1
|
Abalde S, Crocetta F, Tenorio MJ, D'Aniello S, Fassio G, Rodríguez-Flores PC, Uribe JE, M L Afonso C, Oliverio M, Zardoya R. Hidden species diversity and mito-nuclear discordance within the Mediterranean cone snail, Lautoconus ventricosus. Mol Phylogenet Evol 2023:107838. [PMID: 37286063 DOI: 10.1016/j.ympev.2023.107838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 05/15/2023] [Accepted: 05/31/2023] [Indexed: 06/09/2023]
Abstract
The Mediterranean cone snail, Lautoconus ventricosus, is currently considered a single species inhabiting the whole Mediterranean basin and the adjacent Atlantic coasts. Yet, no population genetic study has assessed its taxonomic status. Here, we collected 245 individuals from 75 localities throughout the Mediterranean Sea and used cox1 barcodes, complete mitochondrial genomes, and genome skims to test whether L. ventricosus represents a complex of cryptic species. The maximum likelihood phylogeny based on complete mitochondrial genomes recovered six main clades (hereby named blue, brown, green, orange, red, and violet) with sufficient sequence divergence to be considered putative species. On the other hand, phylogenomic analyses based on 437 nuclear genes only recovered four out of the six clades: blue and orange clades were thoroughly mixed and the brown one was not recovered. This mito-nuclear discordance revealed instances of incomplete lineage sorting and introgression, and may have caused important differences in the dating of main cladogenetic events. Species delimitation tests proposed the existence of at least three species: green, violet, and red+blue+orange (i.e., cyan). Green plus cyan (with sympatric distributions) and violet, had West and East Mediterranean distributions, respectively, mostly separated by the Siculo-Tunisian biogeographical barrier. Morphometric analyses of the shell using species hypotheses as factor and shell length as covariate showed that the discrimination power of the studied parameters was only 70.2%, reinforcing the cryptic nature of the uncovered species, and the importance of integrative taxonomic approaches considering morphology, ecology, biogeography, and mitochondrial and nuclear population genetic variation.
Collapse
Affiliation(s)
- Samuel Abalde
- Department of Zoology, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden; Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain.
| | - Fabio Crocetta
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy
| | - Manuel J Tenorio
- Departamento CMIM y Q. Inorgánica-INBIO, Facultad de Ciencias, Universidad de Cádiz, 11510 Puerto Real, Cádiz, Spain
| | - Salvatore D'Aniello
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy
| | - Giulia Fassio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Zoology-Viale dell'Università 32, 00185 Rome, Italy
| | - Paula C Rodríguez-Flores
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain; Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge MA 02138, USA
| | - Juan E Uribe
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Carlos M L Afonso
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005 - 139 Faro, Portugal
| | - Marco Oliverio
- Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Zoology-Viale dell'Università 32, 00185 Rome, Italy
| | - Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
2
|
López-Solano A, Nester TL, Perea S, Doadrio I. Complete mitochondrial genome of the Spanish toothcarp, Aphanius iberus (Valenciennes, 1846) (Actinopterygii, Aphaniidae) and its phylogenetic position within the Cyprinodontiformes order. Mol Biol Rep 2023; 50:2953-2962. [PMID: 36650373 PMCID: PMC10042920 DOI: 10.1007/s11033-022-08236-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND The Spanish toothcarp (Aphanius iberus Valenciennes, 1846) is a small fish endemic to the eastern coastline of the Iberian Peninsula and is currently listed as "Endangered" (category IUCN: EN). It mainly inhabits brackish waters which can exhibit large fluctuations in temperature and salinity throughout the year. The genetics of A. iberus are not well-known since most studies have only evaluated the genetic structure of the species under a conservation framework in order to identify its potential conservation units. Different phylogenetic relationships of Aphanius have been published based on some particular genes. In the present study, the entire mitochondrial genome of A. iberus was obtained for the first time in the context of an A. iberus reference genome and a hypothesis regarding its phylogenetic position was considered. METHODS AND RESULTS The mitogenome (a circular doble-stranded DNA sequence of 16,708 bp) was reconstructed and aligned against 83 Cyprinodontiformes and two outgroup taxa to identify the phylogenetic position of A. iberus. PartitionFinder was first used to test for the best evolutionary model and the phylogenetic analyses were performed using two methods: Maximun-Likelihood Approximation (IQ-Tree) and Bayesian inference (MrBayes). Our results show that A. iberus forms a sister group with Orestias ascotanensis, a cyprinodontiform species native to South America. CONCLUSIONS The results were congruent with the traditional morphometric reconstructed trees and with a geological vicariant hypothesis involving Cyprinodontiformes where Aphaniidae is shown as a monophyletic family separated from the family Cyprinodontidae. The information gathered from this study is not only valuable for improving our understanding of the evolutionary history of A. iberus, but for future genomic studies involving the species.
