified type 2 response characteristic of chronic LF infection.
Collapse
|
3
|
Chen JL, Chen Y, Xu DX, Chen DZ. Possible important roles of galectins in the healing of human fetal membranes. Front Endocrinol (Lausanne) 2022; 13:941029. [PMID: 36017312 PMCID: PMC9395672 DOI: 10.3389/fendo.2022.941029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The fetal membranes healing is a complex and dynamic process of replacing devitalized and missing cellular structures and tissue layers. Multiple cells and extracellular matrices, and cell differentiation, migration and proliferation may participate in restoring the integrity of damaged tissue, however this process still remains unclear. Therefore, there is a need to identify and integrate new ideas and methods to design a more effective dressing to accelerate fetal membrane healing. This review explores the function and role of galectins in the inflammatory, epithelial mesenchymal transition, proliferative migration, and remodeling phases of fetal membrane healing. In conclusion, the preliminary findings are promising. Research on amnion regeneration is expected to provide insight into potential treatment strategies for premature rupture of membranes.
Collapse
Affiliation(s)
- Jia-Le Chen
- The School of Public Health, Anhui Medical University, Hefei, China
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
| | - De-Xiang Xu
- The School of Public Health, Anhui Medical University, Hefei, China
| | - Dao-Zhen Chen
- The School of Public Health, Anhui Medical University, Hefei, China
- Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, China
- Department of Laboratory, Haidong No.2 People’s Hospital, Haidong, China
| |
Collapse
|
4
|
Identification of Malignant Cell Populations Associated with Poor Prognosis in High-Grade Serous Ovarian Cancer Using Single-Cell RNA Sequencing. Cancers (Basel) 2022; 14:cancers14153580. [PMID: 35892844 PMCID: PMC9331511 DOI: 10.3390/cancers14153580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Ovarian cancer has a high recurrence rate (~75%), and tumor heterogeneity is associated with such tumor recurrence. However, it is still poorly understood in ovarian cancer. To reveal tumor heterogeneity, we performed single-cell RNA sequencing (RNA-seq) of serous ovarian cancer cells from four different patients: two with primary carcinoma, one with recurrent carcinoma, and one with carcinoma treated with interval debulking surgery. As a result, we found two malignant tumor cell subtypes associated with poor prognosis. One malignant population included the earliest cancer cells and cancer stem-like cells. SLC3A1 and PEG10 were identified as the marker genes of cancer-initiating cells. The other malignant population expressing CA125 (MUC16), the most common biomarker for ovarian cancer, is associated with a decrease in the number of tumor-infiltrating cytotoxic T lymphocytes (CTLs). Our findings will offer new markers for diagnosis and choosing treatments targeting the malignant populations in ovarian cancer. Abstract To reveal tumor heterogeneity in ovarian cancer, we performed single-cell RNA sequencing (RNA-seq). We obtained The Cancer Genome Atlas (TCGA) survival data and TCGA gene expression data for a Kaplan–Meier plot showing the association of each tumor population with poor prognosis. As a result, we found two malignant tumor cell subtypes associated with poor prognosis. Next, we performed trajectory analysis using scVelo and Monocle3 and cell–cell interaction analysis using CellphoneDB. We found that one malignant population included the earliest cancer cells and cancer stem-like cells. Furthermore, we identified SLC3A1 and PEG10 as the marker genes of cancer-initiating cells. The other malignant population expressing CA125 (MUC16) is associated with a decrease in the number of tumor-infiltrating cytotoxic T lymphocytes (CTLs). Moreover, cell–cell interaction analysis implied that interactions mediated by LGALS9 and GAS6, expressed by this malignant population, caused the CTL suppression. The results of this study suggest that two tumor cell populations, including a cancer-initiating cell population and a population expressing CA125, survive the initial treatment and suppress antitumor immunity, respectively, and are associated with poor prognosis. Our findings offer a new understanding of ovarian cancer heterogeneity and will aid in the development of diagnostic tools and treatments.
