1
|
A S A, G PK, Ramakrishnan AG. Brain-scale theta band functional connectome as signature of slow breathing and breath-hold phases. Comput Biol Med 2025; 184:109435. [PMID: 39616883 DOI: 10.1016/j.compbiomed.2024.109435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 12/22/2024]
Abstract
The study reported herein attempts to understand the neural mechanisms engaged in the conscious control of breathing and breath-hold. The variations in the electroencephalogram (EEG) based functional connectivity (FC) of the human brain have been investigated during attentive breathing at 2 cycles per minute (cpm). The study presents its novelty through three main aspects. First, it explores the complex breathing circuitry beyond the brain stem, specifically examining how higher brain regions interact with respiratory cycles. Second, unlike previous studies that treated respiratory phases as a singular phenomenon, this research analyses inhalation, exhalation, and breath-holds separately, providing a deeper understanding of their individual dynamics and FC in the brain. Finally, the breathing protocol is designed to include inhale-hold and exhale-hold sessions alongside symmetric breathing, allowing for testing on healthy subjects rather than specialized cohorts, which were used in earlier studies. An experimental protocol involving equal durations of inhale, inhale-hold, exhale, and exhale-hold conditions, synchronized to a visual metronome, was designed and administered to 20 healthy subjects (9 females and 11 males, age: 32.0 ± 9.5 years (mean ± SD)). EEG data were collected during these sessions using the 64-channel eego™ mylab system from ANT Neuro. Further, FC was estimated for all possible pairs of EEG time series data, for 7 EEG bands. Feature selection using a genetic algorithm (GA) was performed to identify a subset of functional connections that would best distinguish the inhale, inhale-hold, exhale, and exhale-hold phases using a random committee classifier. The best accuracy of 95.056% was obtained when 403 theta-band functional connections were fed as input to the classifier, highlighting the efficacy of the theta-band functional connectome in distinguishing these phases of the respiratory cycle. This functional network was further characterized using graph measures, and observations illustrated a statistically significant difference in the efficiency of information exchange through the network during different respiratory phases.
Collapse
Affiliation(s)
- Anusha A S
- Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India.
| | - Pradeep Kumar G
- Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India.
| | - A G Ramakrishnan
- Department of Electrical Engineering, Indian Institute of Science, Bengaluru, India; Centre for Neuroscience, Indian Institute of Science, Bengaluru, India; Heritage Science and Technology, Indian Institute of Technology Hyderabad, Hyderabad, India.
| |
Collapse
|
2
|
Bischoff H, Kovach C, Kumar S, Bruss J, Tranel D, Khalsa SS. Sensing, feeling and regulating: investigating the association of focal brain damage with voluntary respiratory and motor control. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230251. [PMID: 39005040 PMCID: PMC11528364 DOI: 10.1098/rstb.2023.0251] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/26/2024] [Indexed: 07/16/2024] Open
Abstract
Breathing is a complex, vital function that can be modulated to influence physical and mental well-being. However, the role of cortical and subcortical brain regions in voluntary control of human respiration is underexplored. Here we investigated the influence of damage to human frontal, temporal or limbic regions on the sensation and regulation of breathing patterns. Participants performed a respiratory regulation task across regular and irregular frequencies ranging from 6 to 60 breaths per minute (bpm), with a counterbalanced hand motor control task. Interoceptive and affective states induced by each condition were assessed via questionnaire, and autonomic signals were indexed via skin conductance. Participants with focal lesions to the bilateral frontal lobe, right insula/basal ganglia and left medial temporal lobe showed reduced performance relative to individually matched healthy comparisons during the breathing and motor tasks. They also reported significantly higher anxiety during the 60 bpm regular and irregular breathing trials, with anxiety correlating with difficulty in rapid breathing specifically within this group. This study demonstrates that damage to frontal, temporal or limbic regions is associated with abnormal voluntary respiratory and motor regulation and tachypnoea-related anxiety, highlighting the role of the forebrain in affective and motor responses during breathing. This article is part of the theme issue 'Sensing and feeling: an integrative approach to sensory processing and emotional experience'.
