1
|
Chen KQ, Wang SZ, Lei HB, Liu X. Necrostatin-1: a promising compound for neurological disorders. Front Cell Neurosci 2024; 18:1408364. [PMID: 38994325 PMCID: PMC11236683 DOI: 10.3389/fncel.2024.1408364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Necrostatin-1, a small molecular alkaloid, was identified as an inhibitor of necroptosis in 2005. Investigating the fundamental mechanism of Necrostatin-1 and its role in various diseases is of great significance for scientific and clinical research. Accumulating evidence suggests that Necrostatin-1 plays a crucial role in numerous neurological disorders. This review aims to provide a comprehensive overview of the potential functions of Necrostatin-1 in various neurological disorders, offering valuable insights for future research.
Collapse
Affiliation(s)
- Ke-Qian Chen
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| | - Shu-Zhi Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Sciences, University of South China, Hengyang, China
| | - Hai-Bo Lei
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| | - Xiang Liu
- Department of Clinical Pharmacy, Xiangtan Central Hospital, Xiangtan, China
| |
Collapse
|
2
|
Smink AM, Medina JD, de Haan BJ, García AJ, de Vos P. Necrostatin-1 releasing nanoparticles: In vitro and in vivo efficacy for supporting immunoisolated islet transplantation outcomes. J Biomed Mater Res A 2024; 112:288-295. [PMID: 37776226 DOI: 10.1002/jbm.a.37623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
Immunoisolation of pancreatic islets in alginate microcapsules allows for transplantation in the absence of immunosuppression but graft survival time is still limited. This limited graft survival is caused by a combination of tissue responses to the encapsulating biomaterial and islets. A significant loss of islet cells occurs in the immediate period after transplantation and is caused by a high susceptibility of islet cells to inflammatory stress during this period. Here we investigated whether necrostatin-1 (Nec-1), a necroptosis inhibitor, can reduce the loss of islet cells under stress in vitro and in vivo. To this end, we developed a Nec-1 controlled-release system using poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) as the application of Nec-1 in vivo is limited by low stability and possible side effects. The PLGA NPs stably released Nec-1 for 6 days in vitro and protected beta cells against hypoxia-induced cell death in vitro. Treatment with these Nec-1 NPs at days 0, 6, and 12 post-islet transplantation in streptozotocin-diabetic mice confirmed the absence of side effects as graft survival was similar in encapsulated islet grafts in the absence and presence of Nec-1. However, we found no further prolongation of graft survival of encapsulated grafts which might be explained by the high biocompatibility of the alginate encapsulation system that provoked a very mild tissue response. We expect that the Nec-1-releasing NPs could find application to immunoisolation systems that elicit stronger inflammatory responses, such as macrodevices and vasculogenic biomaterials.
Collapse
Affiliation(s)
- Alexandra M Smink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Juan D Medina
- Petit Institute for Bioengineering and Bioscience, Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Bart J de Haan
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Andrés J García
- Petit Institute for Bioengineering and Bioscience, Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Paul de Vos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Horváth C, Jarabicová I, Rajtík T, Bartošová L, Ferenczyová K, Kaločayová B, Barteková M, Szobi A, Adameová A. Analysis of Signaling Pathways of Necroptotic and Pyroptotic Cell Death in the Hearts of Rats With Type 2 Diabetes Mellitus. Physiol Res 2023; 72:S23-S29. [PMID: 37294115 DOI: 10.33549/physiolres.935020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Diabetes mellitus is known to produce various cell-damaging events and thereby underlie heart dysfunction and remodeling. However, very little is known about its inflammation-associated pathomechanisms due to necrosis-like cell death. For this purpose, we aimed to investigate signaling pathways of necroptosis and pyroptosis, known to produce plasma membrane rupture with the resultant promotion of inflammation. One-year old Zucker diabetic fatty (ZDF) rats did not exhibit significant heart dysfunction as revealed by echocardiographic measurement. On the other hand, there was a decrease in heart rate due to diabetes. Immunoblotting analysis showed that the left ventricles of ZDF rats overexpress neither the main necroptotic proteins including receptor-interacting protein kinase 3 (RIP3) and mixed lineage domain kinase-like pseudokinase (MLKL), nor the pyroptotic regulators including NLR family pyrin domain containing 3 protein (NLRP3), caspase-1, interleukin-1 beta (IL-1beta and the N-terminal gasdermin D (GSDMD-N). On the other hand, the increased activation of the RIP3 kinase due to phosphorylation was found in such hearts. In summary, we showed for the first time that the activation of cardiac RIP3 is upregulated due to disturbances in glucose metabolism which, however, did not proceed to necrosis-like cell death. These data can indicate that the activated RIP3 might also underlie other pleiotropic, non-necroptotic signaling pathways under basal conditions.