Collapse
|
5
|
Quatredeniers M, Bienaimé F, Ferri G, Isnard P, Porée E, Billot K, Birgy E, Mazloum M, Ceccarelli S, Silbermann F, Braeg S, Nguyen-Khoa T, Salomon R, Gubler MC, Kuehn EW, Saunier S, Viau A. The renal inflammatory network of nephronophthisis. Hum Mol Genet 2022; 31:2121-2136. [PMID: 35043953 DOI: 10.1093/hmg/ddac014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/30/2021] [Accepted: 01/10/2022] [Indexed: 11/14/2022] Open
Abstract
Renal ciliopathies are the leading cause of inherited kidney failure. In autosomal dominant polycystic kidney disease (ADPKD), mutations in the ciliary gene PKD1 lead to the induction of CCL2, which promotes macrophage infiltration in the kidney. Whether or not mutations in genes involved in other renal ciliopathies also lead to immune cells recruitment is controversial. Through the parallel analysis of patients derived material and murine models, we investigated the inflammatory components of nephronophthisis (NPH), a rare renal ciliopathy affecting children and adults. Our results show that NPH mutations lead to kidney infiltration by neutrophils, macrophages and T cells. Contrary to ADPKD, this immune cell recruitment does not rely on the induction of CCL2 in mutated cells, which is dispensable for disease progression. Through an unbiased approach, we identified a set of inflammatory cytokines that are upregulated precociously and independently of CCL2 in murine models of NPH. The majority of these transcripts is also upregulated in NPH patient renal cells at a level exceeding those found in common non-immune chronic kidney diseases. This study reveals that inflammation is a central aspect in NPH and delineates a specific set of inflammatory mediators that likely regulates immune cell recruitment in response to NPH genes mutations.
Collapse
Affiliation(s)
- Marceau Quatredeniers
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Frank Bienaimé
- Department of Physiology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
- Université de Paris, Paris 75006, France
- Institut Necker-Enfants Malades, INSERM U1151, Paris 75015, France
| | - Giulia Ferri
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Pierre Isnard
- Université de Paris, Paris 75006, France
- Institut Necker-Enfants Malades, INSERM U1151, Paris 75015, France
- Department of Pathology, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Esther Porée
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Katy Billot
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Eléonore Birgy
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Manal Mazloum
- Institut Necker-Enfants Malades, INSERM U1151, Paris 75015, France
| | - Salomé Ceccarelli
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Flora Silbermann
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Simone Braeg
- Renal Department, University Medical Center, Freiburg 79106, Germany
| | - Thao Nguyen-Khoa
- Institut Necker-Enfants Malades, INSERM U1151, Paris 75015, France
- Laboratory of Biochemistry, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Centre Université de Paris, Paris 75015, France
| | - Rémi Salomon
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
- Université de Paris, Paris 75006, France
- Department of Pediatry, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris 75015, France
| | - Marie-Claire Gubler
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - E Wolfgang Kuehn
- Renal Department, University Medical Center, Freiburg 79106, Germany
- Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
- Center for Biological Signaling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Freiburg 79104, Germany
| | - Sophie Saunier
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| | - Amandine Viau
- Laboratory of Hereditary Kidney Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, F-75015 Paris 75015, France
| |
Collapse
|
6
|
Yu S, Lu J. Macrophages in transplant rejection. Transpl Immunol 2022; 71:101536. [PMID: 35017096 DOI: 10.1016/j.trim.2022.101536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/17/2022]
Abstract
Transplant rejection is one of the primary factors leading to loss of allograft function, and macrophages are involved in allograft rejection. Macrophages polarize into different phenotypes according to stimulation by different external factors. Different types of macrophages play distinct roles in inflammation, tumors, and autoimmune diseases and are involved in transplant rejection. In this review, we introduce the origin and migration of macrophages, outline the classification of macrophages and their polarization mechanisms, and review the currently understood mechanisms of their involvement in transplant rejection. Finally, we discuss the regulation of macrophage polarization and miRNA expression with respect to transplant rejection, which is important for the development of new anti-rejection therapies.