Collapse
Affiliation(s)
- Henrik Bischoff
- Department of Psychology, University of Stockholm, 10691 Stockholm, Sweden
- Department of Psychology, Carl-von-Ossietzky University Oldenburg, 26129 Oldenburg, Germany
| | - Christopher Kovach
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sukbhinder Kumar
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| | - Joel Bruss
- Departments of Pediatrics, Neurology, and Psychiatry, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel Tranel
- Departments of Neurology and Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Sahib S. Khalsa
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK 74119, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Bischoff H, Kovach C, Kumar S, Bruss J, Tranel D, Khalsa SS. Sensing, Feeling, and Regulating: Investigating the Association of Focal Brain Damage with Voluntary Respiratory and Motor Control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.16.562254. [PMID: 37905134 PMCID: PMC10614780 DOI: 10.1101/2023.10.16.562254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Breathing is a complex, vital function that can be modulated to influence physical and mental well-being. However, the role of cortical and subcortical brain regions in voluntary control of human respiration is underexplored. Here we investigated the influence of damage to human frontal, temporal, or limbic regions on the sensation and regulation of breathing patterns. Participants performed a respiratory regulation task across regular and irregular frequencies ranging from 6 to 60 breaths per minute (bpm), with a counterbalanced hand motor control task. Interoceptive and affective states induced by each condition were assessed via questionnaire and autonomic signals were indexed via skin conductance. Participants with focal lesions to the bilateral frontal lobe, right insula/basal ganglia, and left medial temporal lobe showed reduced performance than individually matched healthy comparisons during the breathing and motor tasks. They also reported significantly higher anxiety during the 60-bpm regular and irregular breathing trials, with anxiety correlating with difficulty in rapid breathing specifically within this group. This study demonstrates that damage to frontal, temporal, or limbic regions is associated with abnormal voluntary respiratory and motor regulation and tachypnea-related anxiety, highlighting the role of the forebrain in affective and motor responses during breathing. Highlights Impaired human respiratory regulation is associated with cortical/subcortical brain lesionsFrontolimbic/temporal regions contribute to rhythmic breathing and hand motor controlFrontolimbic/temporal damage is associated with anxiety during tachypnea/irregular breathingThe human forebrain is vital for affective and interoceptive experiences during breathing.
Collapse
|
4
|
Turk AZ, Millwater M, SheikhBahaei S. Whole-brain analysis of CO 2 chemosensitive regions and identification of the retrotrapezoid and medullary raphé nuclei in the common marmoset ( Callithrix jacchus). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.558361. [PMID: 37986845 PMCID: PMC10659419 DOI: 10.1101/2023.09.26.558361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Respiratory chemosensitivity is an important mechanism by which the brain senses changes in blood partial pressure of CO2 (PCO2). It is proposed that special neurons (and astrocytes) in various brainstem regions play key roles as CO2 central respiratory chemosensors in rodents. Although common marmosets (Callithrix jacchus), New-World non-human primates, show similar respiratory responses to elevated inspired CO2 as rodents, the chemosensitive regions in marmoset brain have not been defined yet. Here, we used c-fos immunostainings to identify brain-wide CO2-activated brain regions in common marmosets. In addition, we mapped the location of the retrotrapezoid nucleus (RTN) and raphé nuclei in the marmoset brainstem based on colocalization of CO2-induced c-fos immunoreactivity with Phox2b, and TPH immunostaining, respectively. Our data also indicated that, similar to rodents, marmoset RTN astrocytes express Phox2b and have complex processes that create a meshwork structure at the ventral surface of medulla. Our data highlight some cellular and structural regional similarities in brainstem of the common marmosets and rodents.