Collapse
Affiliation(s)
- C Horváth
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Cheon GJ, Park HS, Lee EY, Kim MJ, You YH, Rhee M, Kim JW, Yoon KH. Differentiation of Microencapsulated Neonatal Porcine Pancreatic Cell Clusters in Vitro Improves Transplant Efficacy in Type 1 Diabetes Mellitus Mice. Diabetes Metab J 2022; 46:677-688. [PMID: 35124687 PMCID: PMC9532182 DOI: 10.4093/dmj.2021.0202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/02/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Neonatal porcine pancreatic cell clusters (NPCCs) have been proposed as an alternative source of β cells for islet transplantation because of their low cost and growth potential after transplantation. However, the delayed glucose lowering effect due to the immaturity of NPCCs and immunologic rejection remain as a barrier to NPCC's clinical application. Here, we demonstrate accelerated differentiation and immune-tolerant NPCCs by in vitro chemical treatment and microencapsulation. METHODS NPCCs isolated from 3-day-old piglets were cultured in F-10 media and then microencapsulated with alginate on day 5. Differentiation of NPCCs is facilitated by media supplemented with activin receptor-like kinase 5 inhibitor II, triiodothyronine and exendin-4 for 2 weeks. Marginal number of microencapsulated NPCCs to cure diabetes with and without differentiation were transplanted into diabetic mice and observed for 8 weeks. RESULTS The proportion of insulin-positive cells and insulin mRNA levels of NPCCs were significantly increased in vitro in the differentiated group compared with the undifferentiated group. Blood glucose levels decreased eventually after transplantation of microencapsulated NPCCs in diabetic mice and normalized after 7 weeks in the differentiated group. In addition, the differentiated group showed nearly normal glucose tolerance at 8 weeks after transplantation. In contrast, neither blood glucose levels nor glucose tolerance were improved in the undifferentiated group. Retrieved graft in the differentiated group showed greater insulin response to high glucose compared with the undifferentiated group. CONCLUSION in vitro differentiation of microencapsulated immature NPCCs increased the proportion of insulin-positive cells and improved transplant efficacy in diabetic mice without immune rejection.
Collapse
Affiliation(s)
- Gyeong-Jin Cheon
- Department of Endocrinology and Metabolism, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Heon-Seok Park
- Department of Endocrinology and Metabolism, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eun-Young Lee
- Department of Endocrinology and Metabolism, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min Jung Kim
- Division of Intractable Diseases, Department of Chronic Diseases Convergence Research, Korea National Institute of Health, Cheongju, Korea
| | - Young-Hye You
- Department of Endocrinology and Metabolism, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Marie Rhee
- Department of Endocrinology and Metabolism, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji-Won Kim
- Recombinant Protein Products Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, Korea
| | - Kun-Ho Yoon
- Department of Endocrinology and Metabolism, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Corresponding author: Kun-Ho Yoon https://orcid.org/0000-0002-9109-2208 Department of Endocrinology and Metabolism, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, Korea E-mail:
| |
Collapse
|
5
|
Qin T, Hu S, Smink AM, de Haan BJ, Silva-Lagos LA, Lakey JR, de Vos P. Inclusion of extracellular matrix molecules and necrostatin-1 in the intracapsular environment of alginate-based microcapsules synergistically protects pancreatic β cells against cytokine-induced inflammatory stress. Acta Biomater 2022; 146:434-449. [PMID: 35500812 DOI: 10.1016/j.actbio.2022.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/01/2022]
Abstract
Immunoisolation of pancreatic islets in alginate-based microcapsules is a promising approach for grafting of islets in absence of immunosuppression. However, loss and damage to the extracellular matrix (ECM) during islet isolation enhance susceptibility of islets for inflammatory stress. In this study, a combined strategy was applied to reduce this stress by incorporating ECM components (collagen type IV/RGD) and necroptosis inhibitor, necrostatin-1 (Nec-1) in alginate-based microcapsules in vitro. To demonstrate efficacy, viability and function of MIN6 β-cells and human islets in capsules with collagen type IV/RGD and/or Nec-1 was investigated in presence and absence of IL-1β, IFN-γ and TNF-α. The combination of collagen type IV/RGD and Nec-1 had higher protective effects than the molecules alone. Presence of collagen type IV/RGD and Nec-1 in the intracapsular environment reduced cytokine-induced overproduction of free radical species and unfavorable shifts in mitochondrial dynamics. In addition, the ECM components collagen type IV/RGD prevented a cytokine induced suppression of the FAK/Akt pathway. Our data indicate that the inclusion of collagen type IV/RGD and Nec-1 in the intracapsular environment prevents islet-cell loss when exposed to inflammatory stress, which might contribute to higher survival of β-cells in the immediate period after transplantation. This approach of inclusion of stress reducing agents in the intracapsular environment of immunoisolating devices may be an effective way to enhance the longevity of encapsulated islet grafts. STATEMENT OF SIGNIFICANCE: Islet-cells in immunoisolated alginate-based microcapsules are very susceptible to inflammatory stress which impacts long-term survival of islet grafts. Here we show that incorporation of ECM components (collagen type IV/RGD) and necrostatin-1 (Nec-1) in the intracapsular environment of alginate-based capsules attenuates this susceptibility and promotes islet-cell survival. This effect induced by collagen type IV/RGD and Nec-1 was probably due to lowering free radical production, preventing mitochondrial dysfunction and by maintaining ECM/integrin/FAK/Akt signaling and Nec-1/RIP1/RIP3 signaling. Our study provides an effective strategy to extend longevity of islet grafts which might be of great potential for future clinical application of immunoisolated cells.