Collapse
Affiliation(s)
- Shaochen Yu
- Department of Emergency and Critical Care Medicine, Guangdong Second Provincial General Hospital, No. 466, Xingang Middle Road, Haizhu District, Guangzhou, Guangdong 510317, China.
| | - Jian Lu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Shushan District, Hefei, Anhui 230022, China.
| |
Collapse
|
7
|
Human recombinant IL-10 reduces xenogenic cytotoxicity via macrophage M2 polarization. Biochem Biophys Rep 2020; 24:100857. [PMID: 33294635 PMCID: PMC7701323 DOI: 10.1016/j.bbrep.2020.100857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/06/2020] [Accepted: 11/08/2020] [Indexed: 11/23/2022] Open
Abstract
Xenotransplantation has been considered an alternative to the moderate shortage of donor organs for transplantation. To achieve successful xenotransplatation, there is the need to overcome immune rejection. Although, hyperacute rejection has been overcome by α1,3-galactosyltransferase knockout pig, cellular immune rejection remains as a subsequent barrier. Interleukin-10 (IL-10) is known as an anti-inflammatory and immunomodulatory cytokine which has been shown to limit inflammatory responses by inhibiting macrophage activation in several animal experiments. To study the effect of human IL-10 (hIL-10) on pig-to-human xenotransplantation, porcine kidney epithelial cell line (PK(15)) expressing hIL-10 was established. The cytotoxicity of macrophages decreased by hIL-10 from transgenic cells. Furthermore, there is a decreased production of pro-inflammatory cytokines, tumor necrosis factor-α and interleukin-23, and increased anti-inflammatory cytokines like IL-10, but not transforming growth factor beta, in the presence of hIL-10. Also, macrophage polarization toward M2-like phenotype were induced by hIL-10 from transgenic PK(15) cells. Finally, we suggest that the cytotoxicity of human macrophages was reduced by hIL-10 from transgenic cells, inducing M2-like macrophage polarization. Therefore, these results show that hIL-10 transgenic pig can be used as a model to overcome acute immune rejection in pig-to-human xenotransplantation. The effect of human IL-10 (hIL-10) on pig-to-human xenotransplantation was studied. Cytotoxicity of macrophages decreased by hIL-10 from transgenic cells. hIL-10 induced macrophage polarization toward M2-like phenotype.
Collapse
|
8
|
A Strategy for Suppressing Macrophage-mediated Rejection in Xenotransplantation. Transplantation 2020; 104:675-681. [DOI: 10.1097/tp.0000000000003024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Zhu MY, Liu WJ, Wang H, Wang WD, Liu NW, Lu Y. NSE from diffuse large B-cell lymphoma cells regulates macrophage polarization. Cancer Manag Res 2019; 11:4577-4595. [PMID: 31191019 PMCID: PMC6529732 DOI: 10.2147/cmar.s203010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/20/2019] [Indexed: 01/18/2023] Open
Abstract
Background/aims: Diffuse large B-cell lymphoma (DLBCL) is a highly common type of malignant and heterogeneous non-Hodgkin's lymphoma. Tumor-associated macrophages, specially the M2-type, promote tumor progression and drug resistance. The clinical outcome of patients with high neuron-specific enolase (NSE) expression is worse than that with low NSE expression. The tumor-promoting mechanism of NSE, however, remains unclear. This study explored the role of NSE in macrophage polarization associated with the immune microenvironment of DLBCL. Results: Our results showed that NSE protein expression was higher in lymphoma cell lines than in the B lymphocytes. Functional studies demonstrated that upregulation of NSE in lymphoma cells could promote M2 polarization and migration ability of macrophage, thereby consequently promoting the progression of lymphoma in vitro and in vivo. Further mechanism studies revealed that lymphoma-derived exosomes could mediate NSE into macrophages, NSE enhanced nuclear p50 translocation with subsequent defective classical nuclear factor-κB activity in macrophages. Conclusions: These results indicate that NSE may be a potential target for lymphoma therapy and a prognosis marker for lymphoma.
