1
|
Nakano K, Goto M, Fukuda S, Yanobu-Takanashi R, Yabe SG, Shimizu Y, Sakuma T, Yamamoto T, Shimoda M, Okochi H, Takahashi R, Okamura T. A Novel Immunodeficient Hyperglycemic Mouse Carrying the Ins1 Akita Mutation for Xenogeneic Islet Cell Transplantation. Transplantation 2025; 109:e81-e91. [PMID: 39104009 PMCID: PMC11745600 DOI: 10.1097/tp.0000000000005152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND For patients who have difficulty controlling blood glucose even with insulin administration, xenogeneic islet cells, including human stem cell-derived pancreatic islets (hSC-islet) and porcine islets, have garnered attention as potential solutions to challenges associated with donor shortages. For the development of diabetes treatment modalities that use cell transplantation therapy, it is essential to evaluate the efficacy and safety of transplanted cells using experimental animals over the long term. METHODS We developed permanent diabetic immune-deficient mice by introducing the Akita (C96Y) mutation into the rodent-specific Insulin1 gene of NOD/Shi-scid IL2rγc null (NOG) mice ( Ins1 C96Y/C96Y NOG). Their body weight, nonfasting blood glucose, and survival were measured from 4 wk of age. Insulin sensitivity was assessed via tolerance tests. To elucidate the utility of these mice in xenotransplantation experiments, we transplanted hSC-islet cells or porcine islets under the kidney capsules of these mice. RESULTS All male and female homozygous mice exhibited persistent severe hyperglycemia associated with β-cell depletion as early as 4 wk of age and exhibited normal insulin sensitivity. These mice could be stably engrafted with hSC-islets, and the mice that received porcine islet grafts promptly exhibited lowered blood glucose levels, maintaining blood glucose levels below the normal glucose range for at least 52 wk posttransplantation. CONCLUSIONS The Ins1C96Y/C96Y NOG mouse model provides an effective platform to assess both the efficacy and safety of long-term xenograft engraftment without the interference of their immune responses. This study is expected to contribute essential basic information for the clinical application of islet cell transplantation.
Collapse
Affiliation(s)
- Kenta Nakano
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Motohito Goto
- Animal Resource Technical Research Center, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Satsuki Fukuda
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Rieko Yanobu-Takanashi
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shigeharu G. Yabe
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yukiko Shimizu
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Tetsushi Sakuma
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takashi Yamamoto
- Division of Integrated Sciences for Life, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Masayuki Shimoda
- Department of Pancreatic Islet Cell Transplantation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hitoshi Okochi
- Department of Regenerative Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Riichi Takahashi
- Animal Resource Technical Research Center, Central Institute for Experimental Medicine and Life Science, Kawasaki, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Laboratory of Laboratory Animal Science and Medicine, School of Veterinary Medicine, Kitasato University, Tokyo, Japan
| |
Collapse
|
2
|
Ajima K, Tsuda N, Takaki T, Furusako S, Matsumoto S, Shinohara K, Yamashita Y, Amano S, Oyama C, Shimoda M. A porcine islet-encapsulation device that enables long-term discordant xenotransplantation in immunocompetent diabetic mice. CELL REPORTS METHODS 2023; 3:100370. [PMID: 36814843 PMCID: PMC9939365 DOI: 10.1016/j.crmeth.2022.100370] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/29/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
Islet transplantation is an effective treatment for type 1 diabetes (T1D). However, a shortage of donors and the need for immunosuppressants are major issues. The ideal solution is to develop a source of insulin-secreting cells and an immunoprotective method. No bioartificial pancreas (BAP) devices currently meet all of the functions of long-term glycemic control, islet survival, immunoprotection, discordant xenotransplantation feasibility, and biocompatibility. We developed a device in which porcine islets were encapsulated in a highly stable and permeable hydrogel and a biocompatible immunoisolation membrane. Discordant xenotransplantation of the device into diabetic mice improved glycemic control for more than 200 days. Glycemic control was also improved in new diabetic mice "relay-transplanted" with the device after its retrieval. The easily retrieved devices exhibited almost no adhesion or fibrosis and showed sustained insulin secretion even after the two xenotransplantations. This device has the potential to be a useful BAP for T1D.
Collapse
Affiliation(s)
- Kumiko Ajima
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Naoto Tsuda
- Biomaterials Business Division, Mochida Pharmaceutical Co., Ltd., 722 Uenohara, Jimba, Gotemba, Shizuoka 412-8524, Japan
| | - Tadashi Takaki
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
- Takeda-CiRA Joint Program (T-CiRA), 2-26-1 Muraoka-higashi, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Shoji Furusako
- Biomaterials Business Division, Mochida Pharmaceutical Co., Ltd., 1-7 Yotsuya, Shinjuku-ku, Tokyo 160-8515, Japan
| | - Shigeki Matsumoto
- Biomaterials Business Division, Mochida Pharmaceutical Co., Ltd., 722 Uenohara, Jimba, Gotemba, Shizuoka 412-8524, Japan
| | - Koya Shinohara
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Yzumi Yamashita
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Sayaka Amano
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| | - Chinatsu Oyama
- Communal Laboratory, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Masayuki Shimoda
- Pancreatic Islet Cell Transplantation Project, Research Institute National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-ku, Tokyo 162-8655, Japan
| |
Collapse
|
3
|
Hawthorne WJ, Fuller E, Thomas A, Rao JS, Burlak C. Updateon xenotransplantation for May/June 2021. Xenotransplantation 2021; 28:e12710. [PMID: 34617623 DOI: 10.1111/xen.12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Wayne J Hawthorne
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Department of Surgery, Westmead Clinical School, Westmead Hospital, University of Sydney, Westmead, New South Wales, Australia
| | - Erin Fuller
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Adwin Thomas
- Centre for Transplant & Renal Research, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Joseph Sushil Rao
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA.,Solid Organ Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher Burlak
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|