Collapse
|
6
|
Hawthorne WJ, Fuller E, Thomas A, Rao JS, Burlak C. Updateon xenotransplantation for May/June 2021. Xenotransplantation 2021; 28:e12710. [PMID: 34617623 DOI: 10.1111/xen.12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Wayne J Hawthorne
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Department of Surgery, Westmead Clinical School, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
| | - Erin Fuller
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Adwin Thomas
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Joseph Sushil Rao
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA.,Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher Burlak
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Lau H, Khosrawipour T, Li S, Alexander M, Frelkiewicz P, Labbé MK, Stieglitz S, Lakey JRT, Kielan W, Khosrawipour V. Exploring Insulin Production Following Alveolar Islet Transplantation (AIT). Int J Mol Sci 2021; 22:ijms221910185. [PMID: 34638521 PMCID: PMC8508311 DOI: 10.3390/ijms221910185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022] Open
Abstract
Recent studies have demonstrated the feasibility of islet implantation into the alveoli. However, until today, there are no data on islet behavior and morphology at their transplant site. This study is the first to investigate islet distribution as well insulin production at the implant site. Using an ex vivo postmortem swine model, porcine pancreatic islets were isolated and aerosolized into the lung using an endoscopic spray-catheter. Lung tissue was explanted and bronchial airways were surgically isolated and connected to a perfusor. Correct implantation was confirmed via histology. The purpose of using this new lung perfusion model was to measure static as well as dynamic insulin excretions following glucose stimulation. Alveolar islet implantation was confirmed after aerosolization. Over 82% of islets were correctly implanted into the intra-alveolar space. The medium contact area to the alveolar surface was estimated at 60 +/− 3% of the total islet surface. The new constructed lung perfusion model was technically feasible. Following static glucose stimulation, insulin secretion was detected, and dynamic glucose stimulation revealed a biphasic insulin secretion capacity during perfusion. Our data indicate that islets secrete insulin following implantation into the alveoli and display an adapted response to dynamic changes in glucose. These preliminary results are encouraging and mark a first step toward endoscopically assisted islet implantation in the lung.
Collapse
Affiliation(s)
- Hien Lau
- Department of Surgery, University of California, Irvine (UCI), Orange, CA 92868, USA; (M.A.); (J.R.T.L.); (V.K.)
- Correspondence: (H.L.); (T.K.)
| | - Tanja Khosrawipour
- Department of Surgery (A), University-Hospital Düsseldorf, Heinrich-Heine University, Moorenstrasse 5, D-40225 Duesseldorf, Germany
- Correspondence: (H.L.); (T.K.)
| | - Shiri Li
- Department of Surgery, Weill Medical College of Cornell University, New York, NY 10065, USA;
| | - Michael Alexander
- Department of Surgery, University of California, Irvine (UCI), Orange, CA 92868, USA; (M.A.); (J.R.T.L.); (V.K.)
| | - Piotr Frelkiewicz
- Center for Experimental Diagnostics and Biomedical Innovations, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Maya Karine Labbé
- School of Dentistry, Wroclaw Medical University, 50-367 Wroclaw, Poland;
| | - Sven Stieglitz
- Department Pulmonary Medicine, Petrus-Hospital Wuppertal, University of Witten-Herdecke, D-42283 Wuppertal, Germany;
| | - Jonathan Robert Todd Lakey
- Department of Surgery, University of California, Irvine (UCI), Orange, CA 92868, USA; (M.A.); (J.R.T.L.); (V.K.)
| | - Wojciech Kielan
- 2nd Department of General Surgery and Surgical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Veria Khosrawipour
- Department of Surgery, University of California, Irvine (UCI), Orange, CA 92868, USA; (M.A.); (J.R.T.L.); (V.K.)