Collapse
Affiliation(s)
- Ariana Z. Turk
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Marissa Millwater
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| | - Shahriar SheikhBahaei
- Neuron-Glia Signaling and Circuits Unit, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, 20892 MD, USA
| |
Collapse
|
5
|
Wei W, Li X, Feng L, Jiao J, Li W, Cai Y, Fang R, Han Y. The effect of intraoperative transnasal humidified rapid-insufflation ventilatory exchange on emergence from general anesthesia in patients undergoing microlaryngeal surgery: a randomized controlled trial. BMC Anesthesiol 2023; 23:202. [PMID: 37312020 DOI: 10.1186/s12871-023-02169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Transnasal humidified rapid-insufflation ventilatory exchange (THRIVE) has received extensive attention for its utility in tubeless anesthesia. Still, the effects of its carbon dioxide accumulation on emergence from anesthesia have not been reported. This randomized controlled trial aimed at exploring the impact of THRIVE combined with laryngeal mask (LM) on the quality of emergence in patients undergoing microlaryngeal surgery. METHODS After research ethics board approval, 40 eligible patients receiving elective microlaryngeal vocal cord polypectomy were randomly allocated 1:1 to two groups, THRIVE + LM group: intraoperative apneic oxygenation using THRIVE followed by mechanical ventilation through a laryngeal mask in the post-anesthesia care unit (PACU), or MV + ETT group: mechanically ventilated through an endotracheal tube for both intraoperative and post-anesthesia periods. The primary outcome was duration of PACU stay. Other parameters reflecting quality of emergence and carbon dioxide accumulation were also recorded. RESULTS Duration of PACU stay (22.4 ± 6.4 vs. 28.9 ± 8.8 min, p = 0.011) was shorter in the THRIVE + LM group. The incidence of cough (2/20, 10% vs. 19/20, 95%, P < 0.001) was significantly lower in the THRIVE + LM group. Peripheral arterial oxygen saturation and mean arterial pressure during intraoperative and PACU stay, Quality of Recovery Item 40 total score at one day after surgery and Voice Handicap Index-10 score at seven days after surgery were of no difference between two groups. CONCLUSIONS The THRIVE + LM strategy could accelerate emergence from anesthesia and reduce the incidence of cough without compromising oxygenation. However, these benefits did not convert to the QoR-40 and VHI-10 scores improvement. TRIAL REGISTRATION ChiCTR2000038652.
Collapse
Affiliation(s)
- Wei Wei
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, 200031, China
| | - Xiang Li
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, 200031, China
| | - Lili Feng
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, 200031, China
| | - Jiali Jiao
- Institute of Translational Medicine, Shanghai Jiao Tong University, Minhang District, Shanghai, China
| | - Wenxian Li
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, 200031, China
| | - Yirong Cai
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, 200031, China
| | - Rui Fang
- Department of Otolaryngology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Yuan Han
- Department of Anesthesiology, Eye & ENT Hospital of Fudan University, Xuhui District, Shanghai, 200031, China.
| |
Collapse
|
6
|
Tu W, Zhang N. Neural underpinning of a respiration-associated resting-state fMRI network. eLife 2022; 11:e81555. [PMID: 36263940 PMCID: PMC9645809 DOI: 10.7554/elife.81555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Respiration can induce motion and CO2 fluctuation during resting-state fMRI (rsfMRI) scans, which will lead to non-neural artifacts in the rsfMRI signal. In the meantime, as a crucial physiologic process, respiration can directly drive neural activity change in the brain, and may thereby modulate the rsfMRI signal. Nonetheless, this potential neural component in the respiration-fMRI relationship is largely unexplored. To elucidate this issue, here we simultaneously recorded the electrophysiology, rsfMRI, and respiration signals in rats. Our data show that respiration is indeed associated with neural activity changes, evidenced by a phase-locking relationship between slow respiration variations and the gamma-band power of the electrophysiological signal recorded in the anterior cingulate cortex. Intriguingly, slow respiration variations are also linked to a characteristic rsfMRI network, which is mediated by gamma-band neural activity. In addition, this respiration-related brain network disappears when brain-wide neural activity is silenced at an isoelectrical state, while the respiration is maintained, further confirming the necessary role of neural activity in this network. Taken together, this study identifies a respiration-related brain network underpinned by neural activity, which represents a novel component in the respiration-rsfMRI relationship that is distinct from respiration-related rsfMRI artifacts. It opens a new avenue for investigating the interactions between respiration, neural activity, and resting-state brain networks in both healthy and diseased conditions.
Collapse
Affiliation(s)
- Wenyu Tu
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State UniversityUniversity ParkUnited States
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State UniversityUniversity ParkUnited States
| | - Nanyin Zhang
- The Neuroscience Graduate Program, The Huck Institutes of the Life Sciences, The Pennsylvania State UniversityUniversity ParkUnited States
- Center for Neurotechnology in Mental Health Research, The Pennsylvania State UniversityUniversity ParkUnited States
- Department of Biomedical Engineering, The Pennsylvania State UniversityUniversity ParkUnited States
| |
Collapse
|