Collapse
Affiliation(s)
- Meng-Yuan Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China.,Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China.,Department of Oncology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518107, People's Republic of China
| | - Wen-Jian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China.,Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Hua Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China.,Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Wei-da Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China.,Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Na-Wei Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China.,Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Yue Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China.,Department of Hematological Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| |
Collapse
|
10
|
Xu WC, Dong X, Ding JL, Liu JC, Xu JJ, Tang YH, Yi YP, Lu C, Yang W, Yang JS, Gong Y, Zhou JL. Nanotubular TiO 2 regulates macrophage M2 polarization and increases macrophage secretion of VEGF to accelerate endothelialization via the ERK1/2 and PI3K/AKT pathways. Int J Nanomedicine 2019; 14:441-455. [PMID: 30666106 PMCID: PMC6330985 DOI: 10.2147/ijn.s188439] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Macrophages play important roles in the immune response to, and successful implantation of, biomaterials. Titanium nanotubes are considered promising heart valve stent materials owing to their effects on modulation of macrophage behavior. However, the effects of nanotube-regulated macrophages on endothelial cells, which are essential for stent endothelialization, are unknown. Therefore, in this study we evaluated the inflammatory responses of endothelial cells to titanium nanotubes prepared at different voltages. Methods and results In this study we used three different voltages (20, 40, and 60 V) to produce titania nanotubes with three different diameters by anodic oxidation. The state of macrophages on the samples was assessed, and the supernatants were collected as conditioned media (CM) to stimulate human umbilical vein endothelial cells (HUVECs), with pure titanium as a control group. The results indicated that titanium dioxide (TiO2) nanotubes induced macrophage polarization toward the anti-inflammatory M2 state and increased the expression of arginase-1, mannose receptor, and interleukin 10. Further mechanistic analysis revealed that M2 macrophage polarization controlled by the TiO2 nanotube surface activated the phosphatidylinositol 3-kinase/AKT and extracellular signal-regulated kinase 1/2 pathways through release of vascular endothelial growth factor to influence endothelialization. Conclusion Our findings expanded our understanding of the complex influence of nanotubes in implants and the macrophage inflammatory response. Furthermore, CM generated from culture on the TiO2 nanotube surface may represent an integrated research model for studying the interactions of two different cell types and may be a promising approach for accelerating stent endothelialization through immunoregulation.
Collapse
Affiliation(s)
- Wei-Chang Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Xiao Dong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Jing-Li Ding
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ji-Chun Liu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Jian-Jun Xu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Yan-Hua Tang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Ying-Ping Yi
- Department of Science and Education, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Lu
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Wei Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Jue-Sheng Yang
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Yi Gong
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| | - Jian-Liang Zhou
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China,
| |
Collapse
|
11
|
Loarca L, De Assuncao TM, Jalan-Sakrikar N, Bronk S, Krishan A, Huang B, Morton L, Trussoni C, Bonilla LM, Krueger E, O’Hara S, Splinter P, Shi G, Pisarello MJL, Gores GJ, Huebert RC, LaRusso NF. Development and characterization of cholangioids from normal and diseased human cholangiocytes as an in vitro model to study primary sclerosing cholangitis. J Transl Med 2017; 97:1385-1396. [PMID: 28892096 PMCID: PMC5664217 DOI: 10.1038/labinvest.2017.63] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 12/12/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is an incurable, fibroinflammatory biliary disease for which there is no effective pharmacotherapy. We recently reported cholangiocyte senescence as an important phenotype in PSC while others showed that portal macrophages accumulate in PSC. Unfortunately, our ability to explore cholangiocyte senescence and macrophage accumulation has been hampered by limited in vitro models. Thus, our aim was to develop and characterize a three-dimensional (3D) model of