- 2nd Department of General Surgery and Surgical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| |
Collapse
|
8
|
Lau H, Li S, Corrales N, Rodriguez S, Mohammadi M, Alexander M, de Vos P, Lakey JRT. Necrostatin-1 Supplementation to Islet Tissue Culture Enhances the In-Vitro Development and Graft Function of Young Porcine Islets. Int J Mol Sci 2021; 22:8367. [PMID: 34445075 PMCID: PMC8394857 DOI: 10.3390/ijms22168367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/20/2022] Open
Abstract
Pre-weaned porcine islets (PPIs) represent an unlimited source for islet transplantation but are functionally immature. We previously showed that necrostatin-1 (Nec-1) immediately after islet isolation enhanced the in vitro development of PPIs. Here, we examined the impact of Nec-1 on the in vivo function of PPIs after transplantation in diabetic mice. PPIs were isolated from pancreata of 8-15-day-old, pre-weaned pigs and cultured in media alone, or supplemented with Nec-1 (100 µM) on day 0 or on day 3 of culture (n = 5 for each group). On day 7, islet recovery, viability, oxygen consumption rate, insulin content, cellular composition, insulin secretion capacity, and transplant outcomes were evaluated. While islet viability and oxygen consumption rate remained high throughout 7-day tissue culture, Nec-1 supplementation on day 3 significantly improved islet recovery, insulin content, endocrine composition, GLUT2 expression, differentiation potential, proliferation capacity of endocrine cells, and insulin secretion. Adding Nec-1 on day 3 of tissue culture enhanced the islet recovery, proportion of delta cells, beta-cell differentiation and proliferation, and stimulation index. In vivo, this leads to shorter times to normoglycemia, better glycemic control, and higher circulating insulin. Our findings identify the novel time-dependent effects of Nec-1 supplementation on porcine islet quantity and quality prior to transplantation.
Collapse
Affiliation(s)
- Hien Lau
- Department of Surgery, University of California Irvine, Irvine, CA 92868, USA; (H.L.); (N.C.); (S.R.); (M.A.)
| | - Shiri Li
- Weill Cornell Medical College, Cornell University, Ithaca, NY 14850, USA;
| | - Nicole Corrales
- Department of Surgery, University of California Irvine, Irvine, CA 92868, USA; (H.L.); (N.C.); (S.R.); (M.A.)
| | - Samuel Rodriguez
- Department of Surgery, University of California Irvine, Irvine, CA 92868, USA; (H.L.); (N.C.); (S.R.); (M.A.)
| | - Mohammadreza Mohammadi
- Sue and Bill Gross Stem Cell Research Center, Department of Materials Science and Engineering, University of California Irvine, Irvine, CA 92697, USA;
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Irvine, CA 92868, USA; (H.L.); (N.C.); (S.R.); (M.A.)
| | - Paul de Vos
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Jonathan RT Lakey
- Department of Surgery, University of California Irvine, Irvine, CA 92868, USA; (H.L.); (N.C.); (S.R.); (M.A.)
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
9
|
Corrales N, Park S, Lau H, Xu I, Luong C, Rodriguez S, Mönch J, Alexander M, Lakey JR. Comparison of Islet Characterization from Use of Standard Crude Collagenase to GMP-Grade Collagenase Enzyme Blends in Preweaned Porcine Islet Isolations. Cell Transplant 2021; 29:963689720977835. [PMID: 33267618 PMCID: PMC7873766 DOI: 10.1177/0963689720977835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
For the advancement of porcine xenotransplantation for clinical use in type 1 diabetes mellitus, the concerns of a sustainable and safe digestion enzyme blend must be overcome. Incorporating good manufacturing practices (GMP) can facilitate this through utilizing GMP-grade enzymes. In conjunction, still taking into account the cost-effectiveness, a wide concern. We evaluated how GMP-grade enzyme blends impact our piglet islets and their long-term effects. Preweaned porcine islets (PPIs) were isolated from 8- to 10-day-old pigs. Digestion enzyme blends, collagenase type V (Type V), collagenase AF-1 GMP-grade with collagenase NB 6 GMP-grade (AF-1 and NB 6), and collagenase AF-1 GMP-grade with collagenase neutral protease AF GMP-grade (AF-1 and NP AF) were compared. Islet quality control assessments, islet yield, viability, and function, were performed on days 3 and 7, and cell content was performed on day 7. GMP-grade AF-1 and NB 6 (17,209 ± 2,730 islet equivalent per gram of pancreatic tissue [IE/g] on day 3, 9,001 ± 1,034 IE/g on day 7) and AF-1 and NP AF (17,214 ± 3,901 IE/g on day 3, 8,833 ± 2,398 IE/g on day 7) showed a significant increase in islet yield compared to Type V (4,618 ± 1,240 IE/g on day 3, 1,923 ± 704 IE/g on day 7). Islet size, viability, and function showed comparable results in all enzyme blends. There was no significant difference in islet cellular content between enzyme blends. This study demonstrated a comparison of GMP-grade collagenase enzyme blends and a standard crude collagenase enzyme in preweaned-aged porcine, a novel topic in this age. GMP-grade enzyme blends of AF-1 and NB 6 and AF-1 and NP AF resulted in substantially higher yields and as effective PPIs compared to Type V. In the long run, considering costs, integrity, and sustainability, GMP-grade enzyme blends are more favorable for clinical application due to high reproducibility in comparison to undefined manufacturing processes of standard enzymes.
