1
|
Martinelli A, Andreo L, Alves AN, Terena SML, Santos TC, Bussadori SK, Fernandes KPS, Mesquita-Ferrari RA. Photobiomodulation modulates the expression of inflammatory cytokines during the compensatory hypertrophy process in skeletal muscle. Lasers Med Sci 2020; 36:791-802. [PMID: 32638240 DOI: 10.1007/s10103-020-03095-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
Compensatory hypertrophy (CH) occurs due to excessive mechanical load on a muscle, promoting an increase in the size of muscle fibers. In clinical practice, situations such as partial nerve injuries, denervation, and muscle imbalance caused by trauma to muscles and nerves or diseases that promote the loss of nerve conduction can induce CH in muscle fibers. Photobiomodulation (PBM) has demonstrated beneficial effects on muscle tissue during CH. The aim of the present study was to evaluate the effect of PBM on the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) as well as type 2 metalloproteinases (MMP-2) during the process of CH due to excessive load on the plantaris muscle in rats. Forty-five Wistar rats weighing 250 g were divided into three groups: control group (n = 10), hypertrophy (H) group (n = 40), and H + PBM group (n = 40). CH was induced through the ablation of synergist muscles of the plantaris muscle. The tendons of the gastrocnemius and soleus muscles were isolated and sectioned to enable the partial removal of each of muscle. The preserved plantaris muscle below the removed muscles was submitted to excessive functional load. PBM was performed with low-level laser (AsGaAl, λ = 780 nm; 40 mW; energy density: 10 J/cm2; 10 s on each point, 8 points; 3.2 J). Animals from each group were euthanized after 7 and 14 days. The plantaris muscles were carefully removed and sent for analysis of the gene and protein expression of IL-6 and TNF-α using qPCR and ELISA, respectively. MMP-2 activity was analyzed using zymography. The results were submitted to statistical analysis (ANOVA + Tukey's test, p < 0.05). The protein expression analysis revealed an increase in IL-6 levels in the H + PBM group compared to the H group and a reduction in the H group compared to the control group. A reduction in TNF-α was found in the H and H + PBM groups compared to the control group at 7 days. The gene expression analysis revealed an increase in IL-6 in the H + PBM group compared to the H group at 14 days as well as an increase in TNF-α in the H + PBM group compared to the H group at 7 days. Increases in MMP-2 were found in the H and H + PBM groups compared to the control group at both 7 and 14 days. Based on findings in the present study, it is concluded that PBM was able to modulate pro-inflammatory cytokines that are essential for the compensatory hypertrophy process. However, it has not shown a modulation effect directly in MMP-2 activity during the same period evaluated.
Collapse
Affiliation(s)
- A Martinelli
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil
| | - L Andreo
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil
| | - A N Alves
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil
| | - S M L Terena
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil
| | - T C Santos
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil
| | - S K Bussadori
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil.,Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil
| | - K P S Fernandes
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil
| | - Raquel Agnelli Mesquita-Ferrari
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil. .,Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), Rua Vergueiro, 349, São Paulo, SP, 01504001, Brazil.
| |
Collapse
|
2
|
Selection in Australian Thoroughbred horses acts on a locus associated with early two-year old speed. PLoS One 2020; 15:e0227212. [PMID: 32049967 PMCID: PMC7015314 DOI: 10.1371/journal.pone.0227212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Thoroughbred horse racing is a global sport with major hubs in Europe, North America, Australasia and Japan. Regional preferences for certain traits have resulted in phenotypic variation that may result from adaptation to the local racing ecosystem. Here, we test the hypothesis that genes selected for regional phenotypic variation may be identified by analysis of selection signatures in pan-genomic SNP genotype data. Comparing Australian to non-Australian Thoroughbred horses (n = 99), the most highly differentiated loci in a composite selection signals (CSS) analysis were on ECA6 (34.75–34.85 Mb), ECA14 (33.2–33.52 Mb and 35.52–36.94 Mb) and ECA16 (24.28–26.52 Mb) in regions containing candidate genes for exercise adaptations including cardiac function (ARHGAP26, HBEGF, SRA1), synapse development and locomotion (APBB3, ATXN7, CLSTN3), stress response (NR3C1) and the skeletal muscle response to exercise (ARHGAP26, NDUFA2). In a genome-wide association study for field-measured speed in two-year-olds (n = 179) SNPs contained within the single association peak (33.2–35.6 Mb) overlapped with the ECA14 CSS signals and spanned a protocadherin gene cluster. Association tests using higher density SNP genotypes across the ECA14 locus identified a SNP within the PCDHGC5 gene associated with elite racing performance (n = 922). These results indicate that there may be differential selection for racing performance under racing and management conditions that are specific to certain geographic racing regions. In Australia breeders have principally selected horses for favourable genetic variants at loci containing genes that modulate behaviour, locomotion and skeletal muscle physiology that together appear to be contributing to early two-year-old speed.
