1
|
Bordoni B, Girgenti GT, Escher AR. Practice of Peritoneal Adhesions in Osteopathic Medicine: Part 2. Cureus 2023; 15:e43092. [PMID: 37554375 PMCID: PMC10406449 DOI: 10.7759/cureus.43092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2023] [Indexed: 08/10/2023] Open
Abstract
Peritoneal adhesions are an unwanted and frequent event following abdominal surgery, with a response rate that can reach 100%. The adhesions can be symptomatic, becoming a source of pain and discomfort for the patient, or asymptomatic, with possible chronic or acute visceral dysfunction. The article reviews what the diagnostic strategies are and discusses what could be the causes that lead to chronic pain in the presence of adhesions. The text reports the knowledge of the literature on the manual treatment of adhesions and illustrates possible symptoms that are not easily recognized by the clinician. To conclude, the article proposes osteopathic manual approaches derived from clinical experience and from what has been explained about the formation of peritoneal adhesions. Research must make further efforts to identify not only the causes triggering the formation of peritoneal neogenesis but also seek the most appropriate non-invasive treatments to help the patient.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Gregory T Girgenti
- Anesthesiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| | - Allan R Escher
- Anesthesiology/Pain Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
| |
Collapse
|
2
|
Paeoniflorin Improved Constipation in the Loperamide-Induced Rat Model via TGR5/TRPA1 Signaling-Mediated 5-Hydroxytryptamine Secretion. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6076293. [PMID: 34925531 PMCID: PMC8674056 DOI: 10.1155/2021/6076293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 02/08/2023]
Abstract
Slow transit constipation (STC) is a common type of constipation with a high incidence rate and a large number of patients. We aimed to investigate the therapeutic effects and potential mechanism of paeoniflorin (PAE) on loperamide-induced Sprague Dawley (SD) rat constipation models. Rats with loperamide-induced constipation were orally administered different concentrations of PAE (10, 20, or 40 mg/kg). In vitro, enterochromaffin (EC)-like RIN-14B cells were treated with 20, 40, or 80 μg/ml PAE. We found that PAE treatment significantly improved the symptoms of constipation and increased the intestinal transit rate. Hematoxylin and eosin (H&E) staining showed that PAE alleviated colonic tissue pathological damage. Besides, our results implied that PAE concentration-dependently promoted the content of 5-hydroxytryptamine (5-HT) catalyzed by tryptophan hydroxylase (Tph)-1 in the serum of loperamide-induced rats and in RIN-14B cells. Western blot and immunofluorescence (IF) stain indicated that PAE also promoted the expression of G protein-coupled BA receptor 1 (TGR5), transient receptor potential ankyrin 1 (TRPA1), phospholipase C (PLC)-γ1, and phosphatidylinositol 4,5-bisphosphate (PIP2) in vivo and in vitro. RIN-14B cells were cotreated with a TGR5 inhibitor (SBI-115) to explore the mechanism of PAE in regulating the 5-HT secretion. We observed inhibition of TGR5 reversed the increase of 5-HT secretion induced by PAE in RIN-14B cells. We provided evidence that PAE could promote 5-HT release from EC cells and improve constipation by activating the TRPA1 channel and PLC-γ1/PIP2 signaling. Thus, PAE may provide therapeutic effects for patients with STC.
Collapse
|
3
|
Simulations of Myenteric Neuron Dynamics in Response to Mechanical Stretch. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2020; 2020:8834651. [PMID: 33123188 PMCID: PMC7582074 DOI: 10.1155/2020/8834651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/20/2020] [Accepted: 09/25/2020] [Indexed: 12/02/2022]
Abstract
Background Intestinal sensitivity to mechanical stimuli has been studied intensively in visceral pain studies. The ability to sense different stimuli in the gut and translate these to physiological outcomes relies on the mechanosensory and transductive capacity of intrinsic intestinal nerves. However, the nature of the mechanosensitive channels and principal mechanical stimulus for mechanosensitive receptors are unknown. To be able to characterize intestinal mechanoelectrical transduction, that is, the molecular basis of mechanosensation, comprehensive mathematical models to predict responses of the sensory neurons to controlled mechanical stimuli are needed. This study aims to develop a biophysically based mathematical model of the myenteric neuron with the parameters constrained by learning from existing experimental data. Findings. The conductance-based single-compartment model was selected. The parameters in the model were optimized by using a combination of hand tuning and automated estimation. Using the optimized parameters, the model successfully predicted the electrophysiological features of the myenteric neurons with and without mechanical stimulation. Conclusions The model provides a method to predict features and levels of detail of the underlying physiological system in generating myenteric neuron responses. The model could be used as building blocks in future large-scale network simulations of intrinsic primary afferent neurons and their network.