Collapse
Affiliation(s)
- Nicole Corrales
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Soomin Park
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Hien Lau
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Ivana Xu
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Colleen Luong
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Samuel Rodriguez
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Johanna Mönch
- Nordmark Arzneimittel GmbH & Co. KG, Uetersen, Germany
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Jonathan Rt Lakey
- Department of Surgery, University of California Irvine, Orange, CA, USA.,Department of Biomedical Engineering, University of California Irvine, CA, USA
| |
Collapse
|
10
|
Lau H, Khosrawipour T, Alexander M, Li S, Mikolajczyk A, Nicpon J, Schubert J, Bania J, Lakey JRT, Khosrawipour V. Islet Transplantation in the Lung via Endoscopic Aerosolization: Investigation of Feasibility, Islet Cluster Cell Vitality, and Structural Integrity. Cell Transplant 2021; 29:963689720949244. [PMID: 32967455 PMCID: PMC7784503 DOI: 10.1177/0963689720949244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Aerosolized drug delivery has recently attracted much attention as a possible new tool for the delivery of complex nanoparticles. This study aims to investigate whether catheter-based aerosolization of islets via endobronchial systems is a feasible option in islet transplantation. Besides investigating the feasibility of islet aerosolization, we also examined cluster cell vitality and structural integrity of the islets following aerosolization. Using an ex vivo postmortem swine model, porcine pancreatic islets were isolated and aerosolized with an endoscopic spray catheter. Following aerosolization, islet cell vitality and function were assessed via Calcein AM and propidium iodide as well as insulin production after glucose exposure. In the final step, the overall feasibility of the procedure and structural integrity of cells were analyzed and evaluated with respect to clinical applicability. No significant difference was detected in the viability of control islets (90.67 ± 2.19) vs aerosolized islets (90.68 ± 1.20). Similarly, there was no significant difference in control islets (1.62 ± 0.086) vs aerosolized islets (1.42 ± 0.11) regarding insulin release after stimulation. Indocyanine green marked islets were transplanted into the lung without major difficulty. Histological analysis confirmed retained structural integrity and predominant location in the alveolar cavity. Our ex vivo data suggest that catheter-based aerosolized islet cell delivery is a promising tool for the application of cell clusters. According to our data, islet cell clusters delivery is feasible from a mechanical and physical perspective. Moreover, cell vitality and structural integrity remain largely unaffected following aerosolization. These preliminary results are encouraging and represent a first step toward endoscopically assisted islet cell implantation in the lung.
Collapse
Affiliation(s)
- Hien Lau
- Department of Surgery, 8788University of California, Irvine (UCI), Orange, CA, USA
| | - Tanja Khosrawipour
- Department of Surgery, 8788University of California, Irvine (UCI), Orange, CA, USA.,Department of Surgery (A), University-Hospital Düsseldorf, Heinrich-Heine University, Düsseldorf, Germany
| | - Michael Alexander
- Department of Surgery, 8788University of California, Irvine (UCI), Orange, CA, USA
| | - Shiri Li
- Department of Surgery, 8788University of California, Irvine (UCI), Orange, CA, USA
| | - Agata Mikolajczyk
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, 56641Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Jakub Nicpon
- Department of Surgery, Faculty of Veterinary Sciences, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Justyna Schubert
- Department of Food Hygiene and Consumer Health Protection, 56641Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, 56641Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Veria Khosrawipour
- Department of Surgery, 8788University of California, Irvine (UCI), Orange, CA, USA.,Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, 56641Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
11
|
Lau H, Corrales N, Rodriguez S, Park S, Mohammadi M, Li S, Alexander M, Lakey JRT. The effects of necrostatin-1 on the in vitro development and function of young porcine islets over 14-day prolonged tissue culture. Xenotransplantation 2021; 28:e12667. [PMID: 33438288 DOI: 10.1111/xen.12667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/09/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Necrostatin-1 (Nec-1) supplementation to tissue culture media on day 3 has recently been shown to augment the insulin content, endocrine cellular composition, and insulin release of pre-weaned porcine islets (PPIs); however, its effects were only examined for the first 7 days of tissue culture. The present study examined whether the addition of Nec-1 on day 3 could further enhance the in vitro development and function of PPIs after 14 days of tissue culture. METHODS PPIs were isolated from 8- to 15-day-old, pre-weaned Yorkshire piglets and cultured in an islet maturation media supplemented with Nec-1 on day 3. The recovery, viability, insulin content, endocrine cellular composition, GLUT2 expression in beta cells, differentiation and proliferation potential, and glucose-stimulated insulin secretion of PPIs were assessed on days 3, 7, and 14 of tissue culture (n = 5 on each day). RESULTS Compared with day 7 of tissue culture, islets on day 14 had a lower recovery, GLUT2 expression in beta cells, proliferation capacity of endocrine cells, and glucose-induced insulin stimulation index. Prolonging the culture time to 14 days did not affect islet viability, insulin content, proportion of endocrine cells, and differentiation potential. CONCLUSION The growth-inducing effects of Nec-1 on PPIs were most effective on day 7 of tissue culture when added on day 3. Our findings support existing evidence that the in vitro activities of Nec-1 are short-lived and encourage future studies to explore the use of other novel growth factors during prolonged islet tissue culture.