normal and diseased bile ducts (cholangioids) starting with normal human cholangiocytes (NHC), senescent NHC (NHC-sen), and cholangiocytes from PSC patients. In 3D culture, NHCs formed spheroids of ~5000 cells with a central lumen of ~150 μm. By confocal microscopy and western blot, cholangioids retained expression of cholangiocyte proteins (cytokeratin 7/19) and markers of epithelial polarity (secretin receptor and GM130). Cholangioids are functionally active, and upon secretin stimulation, luminal size increased by ~80%. Cholangioids exposed to hydrogen peroxide exhibited cellular senescence and the senescence-associated secretory phenotype (SASP; increased IL-6, p21, SA-β-Gal, yH2A.x and p16 expression). Furthermore, cholangioids derived from NHC-sen or PSC patients were smaller and had slower growth than the controls. When co-cultured with THP-1 macrophages, the number of macrophages associated with NHC-sen or PSC cholangioids was five- to seven-fold greater compared to co-culture with non-senescent NHC. We observed that NHC-sen and PSC cholangioids release greater number of extracellular vesicles (EVs) compared to controls. Moreover, conditioned media from NHC-sen cholangioids resulted in an ~2-fold increase in macrophage migration. In summary, we developed a method to generate normal and diseased cholangioids, characterized them morphologically and functionally, showed that they can be induced to senescence and SASP, and demonstrated both EV release and macrophage attraction. This novel model mimics several features of PSC, and thus will be useful for studying the pathogenesis of PSC and potentially identifying new therapeutic targets.
Collapse
MESH Headings
- Autoantigens/metabolism
- Bile Ducts/drug effects
- Bile Ducts/metabolism
- Bile Ducts/pathology
- Bile Ducts/ultrastructure
- Biomarkers/metabolism
- Cell Line
- Cells, Cultured
- Cellular Senescence/drug effects
- Cholangitis, Sclerosing/immunology
- Cholangitis, Sclerosing/metabolism
- Cholangitis, Sclerosing/pathology
- Coculture Techniques
- Culture Media, Conditioned
- Extracellular Vesicles/drug effects
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/pathology
- Extracellular Vesicles/ultrastructure
- Gene Expression Regulation/drug effects
- Humans
- Hydrogen Peroxide/toxicity
- Keratin-19/metabolism
- Keratin-7/metabolism
- Macrophage Activation
- Macrophages/cytology
- Macrophages/immunology
- Membrane Proteins/metabolism
- Microscopy, Electron, Transmission
- Multivesicular Bodies/drug effects
- Multivesicular Bodies/metabolism
- Multivesicular Bodies/pathology
- Multivesicular Bodies/ultrastructure
- Oxidants/toxicity
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Gastrointestinal Hormone/metabolism
- Spheroids, Cellular/drug effects
- Spheroids, Cellular/metabolism
- Spheroids, Cellular/pathology
- Spheroids, Cellular/ultrastructure
Collapse
Affiliation(s)
- Lorena Loarca
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | | | | | - Steve Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Anuradha Krishan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Bing Huang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | | | - Christy Trussoni
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | | | - Eugene Krueger
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Steve O’Hara
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Patrick Splinter
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Guang Shi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | | | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Nicholas F. LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
12
|
Translational Implication of Galectin-9 in the Pathogenesis and Treatment of Viral Infection. Int J Mol Sci 2017; 18:ijms18102108. [PMID: 28991189 PMCID: PMC5666790 DOI: 10.3390/ijms18102108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 12/16/2022] Open
Abstract
The interaction between galectin-9 and its receptor, Tim-3, triggers a series of signaling events that regulate immune responses. The expression of galectin-9 has been shown to be increased in a variety of target cells of many different viruses, such as hepatitis C virus (HCV), hepatitis B virus (HBV), herpes simplex virus (HSV), influenza virus, dengue virus (DENV), and human immunodeficiency virus (HIV). This enhanced expression of galectin-9 following viral infection promotes significant changes in the behaviors of the virus-infected cells, and the resulting events tightly correlate with the immunopathogenesis of the viral disease. Because the human immune response to different viral infections can vary, and the lack of appropriate treatment can have potentially fatal consequences, understanding the implications of galectin-9 is crucial for developing better methods for monitoring and treating viral infections. This review seeks to address how we can apply the current understanding of galectin-9 function to better understand the pathogenesis of viral infection and better treat viral diseases.