Collapse
|
3
|
Patel A, Vendrell-Gonzalez S, Haas G, Marcinczyk M, Ziemkiewicz N, Talovic M, Fisher JS, Garg K. Regulation of Myogenic Activity by Substrate and Electrical Stimulation In Vitro. Biores Open Access 2019; 8:129-138. [PMID: 31367477 PMCID: PMC6664826 DOI: 10.1089/biores.2019.0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Skeletal muscle has a remarkable regenerative capacity in response to mild injury. However, when muscle is severely injured, muscle regeneration is impaired due to the loss of muscle-resident stem cells, known as satellite cells. Fibrotic tissue, primarily comprising collagen I (COL), is deposited with this critical loss of muscle. In recent studies, supplementation of laminin (LM)-111 has been shown to improve skeletal muscle regeneration in several models of disease and injury. Additionally, electrical stimulation (E-stim) has been investigated as a possible rehabilitation therapy to improve muscle's functional recovery. This study investigated the role of E-stim and substrate in regulating myogenic response. C2C12 myoblasts were allowed to differentiate into myotubes on COL- and LM-coated polydimethylsiloxane molds. The myotubes were subjected to E-stim and compared with nonstimulated controls. While E-stim resulted in increased myogenic activity, irrespective of substrate, LM supported increased proliferation and uniform distribution of C2C12 myoblasts. In addition, C2C12 myoblasts cultured on LM showed higher Sirtuin 1, mammalian target of rapamycin, desmin, nitric oxide, and vascular endothelial growth factor expression. Taken together, these results suggest that an LM substrate is more conducive to myoblast growth and differentiation in response to E-stim in vitro.
Collapse
Affiliation(s)
- Anjali Patel
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Sara Vendrell-Gonzalez
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Gabriel Haas
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Natalia Ziemkiewicz
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| | - Jonathan S Fisher
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, St. Louis, Missouri
| |
Collapse
|
4
|
Huey KA. Potential Roles of Vascular Endothelial Growth Factor During Skeletal Muscle Hypertrophy. Exerc Sport Sci Rev 2018; 46:195-202. [PMID: 29652692 DOI: 10.1249/jes.0000000000000152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vascular endothelial growth factor (VEGF) deletion in adult mouse muscle fibers contributes to impaired contractile and muscular adaptations to a hypertrophic stimulus suggesting a critical role in adult muscle growth. This review explores the hypothesis that VEGF is essential for adult muscle growth by impacting inflammatory processes, satellite-endothelial cell interactions, and contractile protein accumulation by functioning within known hypertrophic signaling pathways including insulin-like growth factor-1 (IGF-1-Akt) and Wnt-ß-catenin.