Collapse
|
4
|
Bao L, Zhao J, Liao D, Wang G, Gregersen H. Pressure overload changes mesenteric afferent nerve responses in a stress-dependent way in a fasting rat model. Biomech Model Mechanobiol 2020; 19:1741-1753. [PMID: 32072371 DOI: 10.1007/s10237-020-01305-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/06/2020] [Indexed: 12/28/2022]
Abstract
It is well known that overload changes the mechanical properties of biological tissues and fasting changes the responsiveness of intestinal afferents. This study aimed to characterize the effect of overload on mechanosensitivity in mesenteric afferent nerves in normal and fasted Sprague-Dawley rats. Food was restricted for 7 days in the Fasting group. Jejunal whole afferent nerve firing was recorded during three distensions, i.e., ramp distension to 80 cmH2O luminal pressure (D1), sustained distension to 120 cmH2O for 2 min (D2), and again to 80 cmH2O (D3). Multiunit afferent recordings were separated into low-threshold (LT) and wide-dynamic-range (WDR) single-unit activity for D1 and D3. Intestinal deformation (strain), distension load (stress), and firing frequency of mesenteric afferent nerve bundles [spike rate increase ratio (SRIR)] were compared at 20 cmH2O and 40 cmH2O and maximum pressure levels among distensions and groups. SRIR and stress changes showed the same pattern in all distensions. The SRIR and stress were larger in the Fasting group compared to the Control group (P < 0.01). SRIR was lower in D3 compared to D1 in controls (P < 0.05) and fasting rats (P < 0.01). Total single units and LT were significantly lower in Fasting group than in Controls at D3. LT was significantly higher in D3 than in D1 in Controls. Furthermore, correlation was found between SRIR with stress (R = 0.653, P < 0.001). In conclusion, overload decreased afferent mechanosensitivity in a stress-dependent way and was most pronounced in fasting rats. Fasting shifts LT to WDR and high pressure shifts WDR to LT in response to mechanical stimulation.
Collapse
Affiliation(s)
- Lingxia Bao
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, China.,Department of Clinical Medicine, Giome Academia, Aarhus University, 8200, Aarhus N, Denmark
| | - Jingbo Zhao
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, China.,Department of Clinical Medicine, Giome Academia, Aarhus University, 8200, Aarhus N, Denmark
| | - Donghua Liao
- Department of Clinical Medicine, Giome Academia, Aarhus University, 8200, Aarhus N, Denmark.,Department of Gastroenterology and Hepatology, Mech-Sense, Aalborg University Hospital and Clinical Institute, Faculty of Health Sciences, Aalborg University, Aalborg, Denmark
| | - Guixue Wang
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Hans Gregersen
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education; State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400044, China. .,Department of Surgery, GIOME, the Chinese University of Hong Kong, Pok Fu Lam, Hong Kong, SAR. .,Department of Surgery, Clinical Science Building, GIOME, Prince of Wales Hospital, Ngan Street, Shatin, Hong Kong.
| |
Collapse
|
5
|
Gregersen H, Lo KM. Pathophysiology and treatment of achalasia in a muscle mechanical perspective. Ann N Y Acad Sci 2018; 1434:173-184. [PMID: 29756656 DOI: 10.1111/nyas.13711] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/07/2018] [Accepted: 03/14/2018] [Indexed: 12/11/2022]
Abstract
This review provides a biomechanical perspective on the pathophysiology and treatment of achalasia. The esophagus is efficient in transporting ingested material to the stomach in healthy subjects. A fine balance exists between the peristaltic forces generated in the esophageal body (which herein is defined as the preload) and the resistance in the outlet, the esophago-gastric junction (which is defined as the afterload). Achalasia is a rare esophageal disease that progressively over many years challenges esophageal efficacy. Clinical features and current literature are interpreted using well-known muscle mechanics models and terms from cardiac mechanophysiology. The preload, afterload, length-tension, and strain softening concepts in particular are useful for understanding the remodeling induced by achalasia. The concepts are also useful in understanding the treatment that aim to reduce the lower esophageal sphincter pressure that does not relax sufficiently in achalasia. These treatments cover endoscopic or laparoscopic myotomy, pneumatic balloon dilation, and Botox injections. In addition to the intended reduction of the afterload for aboral transport of ingested materials, the treatments tend to induce gastroesophageal reflux in some patients because they obliterate an important component in the reflux barrier.