Collapse
Affiliation(s)
- Hien Lau
- Department of Surgery, University of California, Irvine, Irvine, CA, USA
| | - Nicole Corrales
- Department of Surgery, University of California, Irvine, Irvine, CA, USA
| | - Samuel Rodriguez
- Department of Surgery, University of California, Irvine, Irvine, CA, USA
| | - Soomin Park
- Department of Surgery, University of California, Irvine, Irvine, CA, USA
| | - Mohammadreza Mohammadi
- Department of Materials Science and Engineering, Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Shiri Li
- Department of Surgery, University of California, Irvine, Irvine, CA, USA
| | - Michael Alexander
- Department of Surgery, University of California, Irvine, Irvine, CA, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California, Irvine, Irvine, CA, USA.,Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
12
|
Whaley D, Damyar K, Witek RP, Mendoza A, Alexander M, Lakey JRT. Cryopreservation: An Overview of Principles and Cell-Specific Considerations. Cell Transplant 2021; 30:963689721999617. [PMID: 33757335 PMCID: PMC7995302 DOI: 10.1177/0963689721999617] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 01/28/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
The origins of low-temperature tissue storage research date back to the late 1800s. Over half a century later, osmotic stress was revealed to be a main contributor to cell death during cryopreservation. Consequently, the addition of cryoprotective agents (CPAs) such as dimethyl sulfoxide (DMSO), glycerol (GLY), ethylene glycol (EG), or propylene glycol (PG), although toxic to cells at high concentrations, was identified as a necessary step to protect against rampant cell death during cryopreservation. In addition to osmotic stress, cooling and thawing rates were also shown to have significant influence on cell survival during low temperature storage. In general, successful low-temperature cell preservation consists of the addition of a CPA (commonly 10% DMSO), alone or in combination with additional permeating or non-permeating agents, cooling rates of approximately 1ºC/min, and storage in either liquid or vapor phase nitrogen. In addition to general considerations, cell-specific recommendations for hepatocytes, pancreatic islets, sperm, oocytes, and stem cells should be observed to maximize yields. For example, rapid cooling is associated with better cryopreservation outcomes for oocytes, pancreatic islets, and embryonic stem cells while slow cooling is recommended for cryopreservation of hepatocytes, hematopoietic stem cells, and mesenchymal stem cells. Yields can be further maximized by implementing additional pre-cryo steps such as: pre-incubation with glucose and anti-oxidants, alginate encapsulation, and selecting cells within an optimal age range and functional ability. Finally, viability and functional assays are critical steps in determining the quality of the cells post-thaw and improving the efficiency of the current cryopreservation methods.
Collapse
Affiliation(s)
- David Whaley
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Kimia Damyar
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | | | | | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Jonathan RT Lakey
- Department of Surgery, University of California Irvine, Orange, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
13
|
Dose-dependent effects of necrostatin-1 supplementation to tissue culture media of young porcine islets. PLoS One 2020; 15:e0243506. [PMID: 33284818 PMCID: PMC7721208 DOI: 10.1371/journal.pone.0243506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/20/2020] [Indexed: 12/23/2022] Open
Abstract
Previous studies have shown that necrostatin-1 (Nec-1) supplementation improved the viability of murine islets following exposure to nitric oxide, increased the survival of human islets during hypoxic culture, and augmented the maturation of pre-weaned porcine islets (PPIs) after 7 days of tissue culture. A limitation of these studies is that only one concentration of Nec-1 was used, and no studies have determined the optimal dose of Nec-1 for PPIs. Thus, the present study examined the effects of Nec-1 on PPIs at four different doses—0, 25, 50, 100, and 200 μM—after 7 days of tissue culture when supplemented on day 3. PPIs were isolated from pancreata of pre-weaned Yorkshire piglets (8–15 days old) and cultured in a specific islet maturation media added with Nec-1 on day 3 of tissue culture at 4 different doses—0, 25, 50, 100, and 200 μM (n = 6 for each dose). After 7 days of tissue culture, islets were assessed for recovery, viability, endocrine cellular content, GLUT2 expression in beta cells, and insulin secretion after glucose challenge. Nec-1 did not affect the viability of both intact islets and dissociated islets cells during tissue culture regardless of doses. Islets cultured in media supplemented with Nec-1 at 100 μM, but not 25, 50, or 200 μM, had a significantly higher recovery, composition of endocrine cells, GLUT2 expression in beta cells, and insulin secretion capacity than control islets cultured in media without Nec-1 supplementation. Moreover, culturing islets in 200 μM Nec-1 supplemented media not only failed to improve the insulin release but resulted in a lower glucose-induced insulin stimulation index compared to islets cultured in media added with 100 μM Nec-1. Xenotransplantation using porcine islets continues to demonstrate scientific advances to justify this area of research. Our findings indicate that Nec-1 supplementation at 100 μM was most effective to enhance the in vitro maturation of PPIs during tissue culture.