Collapse
Affiliation(s)
- Kimberly A Huey
- College of Pharmacy and Health Sciences, Drake University, Des Moines, IA
| |
Collapse
|
5
|
Marcinczyk M, Elmashhady H, Talovic M, Dunn A, Bugis F, Garg K. Laminin-111 enriched fibrin hydrogels for skeletal muscle regeneration. Biomaterials 2017; 141:233-242. [PMID: 28697464 DOI: 10.1016/j.biomaterials.2017.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 12/27/2022]
Abstract
Laminin (LM)-111 supplementation has improved muscle regeneration in several models of disease and injury. This study investigated a novel hydrogel composed of fibrinogen and LM-111. Increasing LM-111 concentration (50-450 μg/mL) in fibrin hydrogels resulted in highly fibrous scaffolds with progressively thinner interlaced fibers. Rheological testing showed that all hydrogels had viscoelastic behavior and the Young's modulus ranged from 2-6KPa. C2C12 myobalsts showed a significant increase in VEGF production and decrease in IL-6 production on LM-111 enriched fibrin hydrogels as compared to pure fibrin hydrogels on day 4. Western blotting results showed a significant increase in MyoD and desmin protein quantity but a significant decrease in myogenin protein quantity in myoblasts cultured on the LM-111 (450 μg/mL) enriched fibrin hydrogel. Combined application of electromechanical stimulation significantly enhanced the production of VEGF and IGF-1 from myoblast seeded fibrin-LM-111 hydrogels. Taken together, these observations offer an important first step toward optimizing a tissue engineered constructs for skeletal muscle regeneration.
Collapse
Affiliation(s)
- Madison Marcinczyk
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Hady Elmashhady
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Muhamed Talovic
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Andrew Dunn
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Faiz Bugis
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA
| | - Koyal Garg
- Department of Biomedical Engineering, Parks College of Engineering, Aviation, and Technology, Saint Louis University, USA.
| |
Collapse
|
6
|
Terena SML, Fernandes KPS, Bussadori SK, Deana AM, Mesquita-Ferrari RA. Systematic review of the synergist muscle ablation model for compensatory hypertrophy. Rev Assoc Med Bras (1992) 2017; 63:164-172. [DOI: 10.1590/1806-9282.63.02.164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/26/2016] [Indexed: 11/21/2022] Open
Abstract
Summary Objective: The aim was to evaluate the effectiveness of the experimental synergists muscle ablation model to promote muscle hypertrophy, determine the period of greatest hypertrophy and its influence on muscle fiber types and determine differences in bilateral and unilateral removal to reduce the number of animals used in this model. Method: Following the application of the eligibility criteria for the mechanical overload of the plantar muscle in rats, nineteen papers were included in the review. Results: The results reveal a greatest hypertrophy occurring between days 12 and 15, and based on the findings, synergist muscle ablation is an efficient model for achieving rapid hypertrophy and the contralateral limb can be used as there was no difference between unilateral and bilateral surgery, which reduces the number of animals used in this model. Conclusion: This model differs from other overload models (exercise and training) regarding the characteristics involved in the hypertrophy process (acute) and result in a chronic muscle adaptation with selective regulation and modification of fast-twitch fibers in skeletal muscle. This is an efficient and rapid model for compensatory hypertrophy.
Collapse
|
7
|
Huey KA, Smith SA, Sulaeman A, Breen EC. Skeletal myofiber VEGF is necessary for myogenic and contractile adaptations to functional overload of the plantaris in adult mice. J Appl Physiol (1985) 2015; 120:188-95. [PMID: 26542520 DOI: 10.1152/japplphysiol.00638.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/21/2015] [Indexed: 12/31/2022] Open
Abstract
The ability to enhance muscle size and function is important for overall health. In this study, skeletal myofiber vascular endothelial growth factor (VEGF) was hypothesized to regulate hypertrophy, capillarity, and contractile function in response to functional overload (FO). Adult myofiber-specific VEGF gene-ablated mice (skmVEGF(-/-)) and wild-type (WT) littermates underwent plantaris FO or sham surgery (SHAM). Mass, morphology, in vivo function, IGF-1, basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and Akt were measured at 7, 14, and 30 days. FO resulted in hypertrophy in both genotypes, but fiber sizes were 13% and 23% smaller after 14 and 30 days, respectively, and mass 15% less after 30 days in skmVEGF(-/-) than WT. FO increased isometric force after 30 days in WT and decreased in skmVEGF(-/-) after 7 and 14 days. FO also resulted in a reduction in specific force and this differed between genotypes at 14 days. Fatigue resistance improved only in 14-day WT mice. Capillary density was decreased by FO in both genotypes. However, capillary-to-fiber ratios were 19% and 15% lower in skmVEGF(-/-) than WT at the 14- and 30-day time points, respectively. IGF-1 was increased by FO at all time points and was 45% and 40% greater in skmVEGF(-/-) than WT after 7 and 14 days, respectively. bFGF, HGF, total Akt, and phospho-Akt, independent of VEGF expression, and VEGF levels in WT were increased after 7 days of FO. These findings suggest VEGF-dependent capillary maintenance supports muscle growth and function in overloaded muscle and is not rescued by compensatory IGF-1 expression.