Collapse
Affiliation(s)
- Hans Gregersen
- GIOME, Department of Surgery, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.,California Medical Innovations Institute, San Diego, California
| | - Kar Man Lo
- GIOME, DoubleCove, Wu Kai Sha, New Territories, Hong Kong
| |
Collapse
|
6
|
Chen L, Ilham SJ, Guo T, Emadi S, Feng B. In vitro multichannel single-unit recordings of action potentials from mouse sciatic nerve. Biomed Phys Eng Express 2017; 3:045020. [PMID: 29568573 PMCID: PMC5858727 DOI: 10.1088/2057-1976/aa7efa] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Electrode arrays interfacing with peripheral nerves are essential for neuromodulation devices targeting peripheral organs to relieve symptoms. To modulate (i.e., single-unit recording and stimulating) individual peripheral nerve axons remains a technical challenge. Here, we report an in vitro setup to allow simultaneous single-unit recordings from multiple mouse sciatic nerve axons. The sciatic nerve (~30 mm) was harvested and transferred to a tissue chamber, the ~5mm distal end pulled into an adjacent recording chamber filled with paraffin oil. A custom-built multi-wire electrode array was used to interface with split fine nerve filaments. Single-unit action potentials were evoked by electrical stimulation and recorded from 186 axons, of which 49.5% were classed A-type with conduction velocities (CV) greater than 1 m/s and 50.5% were C-type (CV < 1 m/s). The single-unit recordings had no apparent bias towards A- or C-type axons, were robust and repeatable for over 60 minutes, and thus an ideal opportunity to assess different neuromodulation strategies targeting peripheral nerves. For instance, ultrasonic modulation of action potential transmission was assessed using the setup, indicating increased nerve conduction velocity following ultrasound stimulus. This setup can also be used to objectively assess the design of next-generation electrode arrays interfacing with peripheral nerves.
Collapse
Affiliation(s)
- L Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - S J Ilham
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - T Guo
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - S Emadi
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - B Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
7
|
Nullens S, Deiteren A, Jiang W, Keating C, Ceuleers H, Francque S, Grundy D, De Man JG, De Winter BY. In Vitro Recording of Mesenteric Afferent Nerve Activity in Mouse Jejunal and Colonic Segments. J Vis Exp 2016:54576. [PMID: 27805592 PMCID: PMC5092238 DOI: 10.3791/54576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Afferent nerves not only convey information concerning normal physiology, but also signal disturbed homeostasis and pathophysiological processes of the different organ systems from the periphery towards the central nervous system. As such, the increased activity or 'sensitization' of mesenteric afferent nerves has been allocated an important role in the pathophysiology of visceral hypersensitivity and abdominal pain syndromes. Mesenteric afferent nerve activity can be measured in vitro in an isolated intestinal segment that is mounted in a purpose-built organ bath and from which the splanchnic nerve is isolated, allowing researchers to directly assess nerve activity adjacent to the gastrointestinal segment. Activity can be recorded at baseline in standardized conditions, during distension of the segment or following the addition of pharmacological compounds delivered intraluminally or serosally. This technique allows the researcher to easily study the effect of drugs targeting the peripheral nervous system in control specimens; besides, it provides crucial information on how neuronal activity is altered during disease. It should be noted however that measuring afferent neuronal firing activity only constitutes one relay station in the complex neuronal signaling cascade, and researchers should bear in mind not to overlook neuronal activity at other levels (e.g., dorsal root ganglia, spinal cord or central nervous system) in order to fully elucidate the complex neuronal physiology in health and disease. Commonly used applications include the study of neuronal activity in response to the administration of lipopolysaccharide, and the study of afferent nerve activity in animal models of irritable bowel syndrome. In a more translational approach, the isolated mouse intestinal segment can be exposed to colonic supernatants from IBS patients. Furthermore, a modification of this technique has been recently shown to be applicable in human colonic specimens.
Collapse
Affiliation(s)
- Sara Nullens
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp
| | - Annemie Deiteren
- Visceral Pain Group, Discipline of Medicine, University of Adelaide
| | - Wen Jiang
- Department of Biomedical Sciences, University of Sheffield
| | - Christopher Keating
- Department of Pharmacy, Pharmacology and Postgraduate Medicine, University of Hertfordshire
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital
| | - David Grundy
- Department of Biomedical Sciences, University of Sheffield
| | - Joris G De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp;
| |
Collapse
|