Collapse
|
14
|
Hu S, Kuwabara R, Navarro Chica CE, Smink AM, Koster T, Medina JD, de Haan BJ, Beukema M, Lakey JRT, García AJ, de Vos P. Toll-like receptor 2-modulating pectin-polymers in alginate-based microcapsules attenuate immune responses and support islet-xenograft survival. Biomaterials 2020; 266:120460. [PMID: 33099059 DOI: 10.1016/j.biomaterials.2020.120460] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/03/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022]
Abstract
Encapsulation of pancreatic islets in alginate-microcapsules is used to reduce or avoid the application of life-long immunosuppression in preventing rejection. Long-term graft function, however, is limited due to varying degrees of host tissue responses against the capsules. Major graft-longevity limiting responses include inflammatory responses provoked by biomaterials and islet-derived danger-associated molecular patterns (DAMPs). This paper reports on a novel strategy for engineering alginate microcapsules presenting immunomodulatory polymer pectin with varying degrees of methyl-esterification (DM) to reduce these host tissue responses. DM18-pectin/alginate microcapsules show a significant decrease of DAMP-induced Toll-Like Receptor-2 mediated immune activation in vitro, and reduce peri-capsular fibrosis in vivo in mice compared to higher DM-pectin/alginate microcapsules and conventional alginate microcapsules. By testing efficacy of DM18-pectin/alginate microcapsules in vivo, we demonstrate that low-DM pectin support long-term survival of xenotransplanted rat islets in diabetic mice. This study provides a novel strategy to attenuate host responses by creating immunomodulatory capsule surfaces that attenuate activation of specific pro-inflammatory immune receptors locally at the transplantation site.
Collapse
Affiliation(s)
- Shuxian Hu
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands.
| | - Rei Kuwabara
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Carlos E Navarro Chica
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Alexandra M Smink
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Taco Koster
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Juan D Medina
- Coulter Department of Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Bart J de Haan
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Martin Beukema
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, 333 City Boulevard West Suite 1600, Orange, CA, 92868, USA; Department of Biomedical Engineering, University of California Irvine, 5200 Engineering Hall, Irvine, CA, 92697, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
15
|
Mohammadi MR, Dehkordi-Vakil F, Ricks-Oddie J, Mansfield R, Kashimiri H, Daniels M, Zhao W, Lakey JR. Preferences of Type 1 Diabetic Patients on Devices for Islet Transplantation. Cell Transplant 2020; 29:963689720952343. [PMID: 33023311 PMCID: PMC7784499 DOI: 10.1177/0963689720952343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transplantation of pancreatic islets within a biomaterial device is currently
under investigation in clinical trials for the treatment of patients with type 1
diabetes (T1D). Patients’ preferences on such implants could guide the designs
of next-generation implantable devices; however, such information is not
currently available. We surveyed the preferences of 482 patients with T1D on the
size, shape, visibility, and transplantation site of islet containing implants.
More than 83% of participants were willing to receive autologous stem cells, and
there was no significant association between implant fabricated by one’s own
stem cell with gender (χ2 (1, n = 468) = 0.28; P = 0.6) or
with age (χ2 (4, n = 468) = 2.92; P = 0.6).
Preferred location for islet transplantation within devices was under the skin
(52.7%). 48.3% preferred microscopic disks, and 32.3% preferred a thin device
(like a credit card). Moreover, 58.4% preferred the implant to be as small as
possible, 25.4% did not care about visibility, and 16.2% preferred their
implants not to be visible. Among female participants, 81% cared about the
implant visibility, whereas this number was 64% for male respondents
(χ2 test (1, n = 468) = 16.34; P <
0.0001). 22% of those younger than 50 years of age and 30% of those older than
50 did not care about the visibility of implant (χ2 test (4, n = 468) = 23.69; P <
0.0001). These results suggest that subcutaneous sites and micron-sized devices
are preferred choices among patients with T1D who participated in our
survey.