Collapse
|
13
|
Lv R, Bao Q, Li Y. Regulation of M1‑type and M2‑type macrophage polarization in RAW264.7 cells by Galectin‑9. Mol Med Rep 2017; 16:9111-9119. [PMID: 28990062 DOI: 10.3892/mmr.2017.7719] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/05/2017] [Indexed: 11/06/2022] Open
Abstract
Generally considered as a potent pro‑inflammatory signal, β‑galactosidelectin suppresses T cell receptor activation, can both promote and inhibit integrin‑mediated adhesion and is required in nuclear pre‑mRNA splicing. Galectin‑9 (Gal‑9), a member of β‑galactoside lectin, is involved many processes of T cell‑mediated diseases (such as autoimmune diseases and asthma) and immunomodulation of macrophages. Macrophages are involved in the occurrence of inflammation, development and digestion and other stages. At different stages of the inflammatory response, macrophages exhibit different phenotypes, but mainly two subtypes, classically (M1) or alternatively (M2) polarization. The purpose of this work is to investigate the effect of overexpression or knockdown of Gal‑9 on the macrophage polarization. Macrophage polarization was detected by flow cytometric profiling of secreted cytokines and specific surface markers expression, including nitric oxide synthase 2 (NOS2) and mannose receptor 1 (CD206). Protein and mRNA expression levels of TNF‑α, TGF‑β, IL‑6, IL‑10, NF‑κB, signal transducer and activator of transcription (Stat)1 and Stat3 were determined by ELISA, western blot analysis or qRT‑PCR. Our results implied that differentiation of the mouse macrophage line RAW264.7 into M1‑type and M2‑type macrophages is followed by marked variations of Gal‑9 expression. Furthermore, its overexpression and secretion are tightly associated with M2‑type macrophages, whereas its downregulation promotes macrophages to polarize into M1‑type macrophages, which confirmed by elevated CD206 and NOS2, respectively. In response to the changes of Gal‑9 expression, cytokines, transcription factors and regulators, including TNF‑α, IL‑6, NF‑κB, Stat1, TGF‑β, IL‑10, and Stat3, were tightly regulated and significantly associated with classically and alternatively activated macrophages. Consistent with characteristics of M1‑type macrophages, the transcriptional or translational expression levels or activity of TNF‑α, IL‑6, Stat1 and NF‑κB were markedly increased with knockdown of Gal‑9 in macrophages. By contrast, the expression levels or activity of TGF‑β, IL‑10 and Stat3 were clearly elevated in macrophages with Gal‑9 overexpression, which is closely related with M2‑type macrophages. Specific expression and secretion patterns of cytokines, transcription factors and regulators in M1‑type and M2‑type macrophages contribute to better understanding the role of Gal‑9 in regulation in macrophages. This study provides a new insight that Gal‑9 may be a new immunomodulatory target for macrophages.
Collapse
Affiliation(s)
- Ran Lv
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Qi Bao
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Yan Li
- Department of Obstetrics and Gynecology, Yicheng District Hospital of TCM, Shandong Academy of Chinese Medicine, Zaozhuang, Shandong 277300, P.R. China
| |
Collapse
|
14
|
Ezelerab M, Burlak C. Xenotransplantation literature update, July/August 2017. Xenotransplantation 2017; 24. [PMID: 28891168 DOI: 10.1111/xen.12340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 08/20/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammed Ezelerab
- Starzl Transplantation Institute, University of Pittsburgh, E1540 Biomedical Science Tower (BST), Pittsburgh, PA, USA
| | - Christopher Burlak
- Department of Surgery, Schultz Diabetes Institute, University of Minnesota School of Medicine, Minneapolis, MN, USA
| |
Collapse
|