Collapse
Affiliation(s)
- Alfonso López-Solano
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain.
| | - Tessa Lynn Nester
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Silvia Perea
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain.,Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito Exterior S/N, C.P. 04510, Ciudad de Mexico, Mexico
| | - Ignacio Doadrio
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| |
Collapse
|
3
|
Mendes SL, Machado MP, Coelho MM, Sousa VC. Genomic data and multi-species demographic modelling uncover past hybridization between currently allopatric freshwater species. Heredity (Edinb) 2021; 127:401-412. [PMID: 34462578 PMCID: PMC8478877 DOI: 10.1038/s41437-021-00466-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
Evidence for ancient interspecific gene flow through hybridization has been reported in many animal and plant taxa based on genetic markers. The study of genomic patterns of closely related species with allopatric distributions allows the assessment of the relative importance of vicariant isolating events and past gene flow. Here, we investigated the role of gene flow in the evolutionary history of four closely related freshwater fish species with currently allopatric distributions in western Iberian rivers-Squalius carolitertii, S. pyrenaicus, S. torgalensis and S. aradensis-using a population genomics dataset of 23,562 SNPs from 48 individuals, obtained through genotyping by sequencing (GBS). We uncovered a species tree with two well-differentiated clades: (i) S. carolitertii and S. pyrenaicus; and (ii) S. torgalensis and S. aradensis. By using D-statistics and demographic modelling based on the site frequency spectrum, comparing alternative demographic scenarios of hybrid origin, secondary contact and isolation, we found that the S. pyrenaicus North lineage is likely the result of an ancient hybridization event between S. carolitertii (contributing ~84%) and S. pyrenaicus South lineage (contributing ~16%), consistent with a hybrid speciation scenario. Furthermore, in the hybrid lineage, we identify outlier loci potentially affected by selection favouring genes from each parental lineage at different genomic regions. Our results suggest that ancient hybridization can affect speciation and that freshwater fish species currently in allopatry are useful to study these processes.
Collapse
Affiliation(s)
- Sofia L. Mendes
- grid.9983.b0000 0001 2181 4263cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Miguel P. Machado
- grid.9983.b0000 0001 2181 4263cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Maria M. Coelho
- grid.9983.b0000 0001 2181 4263cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Vitor C. Sousa
- grid.9983.b0000 0001 2181 4263cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Perea S, Sousa‐Santos C, Robalo J, Doadrio I. Historical biogeography of the Iberian Peninsula: multilocus phylogeny and ancestral area reconstruction for the freshwater fish genus
Squalius
(Actinopterygii, Leuciscidae). J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Silvia Perea
- Museo Nacional de Ciencias Naturales, Biodiversity and Evolutionary Department Madrid Spain
| | - Carla Sousa‐Santos
- MARE – Marine and Environmental Sciences Centre ISPA‐Instituto Universitário Lisbon Portugal
| | - Joana Robalo
- MARE – Marine and Environmental Sciences Centre ISPA‐Instituto Universitário Lisbon Portugal
| | - Ignacio Doadrio
- Museo Nacional de Ciencias Naturales, Biodiversity and Evolutionary Department Madrid Spain
| |
Collapse
|