Collapse
Affiliation(s)
- Kimberly A Huey
- College of Pharmacy and Health Sciences, Drake University, Des Moines, Iowa; and
| | - Sophia A Smith
- College of Pharmacy and Health Sciences, Drake University, Des Moines, Iowa; and
| | - Alexis Sulaeman
- Department of Medicine, University of California-San Diego, La Jolla, California
| | - Ellen C Breen
- Department of Medicine, University of California-San Diego, La Jolla, California
| |
Collapse
|
8
|
Sassoli C, Pini A, Chellini F, Mazzanti B, Nistri S, Nosi D, Saccardi R, Quercioli F, Zecchi-Orlandini S, Formigli L. Bone marrow mesenchymal stromal cells stimulate skeletal myoblast proliferation through the paracrine release of VEGF. PLoS One 2012; 7:e37512. [PMID: 22815682 PMCID: PMC3398011 DOI: 10.1371/journal.pone.0037512] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/24/2012] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are the leading cell candidates in the field of regenerative medicine. These cells have also been successfully used to improve skeletal muscle repair/regeneration; however, the mechanisms responsible for their beneficial effects remain to be clarified. On this basis, in the present study, we evaluated in a co-culture system, the ability of bone-marrow MSCs to influence C2C12 myoblast behavior and analyzed the cross-talk between the two cell types at the cellular and molecular level. We found that myoblast proliferation was greatly enhanced in the co-culture as judged by time lapse videomicroscopy, cyclin A expression and EdU incorporation. Moreover, myoblasts immunomagnetically separated from MSCs after co-culture expressed higher mRNA and protein levels of Notch-1, a key determinant of myoblast activation and proliferation, as compared with the single culture. Notch-1 intracellular domain and nuclear localization of Hes-1, a Notch-1 target gene, were also increased in the co-culture. Interestingly, the myoblastic response was mainly dependent on the paracrine release of vascular endothelial growth factor (VEGF) by MSCs. Indeed, the addition of MSC-derived conditioned medium (CM) to C2C12 cells yielded similar results as those observed in the co-culture and increased the phosphorylation and expression levels of VEGFR. The treatment with the selective pharmacological VEGFR inhibitor, KRN633, resulted in a marked attenuation of the receptor activation and concomitantly inhibited the effects of MSC-CM on C2C12 cell growth and Notch-1 signaling. In conclusion, this study provides novel evidence for a role of MSCs in stimulating myoblast cell proliferation and suggests that the functional interaction between the two cell types may be exploited for the development of new and more efficient cell-based skeletal muscle repair strategies.