Collapse
Affiliation(s)
- M Rezaa Mohammadi
- Department of Materials Science and Engineering, 8788University of California, Irvine, CA, USA.,Sue and Bill Gross Stem Cell Research Center, 8788University of California, Irvine, CA, USA
| | - Farideh Dehkordi-Vakil
- Center for Statistical Consulting, Department of Statistics, 8788University of California, Irvine, CA, USA
| | - Joni Ricks-Oddie
- Center for Statistical Consulting, Department of Statistics, 8788University of California, Irvine, CA, USA
| | - Robert Mansfield
- 369679Juvenile Diabetes Research Foundation Orange County Chapter, Irvine, CA, USA
| | | | - Mark Daniels
- CHOC Children's Endocrine & Diabetes Center, Orange, CA, USA
| | - Weian Zhao
- Sue and Bill Gross Stem Cell Research Center, 8788University of California, Irvine, CA, USA.,Department of Pharmaceutical Sciences, Chao Family Comprehensive Cancer Center, Edwards Life Sciences Center for Advanced Cardiovascular Technology, 8788University of California, Irvine, Irvine, CA, USA.,Department of Biomedical Engineering, 8788University of California, Irvine, Irvine, CA, USA.,Department of Biological Chemistry, 8788University of California, Irvine, Irvine, CA, USA
| | - Jonathan Rt Lakey
- Sue and Bill Gross Stem Cell Research Center, 8788University of California, Irvine, CA, USA.,Department of Surgery and Biomedical Engineering, 8788University of California Irvine, Orange, CA, USA
| |
Collapse
|
16
|
Lau H, Corrales N, Rodriguez S, Luong C, Zaldivar F, Alexander M, Lakey JRT. An islet maturation media to improve the development of young porcine islets during in vitro culture. Islets 2020; 12:41-58. [PMID: 32459554 PMCID: PMC7527017 DOI: 10.1080/19382014.2020.1750933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The use of pancreata from pre-weaned piglets has the potential to serve as an unlimited alternative source of islets for clinical xenotransplantation. As pre-weaned porcine islets (PPIs) are immature and require prolonged culture, we developed an islet maturation media (IMM) and evaluated its effect on improving the quantity and quality of PPIs over 14 days of culture. METHODS PPIs were isolated from the pancreata of pre-weaned Yorkshire piglets (8-15 days old). Each independent islet isolation was divided for culture in either control Ham's F-10 media (n = 5) or IMM (n = 5) for 14 days. On day 3, 7 and 14 of culture, islets were assessed for islet yield, isolation index, viability, insulin content, endocrine cellular composition, differentiation of beta cells, and insulin secretion during glucose stimulation. RESULTS In comparison to control islets, culturing PPIs in IMM significantly increased islet yield. PPIs cultured in IMM also maintained a stable isolation index and viability throughout 14 days of culture. The insulin content, endocrine cellular composition, and differentiation of beta cells were significantly improved in PPIs cultured in IMM, which subsequently augmented their insulin secretory capacity in response to glucose challenge compared to control islets. CONCLUSIONS Culturing PPIs in IMM increases islet yield, isolation index, viability, insulin content, endocrine cellular composition, differentiation of endocrine progenitor cells toward beta cells, and insulin secretion. Due to the improved islet quantity and quality after in vitro culture, the use of IMM in the culture of PPIs will assist to advance the outcomes of clinical islet xenotransplantation.
Collapse
Affiliation(s)
- Hien Lau
- Department of Surgery, University of California, Irvine, Orange, CA, USA
| | - Nicole Corrales
- Department of Surgery, University of California, Irvine, Orange, CA, USA
| | - Samuel Rodriguez
- Department of Surgery, University of California, Irvine, Orange, CA, USA
| | - Colleen Luong
- Department of Surgery, University of California, Irvine, Orange, CA, USA
| | - Frank Zaldivar
- Department of Pediatrics, Pediatric Exercise and Genomics Research Center, University of California, Irvine, Irvine, CA, USA
| | - Michael Alexander
- Department of Surgery, University of California, Irvine, Orange, CA, USA
| | - Jonathan R. T. Lakey
- Department of Surgery, University of California, Irvine, Orange, CA, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- CONTACT Jonathan R. T. Lakey Department of Surgery and Biomedical Engineering, Clinical Islet Program, 333 City Blvd West, Suite 1600, Orange, CA92868, USA
| |
Collapse
|
17
|
Chen AM, Burlak C. Xenotransplantation literature update, January/February 2020. Xenotransplantation 2020; 27:e12589. [PMID: 32170808 DOI: 10.1111/xen.12589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Angela M Chen
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Christopher Burlak
- Department of Surgery, Schulze Diabetes Institute, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|