Collapse
Affiliation(s)
- Chiara Sassoli
- Department of Human Anatomy, Histology and Forensic Medicine, University of Florence, Florence, Italy
| | - Alessandro Pini
- Department of Human Anatomy, Histology and Forensic Medicine, University of Florence, Florence, Italy
| | - Flaminia Chellini
- Department of Human Anatomy, Histology and Forensic Medicine, University of Florence, Florence, Italy
| | - Benedetta Mazzanti
- Department of Hematology, Cord Blood Bank, Careggi Hospital, University of Florence, Florence, Italy
| | - Silvia Nistri
- Department of Human Anatomy, Histology and Forensic Medicine, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Human Anatomy, Histology and Forensic Medicine, University of Florence, Florence, Italy
| | - Riccardo Saccardi
- Department of Hematology, Cord Blood Bank, Careggi Hospital, University of Florence, Florence, Italy
| | - Franco Quercioli
- National Institute of Optics (INO), National Research Council (CNR), Sesto Fiorentino, Florence, Italy
| | - Sandra Zecchi-Orlandini
- Department of Human Anatomy, Histology and Forensic Medicine, University of Florence, Florence, Italy
| | - Lucia Formigli
- Department of Human Anatomy, Histology and Forensic Medicine, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
9
|
Gruzman A, Elgart A, Viskind O, Billauer H, Dotan S, Cohen G, Mishani E, Hoffman A, Cerasi E, Sasson S. Antihyperglycaemic activity of 2,4:3,5-dibenzylidene-D-xylose-diethyl dithioacetal in diabetic mice. J Cell Mol Med 2012; 16:594-604. [PMID: 21564514 PMCID: PMC3822934 DOI: 10.1111/j.1582-4934.2011.01340.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We have recently generated lipophilic D-xylose derivatives that increase the rate of glucose uptake in cultured skeletal muscle cells in an AMP-activated protein kinase (AMPK)-dependent manner. The derivative 2,4:3,5-dibenzylidene-D-xylose-diethyl dithioacetal (EH-36) stimulated the rate of glucose transport by increasing the abundance of glucose transporter-4 in the plasma membrane of cultured myotubes. The present study aimed at investigating potential antihyperglycaemic effects of EH-36 in animal models of diabetes. Two animal models were treated subcutaneously with EH-36: streptozotocin-induced diabetes in C57BL/6 mice (a model of insulin-deficient type 1 diabetes), and spontaneously diabetic KKAy mice (Kuo Kondo rats carrying the A(y) yellow obese gene; insulin-resistant type 2 diabetes). The in vivo biodistribution of glucose in control and treated mice was followed with the glucose analogue 2-deoxy-2-[(18) F]-D-glucose; the rate of glucose uptake in excised soleus muscles was measured with [(3) H]-2-deoxy-D-glucose. Pharmacokinetic parameters were determined by non-compartmental analysis of the in vivo data. The effective blood EH-36 concentration in treated animals was 2 μM. It reduced significantly the blood glucose levels in both types of diabetic mice and also corrected the typical compensatory hyperinsulinaemia of KKAy mice. EH-36 markedly increased glucose transport in vivo into skeletal muscle and heart, but not to adipose tissue. This stimulatory effect was mediated by Thr(172) -phosphorylation in AMPK. Biochemical tests in treated animals and acute toxicological examinations showed that EH-36 was well tolerated and not toxic to the mice. These findings indicate that EH-36 is a promising prototype molecule for the development of novel antidiabetic drugs.
Collapse
Affiliation(s)
- Arie Gruzman
- Department of Pharmacology, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Roudier E, Gineste C, Wazna A, Dehghan K, Desplanches D, Birot O. Angio-adaptation in unloaded skeletal muscle: new insights into an early and muscle type-specific dynamic process. J Physiol 2010; 588:4579-91. [PMID: 20876198 DOI: 10.1113/jphysiol.2010.193243] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
With a remarkable plasticity, skeletal muscle adapts to an altered functional demand. Muscle angio-adaptation can either involve the growth or the regression of capillaries as respectively observed in response to endurance training or muscle unloading. Whereas the molecular mechanisms that regulate exercise-induced muscle angiogenesis have been extensively studied, understanding how muscle unloading can in contrast lead to capillary regression has received very little attention. Here we have investigated the consequences of a 9 day time course hindlimb unloading on both capillarization and expression of angio-adaptive molecules in two different rat skeletal muscles. Both soleus and plantaris muscles were atrophied similarly. In contrast, our results have shown different angio-adaptive patterns between these two muscles. Capillary regression occurred only in the soleus, a slow-twitch and oxidative postural muscle. Conversely, the level of capillarization was preserved in the plantaris, a fast-twitch and glycolytic muscle. We have also measured the time course protein expression of key pro- and anti-angiogenic signals (VEGF-A, VEGF-B, VEGF-R2, TSP-1). Our results have revealed that the angio-adaptive response to unloading was muscle-type specific, and that an integrated balance between pro- and anti-angiogenic signals plays a determinant role in regulating this process. In conclusion, we have brought new evidence that measuring the ratio between pro- and anti-angiogenic signals in order to evaluate muscle angio-adaptation was a more accurate approach than analysing the expression of molecular factors taken individually.
Collapse
Affiliation(s)
- Emilie Roudier
- York University, Faculty of Health, Muscle Health Research Center, Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|